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Abstract

Background: Lung cancer is a leading cause of cancer-related death worldwide and is the most commonly diagnosed
cancer. Like other cancers, it is a complex and highly heterogeneous disease involving multiple signaling pathways.
Identifying potential therapeutic targets is critical for the development of effective treatment strategies.

Methods: We used a systems biology approach to identify potential key regulatory factors in smoking-induced lung
cancer. We first identified genes that were differentially expressed between smokers with normal lungs and
those with cancerous lungs, then integrated these differentially expressed genes (DEGs) with data from a
protein-protein interaction database to build a network model with functional modules for pathway analysis.
We also carried out a gene set enrichment analysis of DEG lists using the Kinase Enrichment Analysis (KEA),
Protein-Protein Interaction (PPI) hubs, and KEGG (Kyoto Encyclopedia of Genes and Genomes) databases.

Results: Twelve transcription factors were identified as having potential significance in lung cancer (CREB1,
NUCKS1, HOXB4, MYCN, MYC, PHF8, TRIM28, WT1, CUX1, CRX, GABP, and TCF3); three of these (CRX, GABP,
and TCF) have not been previously implicated in lung carcinogenesis. In addition, 11 kinases were found to
be potentially related to lung cancer (MAPK1, IGF1R, RPS6KA1, ATR, MAPK14, MAPK3, MAPK4, MAPK8, PRKCZ,
and INSR, and PRKAA1). However, PRKAA1 is reported here for the first time. MEPCE, CDK1, PRKCA, COPS5,
GSK3B, BRCA1, EP300, and PIN1 were identified as potential hubs in lung cancer-associated signaling. In addition, we
found 18 pathways that were potentially related to lung carcinogenesis, of which 12 (mitogen-activated protein kinase,
gonadotropin-releasing hormone, Toll-like receptor, ErbB, and insulin signaling; purine and ether lipid metabolism;
adherens junctions; regulation of autophagy; snare interactions in vesicular transport; and cell cycle) have been
previously identified.

Conclusion: Our systems-based approach identified potential key molecules in lung carcinogenesis and provides
a basis for investigations of tumor development as well as novel drug targets for lung cancer treatment.
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Background
Lung cancer is a complex and highly heterogeneous di-
sease involving multiple signaling pathways [1]. It is the
leading cause of cancer mortality in men and the second
leading cause in women worldwide [2]. Small cell lung
carcinoma (SCLC) and non-small cell lung carcinoma
(NSCLC) are the main types of lung cancer. The latter
represents 80% of lung cancer cases and can be subclas-
sified as squamous cell carcinoma, adenocarcinoma, or
large cell carcinoma [3, 4]. Smoking is a major contribu-
tor to lung cancer development, being responsible for
about 90% of cases [4]. Cigarette smoke induces inflamma-
tion and causes oxidative stress and genetic and epigenetic
abnormalities that alter gene expression throughout the
respiratory tract [5, 6]. Differences in gene expression in
large airway epithelial cells between non-smokers and
smokers have been analyzed by DNA microarray to
determine the effect of smoking on the transcriptome
[7]. Tobacco smoke was found to cause lung cancer
by inducing of IκB kinase β- and c-Jun N-terminal
kinase 1-dependent inflammation [8].
Spira et al. [9] compared gene expression data from

smokers with (n = 60) and without (n = 69) lung cancer.
Using a weighted-voting algorithm, these authors

identified an 80-biomarker probe set that distinguished
these two populations with an accuracy of 83% when
validated using an independent test set (n = 52). They
selected the 40 most frequently upregulated and down-
regulated probe sets by internal cross-validation [9].
However, this method—which uses only gene expression
profiles—does not provide an integrated view. To ad-
dress this issue, another study established a set of 40
biomarkers with potentially important roles in lung car-
cinogenesis using a network-based approach that inte-
grated microarray gene expression profiles and
information on protein-protein interactions (PPIs) [10].
Network-based approaches in the study of human disease
can elucidate the genes and pathways involved as well as
biomarkers and potential drug targets [11]. Network re-
construction and gene-set enrichment analysis (GSEA)
have been used to mine masses of complex data obtained
from genomics, proteomics, phosphoproteomics, and tran-
scriptomics studies and organize them into a coherent glo-
bal framework [12].
In this study, gene expression data from smokers with

lung cancer and those without lung cancer were ana-
lyzed using a systems biology approach that included
network-based and enrichment analysis of differentially

Fig. 1 Flow chart of systems biology approach to identify key regulatory factors in smoking-lung cancer
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expressed genes (DEGs) between normal and cancerous
lung to identify potential key factors contributing to lung
cancer progression.

Methods
Our strategy for identifying potential key regulatory
factors in smoking-induced lung cancer is shown in
Fig. 1. We first identified genes that were differen-
tially expressed between smokers with normal lungs
and those with cancerous lungs. We then integrated
DEG data with information obtained from a PPI
database to build a network model, which we used to
identify functional modules and relevant signaling
pathways. Finally, we carried out a GSEA of DEGs
using ChIP-x Enrichment Analysis (ChEA), Kinase
Enrichment Analysis (KEA), Protein-Protein Interaction
(PPI) hubs, and KEGG (Kyoto Encyclopedia of Genes and
Genomes) gene-set libraries

Dataset
Gene expression data was obtained from Gene Expres-
sion Omnibus database (DataSet Record GDS2771).
Spira et al. [9] used Affymetrix HG-U133A microarrays
to perform gene-expression profiling of large airway

epithelial cells obtained by bronchoscopy of current and
former smokers. Each individual was followed after
bronchoscopy until a final diagnosis of either presence
or absence of lung cancer [9]. Data included in our ana-
lysis were from smokers with lung cancer (n = 97) and
those with normal lungs (n = 90).

Identifying DEGs
GEO2R and Soft parser.py analysis tools were used
to identify DEGs. GEO2R uses Linear Models for
Microarray Analysis R packages for background cor-
rection and normalization of gene expression data.
Benjamini-Hochberg false discovery rate algorithm was
used to correct for multiple testing in GEO2R [13].

Integration of DEGs with PPI database and pathway
analysis using atBioNet
atBioNet identifies statistically significant functional
modules using a fast network-clustering algorithm
called Structural Clustering Algorithm for Networks
(SCAN). atBioNet interface is connected to KEGG
pathway information to allow assessment of biological
functions of the modules through enrichment ana-
lysis. Each module has a pathway summary ranked

Fig. 2 Top ranked pathways using atBioNet. The figure illustrates that MAPK signaling pathway is the most significant pathway related to lung
cancer in smokers. Also, cell cycle, ErbB signaling pathway, glioma, insulin signaling pathway, pathways in cancer, renal cell carcinoma, and
Toll-like receptor signaling pathway, and ether lipid metabolism are highly related to lung cancer

El-aarag et al. BMC Medical Genomics  (2017) 10:40 Page 3 of 11



according to Fisher’s exact test P value; The pathway
with the lowest P value is considered as the most sig-
nificant [14]. Only large DEG lists such as the com-
bined list, GEO2R lists (top 500, 1000, and 1500
genes) were used as input lists for atBioNet, which
was adjusted using the most stringent options that
were not appropriate for smaller DEG lists. Of the
three options for node addition, we selected the most
stringent [“add only nodes directly connected to at
least two input nodes (more stringent)”]. From two
human PPI databases, we selected a smaller and
more robust database (K2 Human Subset Database)
obtained by the integration of seven original data-
bases using K-votes approach [14].

GSEA using Enrichr
Enrichr includes 35 gene-set libraries, some of which are
unique to this web server [15]. We used ChEA, KEA,
PPI hubs, and KEGG gene-set libraries in this study.
Enrichment was computed with the z-score method
which outperformed the standard Fisher’s exact test and
a combined scoring method that computed a combined
P value from Fisher’s exact test and the z-score of the
deviation from the expected rank [15]. As the enrich-
ment analysis is sensitive to input genes of variable

lengths, different input list sizes (from nine lists) were
included to ensure that our conclusion was reliable as
we concentrated on enriched items with higher overlap
in these lists. Up- and downregulated gene lists, the
combined list, GEO2R lists of different lengths (top 100,
250, 500, 1000, and 1500 genes) and the spira’s panel of
an 80-gene biomarker [9] were used as separate input
lists for Enrichr. The Spira’s panel of an 80-gene bio-
marker [9] was included as an independent list to enrich
our study with the results of the enrichment analysis for
this valuable list.

Results
Pathway analysis of DEG lists with PPI databases
We identified DEGs using GEO2R and Python script
analysis tools. With GEO2R, the top DEGs were divided
into different lists according to length (top 100, 250,
500, 1000, and 1500 genes). With the Python script tool,
DEG lists were divided into lists of genes that were up-
and downregulated as well as a list combining both of
these groups. The combined list and GEO2R output lists
of different lengths (500, 1000, and 1500 genes) were
used as input lists for atBioNet. Top-ranked pathways for
the most significant functional modules generated for

Fig. 3 Transcription factors enrichment analysis using ChEA gene-set library. The transcription factors CREB1, NUCKS1, HOXB4, and MYCN
frequently appeared as top-ranked transcription factors. CRX, TCF3, and GABP were predicted as novel putative transcription factors in lung cancer
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each list were ranked according to the frequency percent
of appearance in the top-ranked pathways lists (Fig. 2).

Enrichment Analysis
Up- and downregulated gene lists, the combined list,
GEO2R lists of different lengths (top 100, 250, 500,
1000, and 1500 genes), and Spira’s 80-gene panel [9]
were used as separate input lists for Enrichr.
Top-ranked enriched data generated for each list were

ranked according to the frequency percent of their ap-
pearance in the top ten (Figs. 3, 4, 5 and 6). The tran-
scription factors CREB1, NUCKS1, HOXB4, and MYCN
frequently appeared as top-ranked transcription factors.
CRX, TCF3, and GABP were predicted as novel putative
transcription factors in lung cancer (Fig. 3). Enrichment
analysis of kinases showed that MAPK1, IGFIR, and
RPS6KA1 were the top-ranked kinases with frequency
percentages of about 80% for MAPK1 and 55% for each
of IGFIR and RPS6KA1. PRKAA1 was also predicted as
a new putative kinase in lung cancer (Fig. 4). MAPK1,
MEPCE, CDK1, MAPK3, and PRKCA frequently ap-
peared in top 10 PPI hubs in about 70% of input lists
(Fig. 5). Pathway enrichment analysis revealed MAPK
signaling to be in the top ten in about 90% of input lists.
Purine and ether lipid metabolism and gonadotropin-
releasing hormone (GnRH) and Toll-like receptor (TLR)

signaling pathways were highly related to lung cancer.
Amino sugar metabolism and N-glycan biosynthesis
were predicted to be dysregulated pathways in lung
cancer (Fig. 6).

Discussion
Cancer is a complex disease and carcinogenesis in
humans is a multistep process that transforms normal
Cells into malignant derivatives so that investigation
of the carcinogenesis from the systems perspective is
inevitable [10]. Many studies have identified potential
biomarkers for lung cancer using integrative approaches.
Liu et al. [16] identified twelve proteins [p-CREB(Ser133),
p-ERK1/2(Thr202/Tyr204), Cyclin B1, p-PDK1(Ser241),
CDK4, CDK2, HSP90, CDC2p34, β-catenin, EGFR, XIAP
and PCNA] which can distinguish normal and tumor
samples with 97% accuracy and four proteins (CDK4,
HSP90, p-CREB and CREB) which can be used to calcu-
late the risk score of each individual patient with NSCLC
to predict survival. This study identified the top six cano-
nical pathways dysregulated in NSCLC—i.e., ATM signa-
ling, PI3K/AKT signaling, p53 signaling, PTEN signaling,
ERK/MAPK signaling, and EGF signaling. Byers et al. [17]
found that SCLCs showed lower levels of several receptor
tyrosine kinases and decreased activation of phosphoinosi-
tide 3-kinase (PI3K) and Ras/mitogen-activated protein

Fig. 4 Kinases enrichment analysis using KEA gene-set library. MAPK1, IGFIR, and RPS6KA1 were the top-ranked kinases with frequency percentages of
about 80% for MAPK1 and 55% for each of IGFIR and RPS6KA1. PRKAA1 was also predicted as a new putative kinase in lung cancer
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(MAP)/extracellular signal-regulated kinase (ERK) kinase
(MEK) pathways but significantly increased levels of
E2F1-regulated factors including enhancer of zeste homo-
log 2 (EZH2), thymidylate synthase, apoptosis mediators,
and DNA repair proteins. These authors also found
that PARP1 1—a DNA repair protein and E2F1 co-
activator—was highly expressed at the mRNA and pro-
tein levels in SCLCs. In addition, a smoking-associated
six-gene signature for predicting lung cancer risk and
probability of survival has been established [4].
In this study, nine top-ranked transcription factors

(CREB1, NUCKS1, HOXB4, MYCN, MYC, PHF8, TRIM28,
WT1, CUX1) (Fig. 2) were found to be significant in lung
cancer (Table 1) [18–42], and three (CRX, GABP, and
TCF3) were newly identified as potentially significant tran-
scription factors in smoking-induced lung cancer. CRX
(Cone-rod homeobox protein) has been proposed as a
sensitive and specific clinical marker and potential thera-
peutic target in retinoblastoma and pineoblastoma [43],
and is essential for growth of tumor cells with photorecep-
tor differentiation [44]. GABP (GA-binding protein) selec-
tively activates the mutant TERT promoter in cancer which

in turn enables cells to escape apoptosis, fundamental steps
in the initiation of human cancer [45]. A TCF3-PBX1 fu-
sion gene has been detected in adenocarcinoma in situ [46].
The top ten kinases in the present study (MAPK1,

IGF1R, RPS6KA1, ATR, MAPK14, MAPK3, MAPK4,
MAPK8, PRKCZ, INSR) have been previously identified
(Table 2) [3, 47–63]. However, this is the first report of
PRKAA1 as a significant factor in lung carcinogenesis
induced by smoking. PRKAA1 (5′-AMP-activated protein
kinase catalytic subunit alpha-1) mediates autophagy
during differentiation of human monocytesis and can po-
tentially serve as a therapeutic target in chronic myelomo-
nocytic leukemia [64].
Eight proteins were significantly related to lung carcino-

genesis—i.e., MEPCE, CDK1, PRKCA, COPS5, GSK3B,
BRCA1, EP300, and PIN1 (Table 3) [3, 65–76]. Network
analysis (Fig. 2) and enrichment analysis (Fig. 6) showed
that MAPK signaling is the most significant pathway re-
lated to lung cancer in smokers. Both approaches identi-
fied that MAPK, TLR, and renal cell carcinoma signaling
pathways a as being important in smoking-induced lung
cancer. In addition, purine and ether lipid metabolism;

Fig. 5 Enrichment analysis of PPI hubs. MAPK1, MEPCE, CDK1, MAPK3, and PRKCA frequently appeared in top 10 PPI hubs in about 70% of input lists
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GnRH, ErbB, and insulin signaling; adherens junctions;
regulation of autophagy; snare interaction in vesicular
transport; and cell cycle were also found to play important
roles (Table 4) [77–91], whereas six pathways (amino-
sugars metabolism, dentatorubropallidoluysian atrophy,

melanoma, N-glycan biosynthesis, renal cell carcinoma,
and glioma) were predicted here for the first time as being
significant pathways in smoking-induced lung cancer.
Increased glycolysis is a metabolic hallmark of cancer

[92]. Cancer cells can reprogram glucose metabolism

Fig. 6 Enrichment analysis of pathways using KEGG gene-set library. Pathway enrichment analysis revealed MAPK signaling pathway to be in the
top ten in about 90% of input lists. Purin metabolism, GnRH signaling pathway, Toll-like receptor signaling pathway, and ether lipid metabolism were
highly related to lung cancer. Amino sugar metabolism and N-glycan biosynthesis were predicted to be dysregulated pathways in lung cancer

Table 1 Predicted novel and known Therapeutic transcription factors

Symbol Description Literature evidence

CREB1 Cyclic AMP-responsive element-binding protein 1 [18–21]

NUCKS1 Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1A, P1 [22, 23]

HOXB4 Homeobox protein Hox-B4, HOX2F [24, 25]

MYCN N-myc proto-oncogene protein [26–28]

MYC Myc proto-oncogene protein [26, 29]

PHF8 Histone lysine demethylase PHF8 [30, 31]

TRIM28 Transcription intermediary factor 1-beta (TIF1-beta) [32–34]

WT1 Wilms tumor protein [35–38]

CRX Cone-rod homeobox protein New

CUX1 Homeobox protein cut-like 1 [39–42]

GABP GA-binding protein New

TCF3 Transcription factor E2-alpha New
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and hence, energy production by limiting energy me-
tabolism to glycolysis, resulting in an aerobic glycolytic
state [93]. Cancer cell metabolism is aimed at increa-
sing biomass (e.g., nucleotides, amino acids, and lipids)
to produce a new cell [94]. Melanoma, renal cell car-
cinoma, and glioma have all been found to be poten-
tially related to lung cancer. Bean et al. [95] identified
that targeting MET may be therapeutic target for treat-
ment of a gefitinib/erlotinib-resistant lung tumor cell
line with acquired MET amplification. Moreover, dys-
regulation of MET signaling has been associated with
both sporadic and inherited forms of human papillary
renal carcinomas [96]. The five components of the
dentatorubropallidoluysian atrophy signaling pathway
have been shown to have predictive power for breast
cancer prognosis [97].

Conclusion
In this study, we used a systems-based approach to iden-
tify potential key molecules and pathways contributing
to lung cancer progression among smokers. Three tran-
scription factors (CRX, GABP, and TCF3) and one ki-
nase (PRKAA1) were predicted here for the first time as
being important in lung carcinogenesis. In addition, va-
rious intracellular signaling pathways and metabolic and
other cellular processes were found to be closely related
to lung cancer. Our findings provide new insight into
the mechanisms of lung cancer development as well as
potential new drug targets for disease treatment.
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Table 2 Predicted novel and known therapeutic kinases

Symbol Description Literature
evidence

MAPK1 Mitogen-activated protein kinase 1 or ERK-2 [47, 48]

IGF1R Insulin-like growth factor 1 receptor [49–52]

RPS6KA1 Ribosomal protein S6 kinase alpha-1 or RSK-1 [53, 54]

ATR Serine/threonine-protein kinase [55]

MAPK14 Mitogen-activated protein kinase 14 or MAP
kinase p38 alpha

[56, 57]

MAPK3 Mitogen-activated protein kinase 3 or
Extracellular signal-regulated kinase 1 (ERK-1)

[58, 59]

MAPK4 Mitogen-activated protein kinase 4 or
Extracellular signal-regulated kinase 4 (ERK-4)

[60]

MAPK8 Mitogen-activated protein kinase 8 or
Stress-activated protein kinase JNK1 or
c-Jun N-terminal kinase 1

[61, 62]

PRKCZ Protein kinase C zeta type [63]

INSR Insulin receptor [3]

PRKAA1 5′-AMP-activated protein kinase catalytic
subunit alpha-1

New

Table 3 Predicted PPI- hubs

Symbol Description Literature
evidence

MEPCE 7SK snRNA methylphosphate capping
enzyme or Bicoid-interacting protein 3
homolog (Bin3 homolog)

[3]

CDK1 Cyclin-dependent kinase 1 [65]

PRKCA Protein kinase C alpha type or PKC-A [66]

COPS5 COP9 signalosome complex subunit 5 [67, 68]

GSK3B Glycogen synthase kinase-3 beta [69]

BRCA1 Breast cancer type 1 susceptibility protein [70, 71]

EP300 Histone acetyltransferase p300 or p300 HAT [72, 73]

PIN1 Peptidyl-prolyl cis-trans isomerase
NIMA-interacting 1

[74, 76]

Table 4 Predicted novel and known dysregulated pathways in
lung cancer

Pathways References

MAPK signaling pathway [77]

Purine metabolism [78]

GnRH signaling pathway [79]

Toll-like receptor signaling pathway [80, 81]

Ether lipid metabolism [82]

Adherens junction [83]

Aminosugars metabolism New

Dentatorubropallidoluysian atrophy New

Melanoma

N-glycan biosynthesis New

Regulation of autophagy [84]

Renal cell carcinoma

Snare interaction in vesicular transport [85, 86]

Cell cycle [87]

ErbB signaling pathway [88]

Glioma

Insulin signaling pathway [89–91]

Pathways in cancer
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