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Abstract

Background: Intratumor heterogeneity (ITH) poses an urgent challenge for cancer precision medicine because it
can cause drug resistance against cancer target therapy and immunotherapy. The search for trunk mutations that
are present in all cancer cells is therefore critical for each patient.

Case presentation: In this study, we aimed to evaluate the efficiency of multiregional sequencing for the
identification of trunk mutations present in all regions of a tumor as a case study. We applied multiregional whole-
exome sequencing (WES) to investigate the genetic heterogeneity and homogeneity of a case of gastric carcinoma.
Approximately 83% of common missense mutations present in two samples and approximately 89% of common
missense mutations present in three samples were trunk mutations. Notably, trunk mutations appeared to have
higher variant allele frequencies (VAFs) than non-trunk mutations.

Conclusions: Our results indicate that small-scale multiregional sampling and subsequent screening of low VAF
somatic mutations might be a cost-effective strategy for identifying the majority of trunk mutations in gastric
carcinoma.
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evolution

Background
Cancer is believed to be driven by somatic mutations,
including single nucleotide variations (SNVs), small
insertions/deletions (INDELs), copy number variations,
structural variations, and epigenetic changes [1, 2]. In
addition to their role in oncogenesis, cancer somatic
mutations are potential biomarkers for cancer diagnosis
and target therapy [3, 4]. As long as the somatic muta-
tion results in the production of new epitopes on the
membrane of the tumor cell, the active protein arising
from the mutation will cause the immune system to
recognize the affected cell as foreign. Thus, such
proteins are considered ideal targets for cancer immuno-
therapy, which is now called neoantigen [5]. With the
development of cancer genomics, tumor-specific neoanti-
gens have attracted much attention in current biomedical

research because of their potential to be ideal targets for
cancer immunotherapy [6–10]. Unfortunately, large-scale
cancer genome sequencing analyses have revealed that
cancer is a heterogeneous disease and that no two cancers
harbor the same complement of somatic mutations.
Additionally, there is no common set of mutated genes in
all cancers [11–13]. Intertumor heterogeneity suggests
that cancer is a personalized disease. Only a very small
number of genes (such as TP53) are recurrently mutated
in more than 10% of cancer patients [14]. Therefore, the-
oretically, somatic mutations should be analyzed for each
individual cancer patient to conduct precision diagnosis
and precision treatment.
Furthermore, recent studies involving multiregional

genome sequencing and single-cell sequencing in differ-
ent tumor types have revealed that cancer is not only
heterogeneous between tumors but also highly heteroge-
neous within tumors [15–21]. Intratumor heterogeneity
(ITH) is a major challenge to cancer precision medicine
because it might lead to an underestimation of the can-
cer somatic mutation landscape based on a single tumor
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biopsy and might contribute to failure in drug treatment
and the emergence of drug resistance [22]. Therefore, a
single tumor biopsy might be insufficient for identifying
all cancer somatic mutations in that tumor because such
a biopsy cannot distinguish trunk mutations that are
present in all regions of the tumor, branch mutations
that are present in only some regions of the tumor, and
private branch mutations that are present only in one re-
gion of the tumor [15]. Cancer is widely accepted to be a
microevolutionary process that originates from a single
cell [2, 23]. Determining the phylogeny of cancer evolu-
tion will help identify trunk, branch, and private branch
mutations. The identification of trunk mutations is crit-
ical for biomarker development and cancer precision
medicine, because these mutations represent the gen-
omic differences between all cancer cells and normal
cells. Specifically, trunk mutations within protein-coding
regions might result in mutant proteins, which are po-
tential tumor-specific neoantigens in all cancer cells.
In this study, multiregional whole-exome sequencing

(WES) was applied to identify the intratumor heterogen-
eity and homogeneity of gastric carcinoma through a
case study. We classified these mutations into trunk,
branch, and private branch mutations by comparing the
somatic nonsynonymous substitutions within six differ-
ent regions of the primary tumor from a male gastric
cancer patient. Private branch mutations show ITH,
whereas trunk mutations indicate homogeneity. We fur-
ther discussed the most cost-effective number of regions
required to identify the majority of trunk mutations and
compared the mutation frequencies between trunk and
non-trunk mutations based on both our case study and
published data for multiregional samples of 11 surgically
resected lung adenocarcinomas [15].

Case presentation
The gastric cancer patient was a 61-year-old male who
underwent tumor-reductive surgery in July 2015. The
postoperative pathological analysis showed that the
tumor was a moderately differentiated adenocarcinoma
with a bulge in the cardiac gastric gland. The tumor was
3 × 2.2 × 1.2 cm in size (Fig. 1a) and had invaded all
layers of the stomach wall and lower esophagus. The
lymph nodes exhibited no tumor cells metastasis.
Six multiregional samples were collected in a clockwise

pattern from the surgically resected gastric carcinoma
within 30 min after the surgery; the samples were immedi-
ately preserved in liquid nitrogen (Fig. 1b). The collection
and use of the patient samples were approved by the
Zhejiang Hospital of Traditional Chinese Medicine.
Written informed consent was obtained from the partici-
pant for publication of this case report. We confirmed that
all methods were performed in accordance with the rele-
vant guidelines (Approved Guidelines of the Clinical and
Laboratory Standards Institute MM01-A3, MM13-A, and
MM20-A, and the CARE Guidelines).

Methods
Multiregional WES
DNA was extracted from six samples of one gastric car-
cinoma tumor. Exomes were captured from 750 ng of
genomic DNA per sample using the Agilent SureSelect
Human All Exon V5 Kit (Agilent Technologies, Santa
Clara, CA, USA) according to the manufacturer’s in-
structions. Paired-end multiplex sequencing was then
performed on the Illumina HiSeq X10 sequencing plat-
form. On average, the sequencing depth was 161× per
sample (ranging from 133× to 216× with a standard
deviation of ±28×).

Fig. 1 Genetic intratumor heterogeneity, homogeneity, and phylogeny in a patient with gastric carcinoma. a-b The biopsy sites and regions harvested
clockwise from the surgically resected gastric carcinoma. c Phylogenetic relationships among six tumor regions. d Distribution of 382 exonic
nonsynonymous SNVs in six primary tumor regions, these mutations are mapped to 35 trunk mutations (54.97%, 210/382), 17 branch mutations
(16.84%, 64/382), and 108 private mutations (28.27%, 108/382). The heat map reveals the presence (red) or absence (blue) of a mutation in each region
of sample. The color bars above the heat map give a value (Var1) that indicates the number of samples involving the same mutation site
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Identification of somatic mutations
Somatic mutations were identified by the pipeline
following the Genome Analysis Toolkit (GATK) best
practices for somatic SNV and INDEL discovery in
WES [24–26]. Our analysis was mainly focused on
exonic mutations, including nonsynonymous SNVs,
synonymous SNVs, small INDELs, and stop codon
mutations (stopgains). Paired-end reads in the FastQ
format were aligned to the reference human genome
(GRCh37) using Burrows-Wheeler Aligner (BWA-
MEM) with the default settings [27]. The aligned
reads were further processed by sorting, duplicate re-
moval, INDEL realignment, and base recalibration
using Samtools [28], Picard-tools and GATK [24].
Somatic SNVs and small INDELs were detected using
MuTect2 [25], which is a built-in package in GATK
v3.5. In addition to MuTect2’s built-in filters, we ap-
plied the following filtering criteria for SNVs: (i) total
read count in tumor DNA ≥ 50; (ii) total read count
in germline DNA ≥ 30; (iii) VAF in tumor DNA ≥ 5%;
(iv) VAF in blood DNA = 0. The following criteria
for small INDELs: (i) total read count in tumor
DNA ≥ 10; (ii) total read count in blood DNA ≥ 6;
(iii) VAF in tumor ≥ 5% and total number of reads
supporting a call ≥ 5; and (iv) VAF in normal
DNA = 0. SNVs and INDELs were annotated using
ANNOVAR [29]. Primers were designed to validate
the 27 trunk nonsynonymous SNVs shared by the six
samples using PCR and sequencing.
Moreover, another set of raw data from the somatic

mutations of multiregional samples of 11 surgically
resected lung adenocarcinomas [15] was downloaded
and analyzed using the same pipeline to investigate the
distribution of the mutations across samples. The VAFs
of the nonsynonymous SNVs in gastric carcinoma
were analyzed based on the relationships between the
trunk, branch and private branch mutations, using
the Wilcoxon test implemented in R (https://www.r-
project.org/).
The UniProtKB/Swiss-Prot (http://www.uniprot.org)

and DAVID v6.8 [30] were utilized for functional anno-
tation analysis of mutated genes with trunk, branch and
private branch mutations.

Phylogenetic analysis
The somatic mutation profile for each tumor sample
was converted into binary format. All somatic mutations
that were present in the exonic regions of at least one
tumor sample were used for the phylogenetic analysis.
The germline DNA from the blood sample was set as
the outgroup with the assumption of somatic mutations.
The phylogenetic tree was inferred with the neighbor-
joining method using MEGA7 [31].

Results
Identification of somatic mutations by multiregional WES
To evaluate the ITH in gastric carcinoma, multiregional
WES was performed on tumor genomic DNA obtained
from a patient with gastric carcinoma (Fig. 1a, b); normal
genomic DNA was extracted from blood as a reference.
WES was conducted at a mean depth of 161×. Across all
six regions of the tumor, 1231 simple somatic mutations,
including SNVs and small INDELs (Additional file 1),
were identified, and these mutations included 539 exonic
mutations consisting of nine INDELs, 20 stopgains, 128
synonymous SNVs and 382 nonsynonymous SNVs
(Additional file 2: Table S1). The distribution of SNVs in
the protein-coding regions, including stopgains as well as
synonymous and nonsynonymous SNVs, indicates the
phylogenetic relationship across the six samples (Fig. 1c).
Most of the somatic mutations in protein-coding regions
either occur in only one sample (28.76%, 155/539) or are
common to all samples (53.42%, 288/539) (Fig. 1d,
Additional file 3: Fig. S1 A-B). All 382 of the nonsynon-
ymous SNVs from six samples originated from 160 exact
mutation sites (Additional file 4), including 210 nonsy-
nonymous SNVs derived from 35 common mutation
sites in all six samples that were classified as trunk mu-
tations (54.97%, 210/382). Non-trunk mutations did not
occur in all of the samples, among these mutations, 108
nonsynonymous SNVs occurred in only one sample
and were classified as private branch mutations
(28.27%, 108/382). The other 64 nonsynonymous SNVs
were branch mutations that were present in some but
not all regions of the tumor.
The 35 trunk mutations occurred on 35 genes, and

these genes were called trunk genes; similarly, the private
and branch genes were defined as well. For example,
SPEN, PRODH2, IGSF10, ITK and MTNR1B were five of
the trunk genes, and SMARCE1 was a branch gene har-
boring mutations from two different sites that was in-
volved in four and two samples. SPEN, PRODH2, IGSF10,
MTNR1B and SMARCE1 were found to be mutated in
0.49% (1/203) of esophageal cancers, 0.41% (1/246) of
endometrial cancers, 0.52% (1/194) of cervical cancers,
0.26% (1/391) of pancreatic cancers and 0.55% (1/183) of
melanomas, in the International Cancer Genome Consor-
tium (ICGC) database (http://icgc.org/, release 22). An
additional eight genes were also found in the ICGC data-
base (Additional file 2: Table S2). Notably, two trunk
genes (SPEN and ITK), a branch gene (SMARCE1), and
several private genes (FAT4, CACNA1D, ATR, RUNX1T1,
TERT, and SRGAP3) were defined as cancer-associated
genes, according to the cancer gene census [32, 33]. SPEN
supports the transcription activation in osteoblasts and is
an essential corepressor protein to regulate different key
pathways, including the Notch pathway. SPEN can block
the precursor B cells differentiating into marginal zone B
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cells and also repress the transcription via the recruitment
of large complexes that contain histone deacetylase pro-
teins [34]. ITK is a tyrosine kinase that plays an essential
role in the regulation of the adaptive immune response.
ITK also regulates the development, function and differ-
entiation of conventional T cells and nonconventional
NKT cells [35]. SMARCE1 is involved in the transcrip-
tional activation and repression of select genes, and also
in the repression of neuronal specific gene promoters in
non-neuronal cells through specifically interaction with
the CoREST corepressor [36]. Function of the remaining
cancer-associated genes and all mutated genes is included
in Additional file 2: Table S3 and Additional file 5.
Twenty-seven of 35 trunk mutations were verified by

PCR amplification, and 24 trunk mutations were verified
in all six tumor samples. However, one mutation in
RBM12 was verified in only one sample, and two muta-
tions in SPEN and TWIST2 failed to be verified due to
unavailable rational primers. None of the mutations were
verified in the blood samples (Additional file 3: Fig. S1C).

Multiregional sequencing can identify the majority of
trunk mutations
In this study, we focused on nonsynonymous SNVs for
further analysis because nonsynonymous SNVs could gen-
erate tumor-specific mutant proteins. These mutations

were shared among the samples (Fig. 2a-c). Almost all of
the mutations either occurred in a single sample or were
shared by all six samples, in agreement with the heat maps
(Fig. 1c, Additional file 3: Fig. S1 A-B). For each sample,
trunk mutations made up a large proportion, ranging from
42.68% to 70.00%, followed by private mutations (12.00%–
45.12%). Private mutations show the degree of ITH, while
trunk mutations indicate some homogeneity. We found
that approximately 83% of the common mutations of any
two samples and approximately 89% of the common
mutations of any three samples were trunk mutations
(Fig. 2d-f), which indicated that sampling of two or three
regions could identify the majority of trunk mutations in
the gastric carcinoma of the patient.
To explore the effectiveness of small-scale multire-

gional sampling in the identification of trunk mutations,
we conducted a secondary analysis of a published data-
set on a different cancer type, which was a multiregional
WES of 48 regions from 11 resected lung adenocarcin-
omas [15]. The exonic nonsynonymous SNVs from the
somatic mutations of 48 samples were analyzed in the
same way as in the gastric carcinoma study. We found
that most mutations across each tumor sample were
trunk mutations (Additional file 3: Fig. S2). On average,
86.29% of the exonic nonsynonymous SNVs were trunk
mutations (Fig. 3a). More than 82% of the shared

Fig. 2 Common mutation proportions between regional samples and the number of samples sufficient to identify a majority of trunk mutations.
a The proportion of stopgains shared by any one to six samples in the respective samples. b The proportion of synonymous mutations shared by
any one to six samples in the respective samples. c The proportion of nonsynonymous mutations shared by any one to six samples in respective
samples. The x-axis indicates the volume of samples needed to result in shared mutations. d-f The proportion of trunk mutations (n = 35) of the
mutations shared by any one to six samples. The x-axis indicates the volume of samples needed to result in shared mutations. (d: stopgains,
e: synonymous SNVs, f: nonsynonymous SNVs). Two-region sampling (83%) or three-region sampling (89%) may be a cost-effective strategy to
obtain a majority of trunk mutations in gastric carcinoma

Zhou et al. BMC Medical Genomics  (2017) 10:49 Page 4 of 8



mutations of any two samples and more than 90% of the
shared mutations of any three samples were trunk muta-
tions (Fig. 3b). This result is consistent with the results
of the gastric carcinoma study.

Trunk mutations tend to have higher variant allele
frequencies
We further analyzed the variant allele frequencies
(VAFs) of the exonic nonsynonymous SNVs for the
trunk and non-trunk mutations in gastric carcinoma.
Most of the high-VAF mutations were located at the
trunk mutation area (Fig. 4a). Generally, the VAFs of the
trunk mutations (mean value = 0.30) were significantly
higher than those of the branch mutations (mean
value = 0.17, p < 2.2 × 10−11) and private mutations
(mean value = 0.09, p < 2.2 × 10−16) (Fig. 4b). The VAFs
in each sample also suggested that trunk mutations
(mean value ranged from 0.23 to 0.33) occurred much
more frequently than branch and private mutations
(mean value ranged from 0.14 to 0.18 and 0.07 to 0.12,

respectively; Fig. 4c). However, the VAF of a certain mu-
tation may vary in the same mutation type: the VAFs of
trunk mutations varied from 0.12 to 0.52, and those of
branch and private mutations varied from 0.05 to 0.47
and 0.05 to 0.33, respectively (Additional file 4). For ex-
ample, the VAFs of trunk mutations in POM121L12
(mean VAF = 0.12) and RBM12 (mean VAF = 0.12) were
less than the VAFs of private mutations in SHISA9
(VAF = 0.33) and CCDC91 (VAF = 0.24); this variation
accounts for the observation that mutations with a high
VAF are not always trunk mutations. Similarly, muta-
tions with low VAF were not necessarily private muta-
tions. Therefore, to identify trunk mutations, it is of
great significance to utilize multiregional sequencing
when considering mutations with high VAF as trunk
mutations.

Discussion and conclusions
It is widely accepted that cancer is a process of micro-
evolution [37, 38]. During the evolution of cancer, cells

Fig. 3 Mutation proportions of lung adenocarcinomas across samples. a Distribution of exonic nonsynonymous SNVs in 11 tumors. The color bars
indicate classification of mutations according to whether they are trunk (blue), branch (pink) or private (green) mutations. The x-axis shows the
sample IDs of the 11 tumors. b The proportion of trunk mutations among the shared mutations of any set of samples, from one to maximum
volume from each tumor. The x-axis indicates sample IDs with sample volumes. Detailed information is shown in Additional file 3: Fig. S3
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experience a reiterative process of clonal expansion,
diversification and selection [39]. Evidence of marked
ITH shows the genetic diversity within cancer cells
[15, 16, 19, 20] and suggests challenges to cancer pre-
cision medicine based on the mutational landscape
portrayed by single-tumor biopsies [40]. Circulating
tumor DNA (ctDNA) potentially reflects the biology of a
cancer, which makes it a promising new biomarker for
cancer diagnosis and prognosis [41, 42]. Searching for
trunk mutations will contribute to expose potential targets
in ctDNA for liquid biopsy. Moreover, with the devel-
opment of targeted therapy and immunotherapy for
cancer, tumor-specific mutated proteins, especially
neoantigens, have attracted much attention due to their
potential to be ideal targets for tumor immunotherapy
[8, 10]. It is clinically important to determine whether
the tumor-specific mutated proteins are present in all
cancer cells; their presence may determine the outcome
of target therapy for cancer. Therefore, searching for
trunk mutations, which occur in tumor-initiating cells
and are present in all cancer cells, is of critical import-
ance for cancer genomics.

In this proof-of-concept study, we attempted to inves-
tigate the genetic heterogeneity and homogeneity of gas-
tric carcinoma from one patient through multiregional
WES. We are fully aware of the potential limitations im-
posed by the small sample size. Our preliminary results
suggested that both genetic heterogeneity and homogen-
eity for missense mutations were present in multire-
gional samples of the gastric carcinoma. Each sample
had different mutational landscape, while trunk muta-
tions accounted for nearly half of all nonsynonymous
somatic mutations for each sample. In any two samples,
the proportion of trunk mutations among the shared
mutations was approximately 83% on average. Approxi-
mately 89% of shared mutations were trunk mutations
in any three samples. Although multiregional sampling,
or more ideally single-cell sequencing, is believed to be
needed to fully assess the complexity of ITH for each
tumor, the number of samples required for sequencing is
important for the practical consideration of balancing
cost and sufficiency. This study suggests that small-scale
multiregional sampling and subsequent screening of
low-VAF somatic mutations might be a cost-effective

Fig. 4 Mutation frequency distribution in multiregional samples of gastric carcinoma according to mutation types. a Distribution of exonic
nonsynonymous mutations in each region of sample with mutation frequency. b Mutation frequencies of all exonic nonsynonymous mutations,
classified as private (yellow), branch (blue), and trunk (red) mutations. p1 shows a significant difference between the trunk and private mutations, and p2
shows a significant difference between the trunk and branch mutations. c Mutation frequency of three types of mutations in each sample. Gastric
cancer 1 (p1 = 3.5 × 10−6, p2 = 2.4 × 10−4), gastric cancer 2 (p1 = 1.6 × 10−4, p2 = 3.8 × 10−2), gastric cancer 3 (p1 = 6.5 × 10−8, p2 = 1.9 × 10−5), gastric
cancer 4 (p1 = 5.4 × 10−5, p2 = 2.7 × 10−3), gastric cancer 5 (p1 = 5.2 × 10−8, p2 = 9.5 × 10−2), gastric cancer 6 (p1 = 8.6 × 10−10, p2 = 9.3 × 10−4). The p
values were determined with a Wilcoxon test
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strategy for identifying trunk mutations for gastric carcin-
oma and lung adenocarcinoma, based on analyses of one
gastric carcinoma and published data from 11 lung adeno-
carcinomas. However, ITH patterns might differ between
cancer types. Studies involving more cancer types and lar-
ger cohorts will lead to a more complete understanding of
the biological and therapeutic impacts of ITH.
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