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Abstract

Background: Inhibition of nonsense-mediated mRNA decay (NMD) in tumor cells can suppress tumor growth
through expressing new antigens whose mRNAs otherwise are degraded by NMD. Thus NMD inhibition is a
promising approach for developing cancer therapies. Apparently, the success of this approach relies on the basal
NMD activity in cancer cells. If NMD is already strongly inhibited in tumors, the approach would not work.
Therefore, it is crucial to assess NMD activity in cancers to forecast the efficacy of NMD-inhibition based therapy.

Methods: Here we develop three metrics using RNA-seq data to measure NMD activity, and apply them to a
dataset consisting of 72 lung cancer (adenocarcinoma) patients.

Results: We show that these metrics have good correlations, and that the NMD activities in adenocarcinoma
samples vary among patients: some cancerous samples show significantly stronger NMD activities than the normal
tissues while some others show the opposite pattern. The variation of NMD activities among these samples may be
partly explained by the varying expression of NMD effectors.

Conclusions: In sum, NMD activity varies among lung cancerous samples, which forecasts varying efficacies of
NMD-inhibition based therapy. The developed metrics can be further used in other cancer types to assess NMD
activity.
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Background
Lung cancer is the leading cause of cancer-related deaths
[1]: each year over a million of patients die of it, and
millions of new cases are diagnosed. Such high incidence
and mortality rates urge developing new effective
treatments.
Recently, a new promising approach to treat cancers is

to express new antigens in tumor cells through inhibit-
ing nonsense-mediated mRNA decay (NMD) pathway
[2, 3]. The mRNAs of these new antigens (owing to tu-
morous mutations) are normally degraded by NMD and
thus invisible to immune systems. NMD is a cellular sur-
veillance pathway for degrading mRNAs harboring pre-
mature termination codons (PTCs) [4]. When NMD is

inhibited, these antigens can be expressed and trigger
immune rejection of tumor cells. This method success-
fully suppressed tumor growth in mice implanted with a
colon carcinoma cell line CT26 [2]. However, its effica-
cies in clinics and other types of tumors have not been
evaluated so far. Particularly, the success of this method
relies on the NMD activity of tumor cells. In another
word, if tumor cells already have very low NMD activity,
inhibiting NMD would not express substantial amount
of new antigens and the method would not work. There-
fore, it is necessary to evaluate NMD activities in differ-
ent tumor types for potential application of NMD-
inhibition-based therapies.
It has been reported that tumor cells may be subject

to NMD inhibition. On one hand, the tumor microenvir-
onment may inhibit NMD [5]. For example, the tumor
cells often undergo cellular stresses, such as amino acid
deprivation, hypoxia, and reactive oxygen species (ROS)
generation. These stresses can cause the phosphorylation
of the translation initiation factor eIF2α (short for α
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subunit of eukaryotic initiation factor 2), which in turn
suppresses NMD [5–7]. On the other hand, the muta-
tions in NMD effectors may inactivate NMD. For ex-
ample, NMD effector upf1 is frequently mutated in
pancreatic adenosquamous carcinoma [8]. If NMD is
strongly inhibited in cancers, then further inhibition of
NMD would not express many new antigens and in turn
no strong immune reactions.
In this study, we develop three metrics to measure

NMD activities and use them to assess NMD activities
in the samples of lung adenocarcinoma – the most com-
mon histological type of lung cancers.

Methods
Data collection
We downloaded RNA-sequencing reads of lung adeno-
carcinoma patients from the NCBI Gene Expression
Omnibus (GEO) database (accession number GSE40419)
[9]. Only the data of 72 individuals with both tumor and
adjacent normal tissues (i.e., 144 samples) were extracted
and used in the study. The ages of the patients vary from
38 to 82 years old.

Processing of RNA-seq data
Raw fastQ-formatted sequence files were mapped onto
human reference genome (hg19) by using Tophat
v2.0.8b [10], with annotated transcripts from Ensembl
71 [11] as a guide for mapping (using the option -G).
After mapping, the expression of genes was estimated
using Cufflinks v2.1.1 [12] and expressed as FPKM
(Fragments per kilobase of transcript per million
mapped reads). Extremely low expressed genes (less than
ten reads in half or more of 144 samples) were excluded.
We then normalized the data using the 75% percentile
of each sample.
Afterwards, we applied samtools v1.1 [13] to identify

candidate variants that exist in both tumor and normal
samples for each individual by feeding both mapped
reads files. To reduce the chance of regarding sequen-
cing errors as single-nucleotide variations (SNVs), we ex-
tracted SNVs with the following criteria: 1) ≥ 5 reads
covering a site in both tissues, and 2) both reference and
variant alleles were supported by mapped reads. SNPeff
[14] was then used to evaluate the predicted effect of
each variant based on NCBI Refseq annotation. The out-
put contained information of whether a variant can
introduce PTCs and trigger NMD.

Identifying NMD sensitive and insensitive genes
We compiled NMD-affected genes from four studies
[15–18] in order to reliably define NMD target and non-
target genes. Genes that are not included or not
expressed in any of the four studies were excluded to
avoid background biases. Specifically, we required that

selected genes: i) had probe information in the two
array-based studies [15, 18]; ii) met Hidenori Tani et al.
standards [16], and iii) had at least one transcript iso-
form with ≥1 FPKM upon UPF1 knockdown in reference
[17]. The filtering resulted in 8319 genes.
Then genes were classified into NMD targets if they

met either of the criteria: i) ≥ 2-fold upregulation upon
Upf1 knockdown according to references [15, 16, 18]; ii)
having at least one transcript isoform upregulated ≥ 3-
fold upon Upf1 knockdown and expressed ≥ 5 FPKM ac-
cording to reference [17]. Finally, we obtained 817, 82,
37, and 13 target genes, depending on the number of
supporting studies, 1, 2, 3, and 4 studies, respectively.
The other genes that have no or marginal up-regulation
(i.e., < 1.5-folds up-regulated in [15, 18], and < 2-folds
up-regulated in [17]) and not stabilized according to
[16] were classified as NMD non-target genes.

Identifying NMD-specific exon skipping events
Theoretically, any alternative splicing events introducing
PTCs may trigger NMD. For simplicity, here we consid-
ered only exon-skipping events. We also required that
the upstream and downstream exons of a focused exon
are not subject to alternative splicing to ensure that an
NMD isoform is generated by alternatively splicing of
the focused exon only. In this way, we obtained 776
exon-skipping events that may trigger NMD according
to the 50/55-bp rule [19].
When calculating the expression levels of NMD-

inducing and NMD-free splicing isoforms, we only use
the following mapped reads to ensure accuracy: 1) map-
ping quality = 50; 2) covering at least 6 nts on each of
the joined exons, and 3) no mismatches or indels within
the 12 nts near exon-exon junctions. Then the expres-
sion levels of different isoforms were calculated by
counting supporting reads. For metric design, only spli-
cing events with more than ten supporting reads in both
tumor and normal samples of a patient were used.

Results
We use the following three metrics to measure NMD ac-
tivity in a biological sample: (1) the mRNA expression
level of NMD target genes, (2) the usage (i.e., percent-
age) of NMD-inducing splicing isoform in NMD target
genes which have both NMD-inducing and NMD-free
isoforms, and (3) the abundance ratio of mRNAs derived
from the NMD-inducing allele to the NMD-free one of
the same gene. We name these three metrics as RmRNA,
Risoform, and Rallele, respectively. In principle, if NMD ac-
tivity is strong in a sample, these metrics will have small
values, because the NMD-inducing forms are more ef-
fectively degraded. To calculate these metrics, we col-
lected RNA-seq data from a large-scale study [9] which
produced data for 72 patients with each patient having
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both tumor and adjacent normal tissue samples se-
quenced (Additional file 1: Table S1).
We first describe the procedure to calculate the metric

RmRNA, i.e., the mRNA abundances of NMD target
genes. The first step was to identify NMD target genes.
For that, we collected NMD target genes from four stud-
ies [15–18]. These studies measured gene expression
changes after inhibiting NMD. We classify all genes
whose expression was upregulated upon NMD inhibition
as NMD targets. Note the targets by this approach may
include direct as well as indirect NMD targets, but our
purpose is to identify genes which can be used as an in-
dicator of NMD activity, so any genes with upregulated
expression after NMD inhibition are informative. In
total, 951 genes are classified as NMD targets by at least
one study, and 50 genes are supported by at least three
studies (see Methods section). For accuracy, we use
these 50 genes as our NMD target gene set (Additional
file 2). To eliminate gene expression variation across
samples due to systematic bias, we normalize the expres-
sion of NMD targets by dividing it with the median ex-
pression value of the 4074 non-target genes (Additional
file 2; also see Methods). Then RmRNA is calculated for
each gene using the following Eq. (1):

RmRNA ¼ mENMD=medianmEnonNMD ð1Þ

where mENMD is the mRNA expression of an NMD tar-
get gene and median_mEnonNMD is the median value of
all 4074 non-target genes from the same sample. To
infer NMD activity in tumor relative to in a normal tis-
sue, RmRNA(tumor)/RmRNA(normal) is calculated, i.e., the
ratio of RmRNA between a tumor and the corresponding

normal tissue. As shown in Fig. 1, the ratio RmRNA(tu-
mor)/RmRNA(normal) varies both among genes and
among patients, and in a few patients it deviates from
unity significantly (Fig. 1; Additional file 1: Table S2).
This result suggests that most tumor samples have
NMD activity comparable to their normal baselines and
that some tumor samples experienced dramatic changes
in NMD activity.
Next, we calculated Risoform, the usage of NMD-

inducing alternative splicing (AS) isoforms in a given
gene, as follows:

Risoform ¼ sENMD= sENMD þ sEnonNMDð Þ ð2Þ

where sENMD and sEnonNMD are the abundances of
NMD-inducing and NMD-free splicing isoforms, re-
spectively. Compared to the metric RmRNA, Risoform is
supposed to be more sensitive for two reasons: (1) it can
detect NMD activity changes when the changes only
affect the relative abundance of NMD-inducing splicing
isoform but not the total mRNA abundance of a gene;
(2) Risoform uses the abundance of NMD-free isoforms of
the same gene as a normalizing factor which is better
than using the expression of other genes as this factor
(as in RmRNA), because it is possible that the expression
dynamics across samples may vary among genes. For
calculating Risoform, we identified 776 AS events from
734 genes. Five hundred and twenty-eight and 248 cases
trigger NMD when the alternative exon is included and
excluded, respectively (see Methods for details). Among
them, 14 AS events occur in all the samples (Additional
file 3). To calculate Risoform in each sample, we use either
all informative AS events occurring in the sample or

Fig. 1 Distribution of RmRNA(tumor)/RmRNA(normal) among lung adenocarcinoma patients. Patients with significantly lower or higher RmRNA in
tumor than adjacent normal tissues (FDR, or false discovery rate, adjusted paired Wilcoxon rank sum test P value < 0.05) are highlighted with
cyan or red, respectively
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only the 14 shared AS events. Similar to calculating
RmRNA, we use the ratio of Risoform(tumor) to Risoform(nor-
mal) to account for the baseline difference among pa-
tients. As shown in Fig. 2 and Additional file 1: Table S3,
when using all informative AS events in each sample,
the ratio Risoform(tumor)/Risoform(normal) significantly de-
viates from unity in dozens of patients. The number of
significant deviations is much larger than that when
using RmRNA, verifying the inference of higher sensitivity
by Risoform. When using the 14 shared AS events, we ba-
sically observe the same pattern (Additional file 1: Figure
S1, Spearman’s Rho = 0.6127131, P = 1.063e-08). Al-
though the metric Risoform is more sensitive than RmRNA,
the ratios of tumor to normal samples from the two
metrics are positively correlated (Additional file 1: Figure
S2A, Rho = 0.3690621, P = 0.001422). The relationship
remains when using the 14 shared events only (Add-
itional file 1: Figure S2B, Rho = 0.2581838, P = 0.02882).
Finally, we calculate Rallele as follows:

Rallele ¼ aENMD=aEnonNMD;

where aENMD and aEnonNMD are the abundances of
mRNAs derived from the NMD-inducing and NMD-free
alleles of the same gene, respectively. For this analysis,
all detected heterozygous nonsense mutations are in-
cluded (Additional file 4). And again, the ratio of Rallele(-
tumor) to Rallele(normal) is calculated for each patient to
infer NMD activity change. This approach has been used
in multiple studies to check NMD efficiency [20–22].
However, in our analysis we do not detect significant dif-
ference between tumor and normal samples for any pa-
tient, probably due to a limited number of sites (Fig. 3;

Additional file 1: Table S4). Nevertheless, a positive cor-
relation between the median ratios of Rallele(tumor)/Ralle-

le(normal) and RmRNA(tumor)/RmRNA(normal) across
patients is observed (Additional file 1: Figure S3A,
Rho = 0.2134399, P = 0.07183). And similarly, a slightly
better correlation between (tumor)/Rallele(normal) and
Risoform(tumor)/Risoform(normal) is observed (Additional
file 1: Figure S3B, Rho = 0.3099928, P = 0.00805). These
results indicate that the metric Rallele can capture the
NMD activity change in tumors, but more sites are
needed for making the metric effective enough.
Next we examine how these metrics are correlated

with the expression of nine NMD effectors, including
Upf1, Upf2, Upf3a, Upf3b, Smg1, Smg5, Smg6, Smg7 and
Pnrc2 [23, 24]. Theoretically, we expect a negative cor-
relation between the metrics of NMD activity and the
expression of these factors, because a smaller metric
value means stronger NMD activity conferred by higher
expression of NMD effectors. We found that RmRNA is
negatively correlated with the expression of smg1, smg7,
upf2 and pnrc2, though not always statistically significant
(Additional file 1: Table S5). Surprisingly, RmRNA is posi-
tively correlated with the expression of upf1, upf3a, and
smg6 in some cases. These results suggest that NMD ef-
fectors may have contributed to NMD activity in a dis-
cordant way, with some effectors being more important
than other in affecting NMD activity. However, it is un-
clear why some effectors such as upf1 are expressed at
higher level where the NMD activity appears weaker.
We also examine similar correlations by using Risoform,
and none of these is significant and the signs of correl-
ation are not always consistent with expectation (Add-
itional file 1: Table S5). These together suggest that the

Fig. 2 Distribution of Risoform(tumor)/Risoform(normal) among patients. Patients with significantly lower or higher Risoform in tumor than adjacent
normal tissues (FDR adjusted paired Wilcoxon rank sum test P value < 0.05) are highlighted with cyan or red, respectively
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change of NMD activity may not be consistent with the
expression change of all NMD effectors, and thus a bet-
ter understanding of NMD effectors in a regulatory net-
work is needed for inferring NMD activity from the
effectors’ expression.

Discussion
A key step for applying NMD-inhibition based therapies
is to measure NMD activity accurately. In this study, we
try to reach this goal from three aspects. (1) We use the
expression of many NMD target genes to infer NMD ac-
tivity, because using a few genes may be less sensitive in
detecting NMD activity change as the NMD-targeting
efficiency varies among genes [25] and conditions, so
using many genes imparts a better statistical power. (2)
We develop three metrics to corroborate each other. In-
deed, the three metrics are moderately correlated. Par-
ticularly, both RmRNA and Risoform show consistent and
significant results in a few patients, such as LC_S39,
LC_C34 and LC_S8. (3) We use the metric value in re-
spective normal tissues to normalize that in tumors,
through which we can eliminate biases introduced by
factors that affect the expression in both normal and
tumor samples (but also see next paragraph). For ex-
ample, if an NMD-inducing allele is expressed lower
than an NMD-free one in both normal and tumor sam-
ples due to associated polymorphic cis-regulatory ele-
ments, then normalization would eliminate this effect
and avoid overestimating NMD activity in this case.
Despite our efforts, the method can be further im-

proved in future. First, the NMD target gene set can be
refined to improve sensitivity. We compiled the gene
set based on mRNA expression change upon NMD in-
hibition. The set may include both direct and indirect

NMD targets. Indirect targets however may not change
their expression consistently when NMD activity
changes, because their expression may be mainly regu-
lated by other pathways rather than by NMD. Using
only direct NMD targets may improve the accuracy of
the method. Second, other NMD-inducing features may
also be used to measure NMD activity. In our design,
we use either the total mRNA expression of NMD tar-
get genes or the mRNA isoforms derived from alterna-
tive splicing or nonsense mutation alleles to monitor
NMD activities. Theoretically, the presence of a uORF
and the length of 3’UTR can also be used to select
NMD target mRNAs and thus use their (relative) ex-
pression to monitor NMD activities. However, these
features may not be as robust as the 50/55-bp rule
(used for selecting NMD-targeted isoforms in our
study), such as only translated uORFs can trigger NMD
[26]. Therefore, incorporating these features need fur-
ther testing. Third, we assume that the NMD activity
varies little in normal samples and use it to normalize
that in tumors. This assumption may not be absolutely
true and normalization may over- or under- estimate
the true NMD activity in a tumor sample. It is therefore
worthwhile to compare the performances of the metrics
with and without normalization.
A good approach of measuring NMD activity is valu-

able for clinical applications as NMD influences a variety
of physiological and pathological processes. For example,
the high mutation rate of Upf1 in pancreatic adenosqua-
mous carcinoma [8] and its downregulation in hepato-
cellular carcinoma [27] indicate that the NMD pathway
could be frequently suppressed. Therefore, an estimate
of NMD activity can guide NMD-based therapies. In
lung adenocarcinoma, we find that the NMD activity

Fig. 3 Distribution of Rallele(tumor)/Rallele(normal) among patients. In no patient Rallele shows significant difference between tumor and adjacent
normal tissues
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can either decrease or increase compared to adjacent
normal tissues, suggesting that NMD-inhibition based
therapies may result in better effects in some patients
than others. Furthermore, we don’t observe any correl-
ation between NMD activity and tumor regression (Add-
itional file 1: Table S6, P > 0.14), suggesting that NMD-
inhibition based approach may be applicable to tumors
of any stage. Actually, an estimate of NMD activity is
also informative for diseases other than tumors.
For instance, “PTC read through” drugs have been

used to restore the translation of PTC-containing tran-
scripts for diseases such as cystic fibrosis and Duchenne
muscular dystrophy etc. in several pilot clinical trials
[28]. An estimate of NMD activity in patients can there-
fore help personalized medicine.

Conclusions
We developed three metrics for inferring NMD activities
based on RNA-seq data. Among them, the metric Riso-

form performs the best due to a moderate size of used
target genes and using NMD-free splicing isoforms as a
natural control. Our results suggest that NMD activity
varies among patients and that the metrics may be used
to assess NMD activities in other types of diseases.
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