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Abstract

Background: Edit distance is a well established metric to quantify how dissimilar two strings are by counting the
minimum number of operations required to transform one string into the other. It is utilized in the domain of human
genomic sequence similarity as it captures the requirements and leads to a better diagnosis of diseases. However, in
addition to the computational complexity due to the large genomic sequence length, the privacy of these sequences
are highly important. As these genomic sequences are unique and can identify an individual, these cannot be shared
in a plaintext.

Methods: In this paper, we propose two different approximation methods to securely compute the edit distance
among genomic sequences. We use shingling, private set intersection methods, the banded alignment algorithm,
and garbled circuits to implement these methods. We experimentally evaluate these methods and discuss both
advantages and limitations.

Results: Experimental results show that our first approximation method is fast and achieves similar accuracy
compared to existing techniques. However, for longer genomic sequences, both the existing techniques and our
proposed first method are unable to achieve a good accuracy. On the other hand, our second approximation method
is able to achieve higher accuracy on such datasets. However, the second method is relatively slower than the first
proposed method.

Conclusion: The proposed algorithms are generally accurate, time-efficient and can be applied individually and
jointly as they have complimentary properties (runtime vs. accuracy) on different types of datasets.

Keywords: Privacy of genomic data, Secure edit distance, Secure genomic sequence similarity, Genomic sequence
similarity, Edit distance approximation on genomic data

Background
Similar Patients Query (SPQ) [1] is used to identify simi-
lar patients from a large number of medical sources. The
similarity is measured based on the sequenced genomes of
patients. Nowadays sequencing and interpreting genomic
information is cheaper and easier than ever. However,
executing SPQs has been seen as a double-edge sword.
The results of executing SPQs will lead to a better diag-
nosis of diseases and early detection of certain diseases.
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On the other hand, executing SPQs raises some secu-
rity and privacy concerns. DNA sequences include health
and other information about patients and their fami-
lies. The disclosure of such genomic sequences could
harm patients from different perspectives such as affect-
ing the employment and the education opportunities.
What makes things more serious, are some federal laws to
address privacy issues such as the Health Insurance Porta-
bility and Accountability Act (HIPAA) [2]. HIPAA is the
United States’ legislation that provides data privacy and
security provisions for safeguarding medical information.
Accordingly, there is a desideratum to privately execute
SPQs over genomic data.
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Edit distance or Leveshtein Distance [3], which has been
a popular metric of string similarity, can be defined as the
minimum number of operations (insertions, deletions and
substitutions) required to convert one string to another.
This metric is widely used in different problems for its
superior utility and accuracy over other string distance
metrics such as hamming distance and Jaro-Winkler dis-
tance [4]. For human genomic data, edit distance seems
to capture the requirement as we can find similar patients
[1] based on genomic information. However, this supe-
riority comes with a cost as edit distance is a quadratic
time algorithm. That is, given two strings with n lengths,
it requires O(n2) operations to compute the edit distance;
this is not acceptable for long string sequences. For this
reason, edit distance problem has been studied over the
years by the theoretical computer science community in
order to find a better alternative, a faster algorithm [5, 6],
or an approximation algorithm. Particularly, in human
genomic data where we have billions of base pairs and
genomic sequences are constructed with nucleotides (A,
T, G, C), this algorithm falls short as most datasets contain
millions of records. For this reason, other algorithms of
string similarity to deal with genomic data have been pro-
posed [7, 8]. These algorithms have been mainly diverged
into two directions, either designing faster algorithms by
bounding the algorithm or resorting to an approximation
which is the approach that we adopt in this paper.
Privacy and time efficiency should be considered while

computing the edit distance over human genomic data to
find similar patients. Data owners are not wiling to share
their genomic data in plaintext to researchers to avoid re-
identification of patients [9, 10] and legal consequences
[2]. Proper authentication and access control over these
high volume of sensitive genomic data are ensured with
time costly verification methods which often results in
delays by several months [11].
In this paper, we propose a framework which cap-

tures these requirements by preserving the privacy of
the query issued by a researcher and the genomic data
owned by a data owner in a time efficient manner. In
other words, our framework allows efficient approxima-
tion algorithm of string similarity over genomic data
where the data owner cannot see the researcher’s query
and the researcher cannot access the genomic data of the
data owner. The proposed framework consists of two algo-
rithms of approximating the edit distance over genomic
data. The first one resorts to the concept of shingles [12]
supported by private set intersection techniques [13]. The
second one depends on the banded alignment [14, 15]
implemented using garbled circuits [16, 17]. The contri-
butions of this article can be summarized as follows:

• We propose an approximation of the edit distance
based on shingles [12] and the Permutation-based

Hashing Set Intersection (Phasing) [13]. A k-shingle
for a genomic sequence can be defined as any
substring of length k that can be found within the
sequence. Shingles are generated for the sequences of
the data owner and the sequence of the researcher.
Phasing is then used to privately intersect the
shingles of the researcher and the shingles of the data
owner such that the query and the genomic data are
obscured from the data owner and the researcher,
respectively.

• We propose another algorithm of approximating the
edit distance the preserves the privacy of the query
and the genomic data using the banded alignment and
garbled circuits. The banded alignment approximates
the edit distance by reducing the number of the
needed comparisons. To privately execute the
banded edit distance, we resort to garbled circuits.

• We experimentally show that the first approximation
algorithm is time-efficient whereas the second one is
more accurate using different datasets. We also show
that the first approximation can be applied before the
second one because they have complimentary
properties. Moreover, we compare these
approximations with stat-of-the-art techniques [1].
Experimental results show that our proposed
algorithms outperform existing techniques both in
terms of efficiency and accuracy.

Problem definition
Similar Patients Query [1, 18] mainly uses edit distance
as a metric to measure the similarity between different
genomic sequences. It allows researchers or health care
professionals to retrieve similar genomic sequences based
on a query sequence. For example, a new patient gets
admitted and the physician is seeking for previous patients
with similar genomic sequences. The history of previ-
ous patients will help the physician to come up with a
definitive diagnosis in a timely manner.
The architecture of the proposed framework is shown

in Fig. 1. It consists of two entities: a researcher and
a data owner (i.e., hospital or genomic data storage).
The researcher is working on a new disease but cannot
reveal the subject’s sequence to the data owner and the
data owner does want to disclose its genomic data to
the researcher. Both parties need a protocol to interact
with each other to determine similar sequences without
disclosing the genomic sequences of their patients. The
number of sequences revealed to the researcher through
the private mechanism is predefined.
More formally, given a dataset of genomic sequences

GS = s1, s2, . . . sn owned by a data owner and a genomic
sequence sq provided by the researcher as a query pred-
icate, the problem of similar patients query (SPQ) is
to retrieve the top-k similar patients from GS, where
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Fig. 1 Problem architecture

the k sequences are determined according to the query
sequence sq and a similarity metric (i.e., edit distance).
The retrieval should be conducted in a way such that the
data owner cannot see sq and the researcher cannot access
any sequence in S other than the final output (i.e., top-k
sequences).

Preliminaries
In this section, we present an overview of the building
blocks that are utilized in the proposed solution.

Edit distance
A word over the finite alphabet � is a sequence ai, . . . , an
of symbols where ai ∈ � for i = 1, . . . , n. The empty
word is denoted by ε. An edit operation is a pair (a, b)
with a, b ∈ � ∪ {ε} and ab �= ε. The edit operation
(a, b) is called an insertion if a = ε, a deletion if b = ε,
and a substitution if a �= ε �= b. An edit operation is
a basic step in transforming a word into another word.
The meaning of the operations (ε, b), (a, ε), and (a, b) is
to insert b, to delete a, and to substitute a by b, respec-
tively. A cost c(a → b) is assigned to each edit operation
(a, b). It is generally assumed that c(a → b) = 1 and
c(a → b) = 0 for a �= b and a = b, respectively.
An edit sequence S is a sequence of edit operations, S =
((a1, b1), . . . , (an, bn)), n ≥ 1. The cost of an edit sequence
S is defined as C(S) = ∑n

i=1 c(ai, bi)

Definition 1 The edit distance d(X,Y ) between two
words X,Y is defined as the minimum cost taken over all
edit sequences that transform X into Y. That is d(X,Y ) =
min{C(s)|s is a sequence of edit operations transforming X
into Y }.

For example, Let us assume that X and Y are genomic
sequences such that X = ATGC and Y = ATGG. It takes
one operation to convert X to Y. In other words, the edit
distance is one. Wagner Fischer’s algorithm to compute
the edit distance is shown in Algorithm 1 [19].

Algorithm 1: Edit distance (Wagner Fischer’s
Algorithm [19])

Data: Sequence X and sequence Y
Result: Edit distance d(X,Y ) between two

sequences X,Y
1 m ← length(X);
2 n ← length(Y );
3 set each element in d to zero;
4 for i ← 1 tom do
5 d[i, 0]← i;
6 for j ← 1 to n do
7 d[0, j]← j;
8 for j ← 1 to n do
9 for i ← 1 tom do

10 if X[i]= Y [j] then
d[i, j]← d[i − 1, j − 1] else d[i, j]←

11 Minimum (d[i − 1, j]+1, d[i, j − 1] ) +
1, d[i − 1, j − 1]+1)

12 return d[m, n];

Garbled circuits
A Garbled Circuit (GC) is a constant round proto-
col which allows any function to be securely computed
between multiple parties. This concept was defined in
1982 by Yao [16] to solve “The Millionaire Problem”.
After much optimization through the years [20], many
implementations are currently available like ObliVM [25]
or FastGC [17]. The millionaire problem explains the
importance of garbled circuits in secure multiparty com-
putations. Suppose two millionaires want to determine
who is richer but they do not want to reveal their exact
wealth. They initiate a GC between them and the result
will be a boolean which denotes any single party’s value is
greater than the other. One party (generator) generates the
total circuit and keys whereas the other one (evaluator)
evaluates it.
Figure 2 shows an example of garbled circuit for AND

gate. The generator picks two random keys for each wire
such that one key corresponds to 0 and the other corre-
sponds to 1 resulting 6 keys in total for each gate. After
that the generator encrypts each row of the truth table
by encrypting the output-wire key with the correspond-
ing pair of input-wire keys. Then it randomly garbles the
table, and sends it to the other party (evaluator) along
with the key corresponding to its input bit (Ek0x if the
input is 0 or Ek1x if the input is 1). The evaluator evalu-
ates the circuit by performing an oblivious transfer [21]
to get the key that corresponds to its input bit and then
decrypts exactly one of the output-wire keys. The evalu-
ator sends the generator the key for the final output wire
and the generator informs the evaluator if it corresponds
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Fig. 2 Garbled Circuits

to 0 or 1. Oblivious transfer is another cryptographic pro-
tocol where the generator puts Ek0y or Ek1y as inputs and
the evaluator picks its input from it. This protocol ensures
that the evaluator does not learn the other input and the
generator is unaware of evaluator’s pick. The beauty of
the GC protocol is that only one row of the encrypted
table will be decrypted by the evaluator to a proper value
(with two keys).

Threat model
We adopt the semi-honest model where both parties fol-
low the protocol but may try to deduce additional infor-
mation from the received messages. A protocol is private
in a semi-honest environment if the view of each party
during the execution of the protocol can be effectively
simulated by a probabilistic polynomial-time algorithm
knowing only the input and the output of that party
[22]. Many protocols involve the composition of privacy-
preserving subprotocols in which all intermediate outputs
from one subprotocol are inputs to the next subprotocol.
These intermediate outputs are either simulated given the
final output and the local input for each party or com-
puted as random shares. Using the composition theorem
[22], it can be shown that if each subprotocol is privacy-
preserving, then the resulting composition is also privacy-
preserving. The semi-honest model is a realistic adversary
model in the context of this paper where a level of trust
among the parties can be ensured through a mutual legal
agreement.

Methods: Edit distance approximations over
genomic data
In this section we discuss two different techniques to
approximate the edit distance over genomic data. These
approximation algorithms are detailed in the following
subsections.

Shingles with private set intersection
The first approximation algorithm consists of two steps.
The first step depends on the concept of shingles

[12, 23] whereas the second one depends on the Private
Set Intersection (PSI) [13]. These two steps are summa-
rized in Algorithm 2.
Shingles. Shingling [12, 24] is a technique used to iden-

tify lexically similar documents in data mining. For any
string S, a w-shingle is a set where each item is a substring
of length w. These items can be unique or might appear
more than once (bag technique). In this paper, we only
consider the unique property of the shingles.

Example 1 Consider one genomic sequence ‘CAA-
CATAGCAAC’ and w = 4, then the set of 4-shingles will
be {CAAC, AACA, ACAT, CATA, ATAG, TAGC, AGCA,
GCAA}.

Notice that ‘CAAC’ appears twice in the sequence but
only considered once when constructing the shingles. To

Algorithm 2: Shingling and PSI approximation
Data: Researcher’s private query genomic

sequence and data owner’s dataset of
genomic sequences which cannot be shared
publicly

Result: Top-k similar genomic sequences by
approximating the edit distance

1 The researcher creates w-shingles of the query
sequence and notifies the data owner;

2 The data owner creates w-shingles for all the
sequences in the dataset;

3 The data owner and researcher engage in a Private
Set Intersection (PSI) [13] protocol to determine
common shingles without revealing their data to
the other party;

4 The data owner gets the final intersection result;
5 The data owner orders the records which have a
higher number of matches and the top-k records
are sent to the researcher;
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the best of our knowledge, this is the first time this con-
cept is used in privacy preserving computation of genomic
data. It is particularly helpful for genomic sequences as we
have only four nucleotides (A,T ,G,C) to consider. In this
step, the data owner and the researcher generate the w-
shingles for the genomic sequences in the dataset and the
genomic sequence in the query, respectively.
Private Set Intersection (PSI) It is a useful technique

and is used in many real applications [13]. It addresses the
problem of two parties who do not want to share their data
but want to discover the common items between them.
Formally,

Definition 2 Consider two different parties having two
different sets A and B respectively. The output of a private
set intersection only reveals the set A∩B = {x : x ∈ A∧x ∈ B}
while A and B are kept private from each party.

In this step, we adopt state of the art Permutation-based
Hashing Set Intersection (Phasing) [13] to privately inter-
sect the shingles of the researcher and the shingles of the
data owner generated in the first step. The data owner
does not share its data or see the query sequence from
the researcher. The data owner gets the result of the inter-
sected shingles and orders the records according to the
number of matches with the intersection result. For exam-
ple, if record 1 has 10 shingles in the intersection set
whereas record 2 has 9 singles, then record 1 is more sim-
ilar to the query sequence than record 2. The data owner
picks out the top-k and sends them to the researcher. The
process is stated in Algorithm 2.

Banded alignment using garbled circuits
The second approximation algorithm depends on two
concepts: the banded alignment [14] to compute the
edit distance and garbled circuits [16, 17] to compute
the banded edit distance in a privacy-preserving set-
ting. The original Wagner Fischer’s algorithm detailed in
Algorithm 1 has an average case running time of O(nm)

where n is the number of sequences and m is the length
of a genomic sequence. Since genomic sequences are gen-
erally long, running time O(nm) is not scalable for human
genomes [1]. We adopt in this step a banded alignment
[14] to reduce the runtime from O(nm) to O(nb) where
b is a constant (band length). As outlined in Algorithm 3,
we only compare each nucleotide from sequence A with a
certain region b in the second sequence. Algorithm 1 has
to calculate through both of the whole sequences to find
its score.
To execute the banded edit distance detailed in

Algorithm 3 in a private setting, we resort to garbled cir-
cuits [16, 25]. Due to privacy constraints, it is unwise
to compare nucleotides at different positions using gar-
bled circuits. The researcher can exhaustively find out

Algorithm 3: Banded edit distance
Data: Sequence X, sequence Y, and band length b
Result: b-banded alignment distance d′(X,Y )

between two sequences X,Y [14]
1 m ← length(X);
2 n ← length(Y );
3 set each element in d′ to zero;
4 for i ← 1 tom do
5 d′[i, 0]← i;
6 for j ← 1 to n do
7 d′[0, j]← j;
8 for j ← 1 to n do
9 if j − b < 1 then lowest ← 1 else

lowest ← j − b if j + b > m then highest ← m
else highest ← j + b

10 for i ← lowest to highest do
11 if X[i]= Y [ j] then d′[i, j]← d′[i− 1, j− 1]

else d′[i, j]← Minimum (d′[i −
1, j]+1, d′[i, j − 1] ) + 1, d′[i − 1, j − 1]+1)

12 return d′[m, n];

the corresponding value in any given respectable position.
This is why the banded edit distance is implemented using
a garbled circuit where the final output is the edit distance
between the sequences (see Section Security discussions
for more discussion).
Garbled circuits are expensive time-wise especially if the

data owner owns a large number of records. To overcome
this deficiency, we apply the banded edit distance using
garbled circuits after shingling and PSI as both approxi-
mation algorithms have complimentary properties.

Joined approach
In the joined approach, we use the first approximation
(shingling and PSI) to reduce the search space for the
second approximation as the first one is computation-
ally much faster than the second one. Here the first
method decreases the number of records that are used
as an input to the second approximation by retrieving
the top-t for a top-k query (t > k) as detailed in Fig. 3.
The relation between t (the top-t records resulted from
the first approximation) and k (the top-k that should
result from the second approximation) is t = ck where
c is a constant. The value of the constant c depends
on the value of k, sequence length and dataset size. For
example, if the dataset of the data owner contains 2000
records and the researcher is interested in the top-10
similar sequences, the first approximation reduces the
number of records to 50 (c=5 and t = 50) and then
we will use these 50 records as an input to the second
approximation to end up with the top-10 similar records
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Fig. 3 Execution order (second approximation)

(k=10). If the value of k is changed to 20, t becomes 100
(t = 5 × 20) records.
Notice that if the number of the records in the

dataset of the data owner is not large or the sequence
lengths are small, then there is no need for the first
approximation algorithm to decrease the number of the
records as banded alignment over garbled circuit will
be efficient enough. We further show these relations on
Section Results.
To get the top-k after that, Algorithm 3 depends on the

garbled circuit to compare two sequences. After that, the
data owner orders the records of the dataset according to
the values of the edit distance and sends the top-k records
to the researcher.

Results
In this section, we analyze the performance of the pro-
posed approximation algorithms for privacy-preserving
genomic data similarity problem. To simulate the real-life
scenario, we placed the data owner and the researcher in
a virtual machine with 4GB RAM. The reason behind this
choice is that we are interested in computing the required
time to securely execute both approximations with fixed
network latency (5-10ms). The source code is available
publicly at GitHub [26] for interested readers. We con-
sider the following aspects in order to assess the efficiency
of the proposed approximation algorithms.

• Space complexity for shingles: storage space needed
to store the shingle dataset.

• Accuracy analysis: performance of the approximation
algorithms measured against the original edit
distance algorithm.

• Runtime analysis: time needed for preprocessing and
to answer the researcher’s query.

• Benchmarking: accuracy and time comparison with a
state of the art technique [1].

We used both real-life and synthetic datasets for
evaluating our model. The real-life dataset is taken from

the recent iDASH competition 2016 [27] where there
were approximately 3000-4000 different SNPs from 500
different individuals. For better analysis, we generated
synthetic data by accumulating the allele frequency of
CHB, CHS, JPT and MXL populations from 1000genomes
dataset (August 2010 Release) [28] and generated 2000
genomic sequences with around 9000 SNPs each. Cor-
responding details about the datasets are presented in
Table 1. The query sequence length for Database 1 is
(3465) and specified by the iDASH competition 2016
[27]. For Database 2, the query sequence length is (9000-
10,000). Actually, the 50 query sequences were gener-
ated while generating Dataset 2. In other words, we
generated 2050 sequences such that 50 were assigned
for the query and the rest constructed the dataset We
will call the real-life dataset taken from iDASH2016
and the synthetic dataset generated from 1000genomes
Dataset1 and Dataset2, respectively throughout the rest of
the paper.

Space complexity for shingles
As transforming a genomic dataset to a shingle dataset
will be space exhaustive, we need to analyze the space
requirements for different shingle sizes. We only consider
unique strings when transforming the original genomic
dataset to shingles dataset. For example, if there are n

Table 1 Dataset consideration

Parameters Dataset 1 Dataset 2

Number of records (n) 500 2000

Sequence length (l) 3400-3500 9000-10000

Number of queries 1 50

Query length 3461 9000-10000

Data size (MB) 1.65 17.2

Data source iDash 2016 [27] Generated
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Table 2 Relationship between the shingle dataset size and the
number of unique shingles for different shingle size (w)

Shingle size w Unique shingles Shingle dataset size (MB)

5 1024 0.007

10 354,457 4.05

15 1,383,525 22.4

20 2,927,918 61.4

genomic sequences each with l length, then the size
of the dataset is n × l. If we consider fixed size w-
shingles (i.e., w = 5) then we need to construct a r × w
dataset where there are r unique shingles each with w
length. For example, if w = 2, we have only 42 pos-
sible shingles (AA,AT ,AC,AG, . . .) since sequences are
constructed with 4 nucleotides (A, T, G, C). This con-
verts a n × l genomic dataset to a 16 × 2 shingle dataset.
However this transformation will be expensive for large
values of w.
Theoretically, the number of unique shingles (4w)

should grow exponentially as the size of w increases.
Nevertheless, due to the high repetitions in genomic
sequences, this quantity is much smaller for practical
application scenarios. As shown in Table 2, if w =10 then
we have 354,457 shingles from a dataset of 3,000 records
(9,000-10,000 length) where theoretically we should have
410 = 1, 048, 576. This results in a shingle dataset of 4.05
MBwhereas the size of the original dataset with sequences
was 17.718MB. Larger values ofw increases the size of the
shingle dataset as shown in Table 2.

Accuracy analysis
As we are proposing two approximation algorithms, we
analyze their accuracy separately and jointly. Here the

accuracy is defined as,

accuracy = # of match in a top-k query
# of positives from edit distance

= NTP
NP

= NTP
NTP + NFN

where TP, FN ,P are true positives, false negatives and
positives, respectively. In general, this accuracy (also
known as true positive rate, sensitivity or recall) denotes
how many records are positives for both the approxi-
mation algorithms and the original edit distance algo-
rithm. For example in a top-3 query, we have records
{1000, 1010, 505, 1101} as an output from the edit distance
algorithm where the records 505 and 1101 have the same
distance and ranked 3rd. Similarly, from our approxima-
tion algorithm, we have the rank as {1000, 1010, 505, 202}
which will lead the accuracy to be

3
4

= 75%. Some further
analysis and explanation are available in the Additional file 1
document as well.
The first approximation algorithm using shingles and

PSI is much accurate when the dataset is small (i.e.,
Dataset 1). While for larger datasets, this method falls
short and we need the banded alignment algorithm to
obtain good accuracy. They can also be used in conjunc-
tion or jointly.
In Fig. 4, we depict the accuracy of the shingling and

PSI approximation using Dataset 1. The dataset had 500
records and short sequences (around 3000 each). The per-
formance of the proposed approximation (shingles and
PSI) algorithm is measured against the original edit dis-
tance algorithm. The optimal value of w is (log|�|l) [15]
where l is the sequence length and |�| = 4 for genomic
sequences. However, as lower w values resulted in higher
false positives, those are not showed here for brevity.

Fig. 4 Accuracy of shingling and PSI approximation using Dataset 1. X-axis shows different k values (top-k) and Y-axis shows the accuracy for
different w values
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Fig. 5 Accuracy of shingling and PSI approximation using Dataset 2. X-axis shows different k values (top-k) and Y-axis shows the accuracy for
different w values

However, more graphs are shown in the Additional file 1
regarding this issue.
Aforementioned, this method has some shortcomings

when dealing with Dataset 2 where we have longer
sequences. In Fig. 5 we show this deficiency as the accu-
racy ranges in 2−13% for top-1 queries. This is due to the
higher sequence lengths and numbers as shingle matches
cannot efficiently represent the original edit distance.
Due to this deficiency from shingles and PSI approxima-

tion algorithm, we switch the other technique to approx-
imate edit distance which is more accurate for longer
sequences. The accuracy of our banded alignment is
showed in Fig. 6. The accuracy of this method is impecca-
ble due to the resemblance with the original edit distance
and lower dimension of data. However there is a cer-
tain cost involved in executing the banded alignment over

a garbled circuit (to provide security) which results in
longer run times. We further elaborate this notion in the
upcoming run time analysis section.
Figure 7 shows the accuracy for both approximation

algorithms joined according to Fig. 3. Here, we use the
top-t outputs from the first approximation algorithm as
an input to the banded alignment to end up with the tar-
get top-k results. It is clear from Fig. 7 that larger values
of t returns better accuracy. On the other hand, larger
values of t has a negative impact on the running time
as demonstrated in the subsequent section. The accuracy
in Fig. 6 is certainly better than the accuracy in Fig. 7.
However, we proposed the combining of both approxima-
tions as shown in Fig. 3 because this reduces the execu-
tion time. We have further discussed these issues in the
Additional file 1.

Fig. 6 Accuracy of the banded alignment using Dataset 2. X-axis shows different k values (top-k) and Y-axis shows the accuracy for different band
values b values
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Fig. 7 Accuracy of the banded alignment after shingles and PSI method using Dataset 2. X-axis shows different k values (top-k) and Y-axis shows the
accuracy for different t values

Runtime analysis
We show in Table 3 a summary of the running time of
both private approximation algorithms along with other
insecure techniques. We also give the time required for
the state of the art work conducted by Wang et al. [1] as
it provides a solid benchmark for assessing runtime. The
benchmarking is done using Dataset 2. The first approx-
imation (shingling and PSI) is the fastest. The banded
alignment takes longer since it depends on the sequence
length of the query due to the runtime O(nb).
This concern can be further elaborated in Fig. 8 where

we show the run time for both approximation algo-
rithms with different band sizes and c. The noticeable
aspect of Fig. 8 is that the running time of the joined
approach has a linear relationship with the value of k.
If k is increased, t (the input of the banded alignment
(t = ck)) will be increased and accordingly the running

Table 3 Running time analysis (top-10 queries with k = 10,
c = 5 (t = ck), w = 10, and b = 5)

Dataset Method Preprocessing Query

Time (s) Time (s)

Dataset 1 Plain Edit Distance 0 23

Dataset 1 Shingles with PSI 18 5

Dataset 1 Protocol 1 [1] 5.7 585

Dataset 1 Protocol 2 [1] 5.7 511

Dataset 2 Plain Edit distance 0 930

Dataset 2 Protocol 1 [1] 61 3049

Dataset 2 Protocol 2 [1] 61 2800

Dataset 2 Shingles with PSI 181 108

Dataset 2 Shingles with PSI + 181 730

banded alignment

time will be increased. This is the primary reason behind
using the shingle approach before the banded alignment
in the joined approach as it reduces the search space
in a constant time for the banded alignment for a large
dataset. Also, it is clear that the preprocessing time is a
one time cost and depends on the genomic database size
which we can neglect. However, the banded alignment
over garbled circuit can be much faster under some secu-
rity assumptions which we explain in 12. The run time for
Dataset 1 is provided in the S Additional file 1.

Benchmarking
In Figs. 9 and 10 we show the performance of the state of
the art approximation algorithm proposed by Wang et al.
[1] using Dataset 1 andDataset 2, respectively. Both proto-
cols presented in the paper of Wang et al. have high accu-
racy using Dataset 1 for top-{1, 5, 10, 20, 30, 40} queries
which resemble our PSI and shingle based approach. It is
noteworthy that we take much less time to achieve similar
accuracy (24s vs 585s). However, this accuracy drops for
longer sequences as shown in Fig. 10 for Dataset 2. This
clearly shows the benefit of our second approximation
algorithm using the banded alignment technique. Thus,
our joined approach achieves a good balance between
accuracy and runtime.

Security discussions
In this section, we elaborate some of our design choices
and discuss the limitations of the proposed methods.

Security of private set intersection methods
In addition to Phasing algorithm [13], there are a num-
ber of other private set intersection techniques [29].
Among these, we experimentally evaluated the basic hash-
ing based method [30], Diffie-Hellman based protocol
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Fig. 8 Run time analysis using Dataset 2. X-axis shows different k values (top-k) and Y-axis shows the run time (in seconds) for different
approximations where b = 5 and c = 5

[31] and permutation based hashing method [13]. We
found that only the hashing based method has a bet-
ter performance than the Phasing algorithm. We did not
opt for the hashing method [13] because an active adver-
sary can run a brute force algorithm on a specific shingle
size (w). This will eventually reveal the query sequence
(or genomic data) as the data owner (or the researcher)
can reconstruct the sequence from shingles. Therefore, we
use the Phasing algorithm [13] where such attack is not
possible.

Banded alignment in garbled circuit
In the banded alignment, we implemented the whole
algorithm using a garbled circuit (GC). This design
choice is due to the leakage consideration of individ-
ual position comparisons of the edit distance algorithm.
In the original edit distance algorithm, characters are

matched one at a time at different positions of the
sequences of the query and the dataset. If a researcher
is allowed to query the genomic dataset and individ-
ual comparisons are done using a GC, then s/he can
exhaustively find out the corresponding value in any given
respectable position as there are only 4 possible val-
ues (A, T, G, C). However, in our method, the whole
iteration of the computation is done inside a garbled
circuit and it outputs only the final result of the edit
distance. Thus, our banded alignment protocol allows a
researcher and a data owner to obliviously calculate the
distance between two strings without leaking any further
information.

Joined approximation
The output of the joined approximation is the top-k
sequences given a target query and these k sequences

Fig. 9 Accuracy of Protocol1 and Protocol2 [1] using Dataset 1. X-axis shows different k values (top-k) and Y-axis shows the accuracy for both
protocols
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Fig. 10 Accuracy of Protocol1 and Protocol2 [1] using Dataset 2

are public and the output of the protocol. In the joined
approximation, the data owner knows the t records
which are the output of the shingling and PSI. As
these t records are not revealed to the researcher,
it does not violate the security requirement. Also, it
does not reveal any additional information to the data
owner as t sequences are more general than the final k
sequences.

Related work
One of the primary works in the domain of privacy pre-
serving genomic sequence similarity is conducted by Jha
et al. [32]. In their paper, they showed three different
protocols which can replicate the original edit distance
algorithm over a garbled circuit. However, due to the
performance of the garbled circuit available that time, it
took around 40 seconds for computing the edit distance
between two sequences where the length of each one of
them is 25. After the proposal of the fully homomor-
phic encryption (FHE) by Gentry [33], edit distance was

Table 4 Chronological development of privacy preserving
genomic data similarity methods

Authors Year Data (n × m) Time (s) Principal method

Jha et al. [32] 2008 25 × 25 < 40 Smith-Waterman

Wang et al. [38] 2009 400 × 400 28.5 Custom
protocols

Wang et al. [1] 2015 2000 × 9000 2800 Private set
difference with
a reference
sequence

Cheon et al. [34] 2015 8 × 8 16.4 Homomorphic
encryption

Shimzu et al. [35] 2016 2184 genomes 4-10 Burrows-Wheeler
transform

also proposed to be homomorphically computed via lat-
tice encryption by Cheon et al. [34]. However, due to the
current state of FHE, the scheme is still inefficient as it
takes 16.4 seconds to compute a 8 × 8 block of dynamic
programming. As the crypto behind the FHE advances
and improves, we might see a better usage of this in
the future.
The closest research to ours is conducted by Wang

et al. [1]. The research addressed the problem of approx-
imating the original edit distance in a realistic setting.
The method used a public reference genomic sequence to
compute an approximation of the edit distance between
two strings. However, the selection of a public refer-
ence leaks some information about the underlying data
distribution. Moreover, it affects the accuracy as the com-
putation is done according to a reference. In a more
recent work, Shimzu et al. [35] proposed the usage
of Burrows-Wheeler transformation for finding target
queries on a genomic dataset. The problem addressed in
this paper [35] is different, although closely related, as
it does not answer secure string similarity for genomic
data. There are also some other related studies such as
[36–38] which address approximating or securely com-
puting edit distance. Some of these are summarized
in Table 4.

Conclusion
Securely computing edit distance between human
genomes have become very important in medi-
cal and public health domains. We have proposed
novel techniques to privately approximate the edit
distance on human genomes. We have imple-
mented these techniques and experimental results
show that the proposed methods are accurate and
time-efficient, and performs better than existing
methods.
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