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Abstract

Background: Significant clinical and research applications are driving large scale adoption of individualized tumor
sequencing in cancer in order to identify tumors-specific mutations. When a matched germline sample is available,
somatic mutations may be identified using comparative callers. However, matched germline samples are frequently
not available such as with archival tissues, which makes it difficult to distinguish somatic from germline variants.
While population databases may be used to filter out known germline variants, recent studies have shown private
germline variants result in an inflated false positive rate in unmatched tumor samples, and the number germline
false positives in an individual may be related to ancestry.

Methods: First, we examined the relationship between the germline false positives and ancestry. Then we developed
and implemented a tumor only caller (LumosVar) that leverages differences in allelic frequency between somatic and
germline variants in impure tumors. We used simulated data to systematically examine how copy number alterations,
tumor purity, and sequencing depth should affect the sensitivity of our caller. Finally, we evaluated the caller on
real data.

Results: We find the germline false-positive rate is significantly higher for individuals of non-European Ancestry
largely due to the limited diversity in public polymorphism databases and due to population-specific characteristics
such as admixture or recent expansions. Our Bayesian tumor only caller (LumosVar) is able to greatly reduce false
positives from private germline variants, and our sensitivity is similar to predictions based on simulated data.

Conclusions: Taken together, our results suggest that studies of individuals of non-European ancestry would most
benefit from our approach. However, high sensitivity requires sufficiently impure tumors and adequate sequencing
depth. Even in impure tumors, there are copy number alterations that result in germline and somatic variants having
similar allele frequencies, limiting the sensitivity of the approach. We believe our approach could greatly improve the
analysis of archival samples in a research setting where the normal is not available.
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Background
Next generation sequencing of tumours is widely used
both for discovery of biologically important somatic
variants as well as for personalizing treatment based on
clinically relevant somatic variants. In both cases, accur-
ate identification of somatic variants is crucial. Ideally, a
constitutional DNA sample from the same individual is
sequenced in parallel, so that somatic variants can be
identified by comparing the tumour to the constitutional
sequence. In some cases, the constitutional sample may
not be available, such as with many archival samples.
Tumour only sequencing is also frequently used in
clinical practice [1]. Without a matched germline se-
quence it is difficult to differentiate between private
germline variants and somatic variants [2]. In addition
to using variant databases to filter out germline variants,
it is also possible to use variant allele frequencies to dif-
ferentiate between somatic and germline variants [3, 4].
We have implemented a Bayesian tumour-only somatic
variant caller, LumosVar, that leverages both prior know-
ledge of population frequencies of germline and cancer
mutations, as well as the observed variant allele frequen-
cies. Here we will evaluate how the tumour content,
copy number alterations, read depth, and ancestry of a
sample effect the ability to detect somatic variants in an
unmatched tumour sample.
Misidentifying germline variants as somatic can be

problematic in several ways, depending on the mutation.
First, the interpretation of a previously uncharacterized
variant would be very different depending on whether
it was thought to be somatic or germline. Healthy indi-
viduals typically have 130–400 rare non-synonymous
germline variants [5]. Therefore, it is not surprising that
a study sequencing a panel of 42 cancer genes in 175
participants uncovered 269 germline missense muta-
tions of unknown significance [6]. According to ACMG
guidelines, missense germline mutations that are rare
and have not been functionally characterized should be
reported as uncertain or likely benign [7]. Since tumour
suppressors tend to have loss of function mutations
through their length, it is unlikely that any specific muta-
tion in a tumour suppressor is well characterized [8].
Clinical tumour sequencing tests, such as MSK-IMPACT,
typically include uncharacterized non-synonymous muta-
tions in known cancer genes in the main body of their
report [9].
There are some variants, such as those in BRCA1 and

BRCA2 that are known to occur in the germline and ef-
fect cancer risk, but may also occur as somatic muta-
tions in tumours. A study of tumour with matched
normal sequencing in over 1000 individuals identified
known pathogenic germline variants over 2% of the par-
ticipants [10]. Jones et al. examined the presence of
germline false positives when tumour samples were
analysed without a matched normal sample [2]. They
used standard somatic variant calling tools designed for
matched tumour normal pairs with unmatched tumour
normal pairs. After filtering out putative germline vari-
ants by removing those found in public databases, they
found that an average of 65% of the variants called
somatic in the unmatched samples were private germline
variants. Additionally, strict filtering removed a small
number of mutations that were truly somatic. Most
strikingly, they found that ~50% of patients in their co-
hort would have germline false positives in clinically
actionable genes.
The advent of next generation sequencing has acceler-

ated the discovery of cancer driver mutations. However,
we have now reached a point where most of the common
coding driver mutations have already been discovered [8].
Efforts are now turning to uncover rare and noncoding
driver mutations [11–13]. One prominent example of a
noncoding driver mutations is the TERT promoter
mutation [14]. Statistical methods may be used to
prioritize somatic noncoding mutations for functional
characterization [15, 16]. Germline variants may also
contribute to cancer risk and progression [17]. Different
statistical models are required to analyze germline and
somatic alterations [18]. When a filtering approach is
used, the false positive rate is much higher for noncoding
variants, as most large scale sequencing projects have fo-
cused on coding regions (Additional file 1: Figure S8).
Therefore, we believe our approach would be extremely
valuable for discovering novel noncoding variants in un-
matched tumor cohorts. As private germline variants are
potential false positives in tumour only somatic variant
calling, the number of private germline variants that an in-
dividual has would have a direct impact on the calling pre-
cision. The 1000 genomes project found more novel
variants in populations of African ancestry compared to
those of European ancestry [5]. We would also expect
there to be differences in the number of private germline
variants between populations of different ancestry.
In this study, we explicitly examine how the number

of private germline variants varies with ancestry and
present a strategy to reduce false positives due to pri-
vate germline variants in tumor-only somatic mutation
calling. Our strategy uses a model of variant allele fre-
quencies to improve classification of somatic versus
germline variants. We estimate allelic copy number and
clonal sample fractions to model the expected allele fre-
quency distributions of somatic and germline variants.
We use a Bayesian framework that integrates the allele
frequency model with prior probabilities of somatic or
germline calculated from 1000 genomes population and
cancer mutations counts from COSMIC. In order to
evaluate our model, we first use simulations to system-
atically examine the effects of tumour content, copy
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number, and read depth on the power to detect somatic
variants. Then we use in silico dilutions and down-
sampling experiments to examine these effects on real
data. Finally, we evaluate the tumour only calling ap-
proach on tumour samples of different ancestry.

Methods
Nucleic acid isolation, library prep, and sequencing
Biospecimens were previously collected under approval
by the Western Institutional Review Board (WIRB
#20100721; WIRB #20141201; and WIRB #20031485).
“Fresh-frozen” tumor biopsy specimens were used for
determination of the tumor’s genomic profile and quality
assessed for tumor cellularity, necrosis, crush artifact,
etc. Constitutional (or inherited) germline variants were
determined by sequencing genomic DNA previously iso-
lated from whole-blood provided at the time of biopsy.
RNA and DNA were extracted from tumor biopsy speci-
mens using the Qiagen All Prep kit (Qiagen, Germantown,
MD). Table 1 provides information regarding patients and
samples.
For fresh frozen tissue, tissue from the needle biopsy

was disrupted and homogenized in Buffer RLT plus, Qia-
gen AllPrep DNA/RNA Mini Kit, using the Bullet
Blender™, Next Advance. Specifically, tissue was trans-
ferred to a microcentrifuge tube containing 600 μl of
Buffer RLT plus, and stainless steel beads. The tissue was
homogenized in the Bullet Blender at room temperature.
The sample was centrifuged at full speed and the lysate
was transferred to the Qiagen AllPrep DNA spin column.
Genomic DNA purification was conducted as directed
by the AllPrep DNA/RNA Mini Handbook, Qiagen.
DNA was quantified using the Thermo Scientific Nano-
drop spectrophotometer and quality was accessed from
260/280 and 260/230 absorbance ratios.
For blood germline tissue, the QIAamp DNA Blood

Maxi Kit, Qiagen, was used to isolate DNA from 8 to
10 ml of whole blood. The protocol was conducted as
written. Specifically, the buffy coat layer was isolated
Table 1 Samples and sequencing statistics

Sample name Cancer type Self reported ancestry R

GBM6-HA Glioblastoma Hispanic 8

GBM1-EA Glioblastoma Caucasian 2

TNBC3-AA Breast African American 9

TNBC4-AA Breast African American 9

TNBC6-AA Breast African American 1

TNBC7-AA Breast African American 8

TNBC11-EA Breast Caucasian 1

TNBC14-EA Breast Caucasian 8

TNBC15-GH Breast Ghanian 5

Description of the patient samples and sequencing metrics of the patients used in the
coverage for in-silico dilution and down-sampling experiments. Blood samples from ea
from whole blood by centrifugation. The volume of
buffy coat was brought up to 5–10 ml with PBS and
treated with Qiagen protease at 70 °C. 100% ethanol was
added and the sample was applied to a QIAamp Maxi
column and centrifuged. Samples were then washed with
buffers AW1 and AW2 and eluted in 1000 μl of Buffer
AE. The Qubit 2.0 Fluorometer, Invitrogen, and the
Nanodrop spectrophotometer, Thermo Scientific, were
used to assess DNA quality and concentration.
Slides mounted with 10 um FFPE tissue sections were

incubated in a thermal oven overnight at 60 °C. Deparaf-
finization was conducted on slides by three exchanges of
xylene followed by washes in descending concentrations
of ethanol (100, 95, 70, 50 and 20%) and a final wash in
deionized water. Using a double-edge dissecting needle,
tumor tissue was scraped into a 1.5 ml microcentrifuge
tube containing 150 μl of Buffer PKD and 10 μl of pro-
teinase K. Samples were vortexed to mix, incubated at
56 °C for 15 min and chilled on ice for 3 min. After cen-
trifugation at 20,000 x g for 15 min, the supernatant was
transferred to a new 1.5 ml centrifuge tube for RNA
purification. The pellet was resuspended in 180 μl of
Buffer ATL containing 40 μl of proteinase K, mixed by
vortexing and incubated at 56 °C for 1 h followed by in-
cubation at 90 °C for 2 h. After brief centrifugation, sam-
ples were treated with 4 μl of RNAse A (100 mg/ml) at
room temperature. Genomic DNA purification was con-
ducted with automation on the QIAcube using the
AllPrep DNA/RNA FFPE Kit and the QIAcube standard
protocol, Purification of DNA and total RNA including
small RNAs from FFPE tissue sections, Version 2 (DNA
purification). Samples were eluted in 100 μl of BufferATE.
Extracted DNAs were quantified using the Invitrogen 2.0
fluorometer and DNA quality was assessed on the
Nanodrop by evaluating 260/280 and 260/230 absorbance
ratios.
Captured libraries were sequencing on Illumina

HiSeq2500 using paired-end 83x83bp reads. Paired
tumor/normal exomes were constructed using KAPA
eads (Millions) Mean target coverage % Covered at 100X

97 553X 95.7

768 2101X 98.3

05 599X 96.1

06 546X 95.4

040 658X 95.4

99 588X 95.6

066 645X 95.8

75 454X 94.5

98 1012X 97.4

evaluation dataset. Note that GBM1-EA was sequenced to higher mean target
ch patient were also sequenced to establish true variant classification
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Biosystems’ Library Preparation Kit using the manufac-
turer’s “with bead” protocol and Agilent’s XT2 adaptors
and Agilent’s SureSelect Human All Exon V5 + UTR
baits. Unmatched tumor SBS Kit V3 on the Illumina
HiSeq.
Tumor and normal genome libraries were sequenced

with paired 125 bp reads using Illumina HiSeq2500 V4
chemistry running HCS2.2 controller software and RTA
1.18.61. The five lanes of each library generated 2.819
billion reads for the tumor and 2.968 billion reads for
the normal sample.

Alignment and assembly
Pipeline analysis is triggered when data is written from
the sequencer to the analysis server in the form of
BCL files. Using a queuing system and write FAIL/
COMPLETED system BCL files are converted to
FASTQ files (raw sequence) and aligned to the genome
using BWA-MEM (version 0.7.8) [19]. BWA-MEM
aligns long query sequences against a large reference
genome utilizing a backward-search with a Burrows-
Wheeler Transform tool. We used the reference gen-
ome from 1000 Genomes project build hs37d5 with
decoy contigs [b37d5] and Ensembl v74 for annota-
tions [20]. For the samples containing the molecular
barcodes, the barcodes were appended to the RG tags
using a custom script. BAM files were sorted with
SAMTools (version 0.1.2) and merged and duplicate
marked using Picard MarkDuplicates.jar (version
1.111). Chastity failed reads were marked in the BAM
files through a custom script using the Picard Tools
API (version 1.31). Targeted reassembly was performed
using ABRA (version 0.94) [21]. These final BAM files
were then used to identify genetic variants.

In silico dilutions and downsampling
For the in silico dilutions, BAMs of the tumor and nor-
mal samples were subsampled and then merged using
samtools. For the downsampling experiment, samtools
was used to subsample the tumor bam.

Benchmark variant calling
Germline SNV and INDELS were identified using
HAPLOTYPE CALLER (version 3.1–1) [22], samtools
(version 1.2) [23] and freebayes (v0.9.21) [24] in the con-
stitutional sample. Somatic SNV and INDEL were identi-
fied using three different somatic variant callers
SEURAT [25], STRELKA [26], and MUTECT [27]. After
normalizing INDELs with VT [28], a custom script was
used to merge the VCFs from the three callers. A set of
ten constitutional samples was pooled as an unmatched
reference sample for the somatic SNV and INDEL cal-
lers. Agreement of all callers was required to define a
true variant (Additional file 2: Table S1). Positions with
discordant calls were considered unknown and excluded
from sensitivity and precision calculations.

Germline variant filtering
Known germline variants were identified by their pres-
ence in dbSNP (build 146) [29]. Since dbSNP does con-
tain somatic variants, we used the “allele origin” field to
exclude those variants from germline filtering. Variants
with an allele origin listed as germline or unspecified
were considered known germline variants, while those
listed as somatic, both, or not present in dbSNP were
considered potential somatic or private germline variants.
For the filtering approach, variants called by all somatic
callers in the pooled reference comparison, and not fil-
tered out as known germline variants were considered
somatic calls.

Simulations
We simulated somatic mutations in order to examine
how read depth, tumor content, and copy number, affect
the power to detect somatic variants. Read depth of each
mutation was drawn from a lognormal distribution
where RT is the mean target coverage. The standard de-
viation was derived from fitting a lognormal distribution
to the read depth distribution from several tumor
samples.

RTelognormal RT ; 1; 1
� �

The expected allele frequency of a somatic variant (ϕS)
is a function of the fraction of cells in the sample con-
taining the variant (f ), the total copy number (N), and
the minor allele copy number (M).

ϕS ¼ f � N−Mð Þ
f �N þ 2� 1−fð Þ ð1Þ

The read depth of the B alleles were drawn from a bi-
nomial distribution as RB

RBebinomial RT ;ϕ
S

� �
Caller overview
The variant calling approach consists of four main steps.
The first step involves analysis of a set of unmatched
controls in order to calculate position quality scores and
get average exon read depths for the copy number
analysis. The second step involves calculating position
quality scores of candidate variant positions in the
tumor sample, which takes into account both the quality
scores from the unmatched controls as well as quality
metrics from the tumor sample such as mapping quality
scores and strand bias. The third step involves estimating
the allelic copy number and clonal sample fractions. The
model assumes that due to clonal expansions, subsets of
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variants will occur in the same fraction of the cells in the
sample. There are a fixed number of these subsets (deter-
mined by the user – 3 was used in the results presented
here) that have the same sample fraction and each variant
(mutation or copy number) is assumed to belong to one
of these subsets. The user may select any positive integer
number of subsets to find. In an unrelated training data-
set, we found that three works well for most samples. An
expectation maximization approach is used to find the
clonal sample fractions that best explain the data and as-
sign the most likely copy number state to each segment
and sample fraction to each variant. The fourth step in-
volves finding the posterior probability that each candidate
variant is somatic, germline heterozygous, or homozygous
based on the expected allelic fractions for somatic and
germline variants which takes into account the allelic copy
number and clonal sample fractions. The somatic and het-
erozygous germline variants are then used as input to step
three. The caller iterates between step three and step four
until the result converges (Additional file 3: Figure S1).
Position quality scores from unmatched controls
A quality score for each position in the exome is deter-
mined based on the assumption that positions that do
not appear diploid in control samples are unreliable.
The conditional probability of the data (D) given that
the position is homozygous (P(D|GAA)), heterozygous
(P(D|GAB)), or poorly mapped (P(D|U)) are calculated
based on the number of reads supporting the B allele
(RB), the total number of reads (RT), the mean base quality
of the B allele (Qb

B) and the mean mapping quality of the A
or B alleles (Qm

A orQ
m
B ). The read depths of the B allele are

assumed to follow a binomial distribution with RB suc-
cesses, RT trials, and the probability of success dependent
on the genotype. For homozygous positions, the probability
of observing reads supporting the B-allele depends on the
mean B allele base quality, and is 0.5 for heterozygous
positions.

P DjGAAð Þ ¼ binomialpmf ðRB;RT ; 10
−Qb

B
10 ).

P(D|GAB) = binomialpmf (RB, RT, 0.5)

P DjUð Þ ¼ 10
−min Qm

A
;Qm
Bð Þ

10

The prior probabilities of homozygous (πAA) or
heterozygous (πAB) are based on the population allele
frequencies (FA and FB), assuming Hardy –Weinberg
equilibrium and the prior probability that the position is
unreliable is a constant (πU) reflecting the percentage of
the exome expected to be mappable [30]. The posterior
probability that the position is unreliable is given the
data:
P UjDð Þ ¼ P DjUð Þ�πU

P DjGAAð Þ�πAA þ P DjGABð Þ�πAB þ P DjUð Þ�πU

The mean posterior probability that the position is un-
reliable is calculated across the unmatched controls for
each position and then transformed to Phred-like score.

Tumor quality metrics and filtering
Sixteen quality metrics are calculated at each position
(see Table 2). Each metric has a PASS threshold and a
REJECT threshold (see Additional file 4: Table S2). Each
position that passes all of the PASS thresholds is
assigned to the PASS training group, and each position
that meets any of the REJECT criteria is assigned to the
REJECT training group. A quadratic discriminant model
is fit to the SNVs and Indels separately. All of the posi-
tions are classified according to the respective quadratic
discriminant model, and the posterior probability of be-
longing to the PASS group is used to filter the positions
on quality.

Copy number and clonal sample fraction estimation
In order to properly determine the expected allelic
fractions of germline and somatic variants we need to
estimate allele specific copy number of clonal and sub-
clonal copy number events, as well as the sample frac-
tions of the main clonal and sub-clonal populations. Our
model starts with segmented read count data, and finds
the most likely allelic copy number state for each seg-
ment given the observed mean exon read depths, the B-
allele frequencies of the germline heterozygous variants
in each segment, and the clonal and sub clonal sample
fractions. Using an expectation maximization approach,
we find the clonal and sub clonal sample fractions that
maximize the probability of the observed mean exon
read depths, germline heterozygous B-allele frequencies,
as well as somatic variant B-allele frequencies. We also
include prior probabilities of copy number states and
sample fractions to favor solutions more diploid copy
number segments and intermediate sample fractions.
The model assumes that at most one clone can have a copy
number alteration in a given segment, and the rest of the
tumor cells, as well as the normal cells are diploid in that
segment. See Table 3 for key notation used in the model.
The copy number segmentation is performed on the

ratio of the tumor to the normal mean exon read depth
using the circular binary segmentation implementation
in the Matlab bioinformatics toolbox.
Somatic and germline variant allelic read counts are

required to as input to the expectation maximization
step. In the initial iteration, likely germline and somatic
variants are selected based on database frequencies. In
subsequent iterations, the posterior probability described
in the “Somatic Variant Calling” section below (Eq. 4) is



Table 2 Model input parameters

Parameter Default value or source Description

K 3 Number of Clones

fπ 0.5 Mode of prior distribution of f

απ 1.5 Determines shape of prior distribution of f

π(N = 0)…π(N = 3), π(N≥ 4) 0.1, 0.15, 0.5, 0.15, 0.1 Copy Number Priors

π(M = 0), π(M = 1), π(M≥ 2) [0.25;0.5;0.25] Minor Allele Copy Number Priors

αseg 1E-5 Segmentation significance cutoff

ω COSMIC Number of cancer variants observed at the position

FA, FB 1000 Genomes Population Allele Frequencies

ρSNV, ρindel 1E-5, 1E-6 Constant for calculating prior somatic

Fp − SNV, Fp − indel 7.14E-5, 1.43E-5 Population allele frequencies assigned to alleles not
seen in input population

Fmax-somatic 1E-3 Maximum population allele frequency to be considered
a possible somatic variant

Qm
min 10 Minimum mapping quality to count read

Qb
min 5 Minimum base quality to count base

ΤPASS 0.99 Minimum posterior probability of belonging to the PASS
group to be called pass

ΤSomatic 0.8 Minimum posterior probability of variant is somatic to
be called somatic

ΤGermline 0.8 Minimum posterior probability of variant is germline to
be called somatic

Where applicable, default values were determined empirically on an independent data set
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used to select the positions considered somatic and a
similar germline posterior probability is used to select
germline variants. In the expectation maximization step,
in addition to optimizing the clonal and subclonal sam-
ple fractions (f ), we also optimize a centering parameter
(C) and a parameter that controls the spread of the al-
lelic fraction distributions (W). We aim to maximize the
following sum of likelihoods: 1) the likelihood of the
exon read depth given the sample fraction and centering
parameters, 2) the likelihood of the heterozygous variant
B allele read depth given the sample fractions and W
parameter, 3) the likelihood of the somatic variant B allele
read depth given the sample fractions and W parameter.
Terms reflecting the prior probabilities of observing the
copy number states and sample fractions are also included
in the sum to maximize, as shown below. Here X is the
number of exons, X* is the number of copy number al-
tered exons, V is the number of heterozygous germline
variants, and Y is the number of somatic variants.
f ;W ;Cf g ¼ argmax

 XX

n¼1
log L C; f jRTnð Þð Þ þ

XV

h¼1
log Lðf ;Wð

þ
XX

n¼1
log π Nnð Þð Þ þ

XX

n¼1
log π Mnð Þð Þ þ
―

3�X þ
The likelihood of the exon read depth is modeled as a
Poisson distribution with a mean of Rni , which is calcu-
lated, based on the observed exon read depths in the un-
matched control samples (Eq. 2, below).

L C; f ijRTnð Þ ¼ poissonpdf round RTnð Þ; round R̂niÞ
� �� �

The likelihood of the heterozygous position minor al-
lele read counts (RBh) are modeled as a beta binomial
distribution with an expected allelic fraction ϕG (Eq. 3).

Lðf ; iW ijRBh;RThÞ ¼ betabinomialpmf ðRBh;RTh;Wi
�ϕi;WI 1−ϕið ÞÞ

The likelihood of somatic position minor allele read
counts (RBs) are modeled as a beta binomial distribution
with an expected allelic fraction ϕS (Eq. 1).
jRBh;RThÞÞ þ
XY

s¼1
log L f ;W jRBs;RTs;ð Þð ÞXY

s¼1
log π f sð Þð Þ þ

XX�

n¼1
log π f nð Þð Þ

X� þ V þ 2�Y

!



Table 3 Other model parameters and variables

Variable Descriptions

Inputs to model

RT, RB Total read depth, B allele read depth

πS, πAB, πAA prior probability of somatic, germline heterozygous,
germline homozygous variant

Qm
A ;Q

m
B Mean mapping quality of reads supporting the

A or B allele

Qb
B Mean base quality of bases supporting B allele

X Total number of exons,

Y Number of heterozygous germline variants

Z Number of somatic variants

G Number of segments

Parameters fit in maximization

fi fraction of cells in the sample with the variants in
clone i

C centering parameter

W controls the spread of the allelic fraction
distributions

Intermediate variables

N total copy number

M minor allele copy number

ϕS, ϕG expected allele fraction of somatic or germline
variant

IS, Ij Index of clonal subset containing somatic variant
or copy number variant

Q* Number of copy number altered exons

Other notation

GAA, GAB Germline homozygous or heterozygous genotype

O Other genotype beside somatic, germline
homozygous AA, or germline heterozygous AB

U Unknown genotype due to poor mapping

i Index of clonal subset {1, 2, ..., K}

j Index of segment {1, 2, …, G}

s Index of somatic variant {1, 2, …, Z}

h Index of heterozygous variant {1, 2, …, Y}

n Index of exon {1, 2, …, X}

Key to notation used in describing model
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L f ;W jRTsð Þ ¼ betabinomialpmf

�
RBs;RTs; minðWIsϕ

S
Is ;Wið1−ϕS

IsÞÞ;
maxðWIsϕ

S
Is ;WIsð1−ϕS

IsÞ
�

The prior distribution of f is described as a beta distri-
bution parameterized such that fπ is the mode of the
distribution.

π fð Þ ¼ betapdf f ; απ;
απ−1
f π

−απ þ 2

� �
In the expectation step, we first estimate the copy

number and minor allele copy number of each segment.
For each clone (i) and segment (j), the copy number
(Nij) and minor allele copy number (Mij) are calculated
based on the mean segment read depth in the tumor
(RTj ) and controls (RCj ), and the mean segment B al-
lele read depth in likely germline heterozygous posi-
tions in the tumor (RHBj ).

Nij ¼ max round
C�RTj

RCj
−2� 1−f ið Þ
f i

0B@
1CA; 0

264
375

Mij ¼ round
Nij�RHBj

f i�RTj
−
1−f i
2

! 

Then the expected read depth is calculated for each
exon (n) and clone.

R̂ni ¼ f i�RCn�Nj þ 2� 1−f ið Þ�RCn

C
ð2Þ

The expected allele frequencies for germline heterozy-
gous positions are also determine for each clone.

ϕG
ij ¼

f i�Mij

Nij
þ 1−f i

2
ð3Þ

We find the clone I that is most likely to have the copy
number alteration in each segment, and then use the ex-
pected read depth and expected allele frequency corre-
sponding to the most likely clone for each segment.

Ij ¼ argmaxi
1
Qj

XQj

n¼1

L C; f ijRTnð Þ þ 1
V j

XV j

h¼1

Lðf i;Wi; jRBh;RThÞ
! 

We are then able to find expected allele frequencies
for each somatic variant, for each sample fraction. If the
variant occurs in a copy-altered segment, then we must
take into account whether the variant occurs on the
major or minor copy of the chromosomal segment. Here
we assume that a variant that occurs in the same sample
fraction as the copy number alteration will be on the
major allele, while variants in other sample fractions
would occur on exactly one chromosomal copy.

ϕS
ij ¼

i ¼ Ij;
f j� Nj−Mj
� �

f j�Nj þ 2� 1−f j
� �

i≠Ij⋀Nj > 0;
f i

f I j
�Nj

þ 2� 1−f Ij

� �

i≠I j⋀Nj ¼ 0;
min 1−f Ij ; f i

� �
2

8>>>>>>>>>>><>>>>>>>>>>>:
We can then find the most likely clone for each som-

atic variant.
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Is ¼ argmaxi
�
betabinomialpmf ðRBs;RTs; minðWiϕ

S
ij;Wið1−ϕS

ijÞÞ;
maxðWiϕ

S
ij;Wið1−ϕS

ijÞÞ
�

Somatic variant calling
The somatic variant calling model assumes that reads at
a given position were generated based on one of four
mutually exclusive models: somatic mutation (S), germ-
line heterozygous (GAB), germline homozygous (GAA), or
other (O). We can then calculate the probability of the
data given each of the models.

P DjSð Þ ¼ maxi¼1…K

 
betabinomialpmf

�
RB;RT ; min

�
Wiϕ

S
ij;Wi

�
1−ϕS

ij

�
max

�
Wiϕ

S
ij;Wi

�
1−ϕS

ij

��!

P DjGABð Þ ¼ betabinomialpmf

�
RB;RT ;Wi

�ϕG
ij W i 1−ϕG

ij

� ��
P DjGAAð Þ ¼ betabinomialpmf

�
RA;RT ;Wi

�
�
1−10

−Qb
B

10

�
Wi � 10

−Qb
B

10

�
P DjOð Þ ¼ betabinomialpmf

�
RT−RA−RB;RT ;Wi

� 1−10
−Qb

A
10

� �
;

Wi � 10
−Qb

A
10

�
The prior probability of a somatic mutation is

based on the count of mutations in that position in
cosmic (ω) and the prior probabilities of the germline
genotypes are based on population allele frequencies
(FA, FB).

πs ¼ ρ� ωþ 1ð Þ
πAB ¼ 2�FA

�FBð Þ� 1−πsð Þ
πAA ¼ FA

2� 1−πsð Þ
πO ¼ 1−πs−πAB−πAA

We can then calculate the posterior probability that
the mutation is somatic.

P SjDð Þ ¼ P DjSð Þ�πS

P DjGAAð Þ�πAA þ P DjGABð Þ�πAB þ P DjSð Þ�πS þ P DjOð Þ�πO

ð4Þ

Results
Current approaches for filtering out germline variants
from potential somatic variants typically include com-
parison to databases containing large numbers of germ-
line variants. A recent study has shown increased false
positive germline variants in non-Caucasians [3]. We
first sought to examine the dependence of private germ-
line variation on ancestry independent of prior databases
by utilizing 1000 Genomes Phase 3 data on 26 different
populations (Additional file 5: Table S3). In this analysis,
for each of the 2503 individuals, germline variants were
counted as private if there were found in no other indi-
vidual within phase 3 of 1000 genomes. Figure 1a shows
the distribution of missense variants unique to each in-
dividual across the 26 different cohorts. Populations
such as Bengali from Bangladesh (BEB) show a signifi-
cant number of private and rare variants due to both the
uniqueness of this population within 1000 Genomes and
a rapid recent population expansion. In particularly for
the BEB population, there is considerable evidence that
one’s ability to precisely distinguish germline and somatic
variation would require significantly greater numbers of
sequenced individuals than the Finnish population. Evi-
dent from the violin plots, admixed populations show a
bimodal distribution such as in Americans of African An-
cestry in SW (ASW) indicating a high degree of variability.
As expected, some populations show a smaller number of
unique variants consistent with their geographic isolation
such the Puerto Rico participants (PUR).
We extended this analysis by utilizing an additional

set of 578 exome sequenced tumor/normal sets not
previously included in existing databases. To obtain
high quality variant calls, we utilized strict thresholds
(increasing marginally false negatives), by excluding
genes in highly homologous and paralogous regions, re-
quiring greater than 20X coverage and that they were
called by two different germline variant callers (GATK
Haplotype Caller and FreeBayes). In this analysis, we
limited to single nucleotide variants that have a defined
impact on protein transcription or translation, and not
found in Phase 3 of 1000 Genomes Phase 3, ExAc 3.0,
ESP6500, or ARIC 5600 cohorts. Overall, we find ap-
proximately 100 to 200 private variants per individual.
We then overlaid ancestry by PCA on common coding
variants ascertained from exome sequencing of germ-
line. These are summarized in Fig. 1b and c where one
observes there are significantly greater challenges in re-
moving germline false-positives for many populations
of non-European ancestry. First, shown in Fig. 1b, the
number of private putatively functional variants for
each individual are plotted in a bubble graph for the
2nd and 3rd principal components to distinguish non-
African samples. The number of private variants for
each individual is shown both by color and by size on
the bubble chart, and the locations of individuals from
1000 Genomes are shown for orientation. Importantly,
this resolution of ancestry shows that even within a
European ancestry cohort, there are many individuals
who still will have a high number of private variants
that would result in a higher number of false positives
when detecting somatic variants in tumor only samples
by filtering. This effect is seen as we further examine 3
areas of Fig. 1b by grouping individuals heuristically,
sectioning off those that cluster near European 1000
Genomes (EUR) for one cluster, those near African



a

b c

Fig. 1 Correlation between ancestry and the effectiveness of using database filters to identify somatic variants. a The distribution and number of
variants unique to an individual across 2503 individual from Phase 3 of 1000 Genomes plotted as violin plot for each of 26 different populations
(indicated by their 3 letter code), and colored based on their ancestral super population. b The number of private variants for 150 individuals
after filtering through 1000 Genomes, ExAc. not previously sequenced shown by their principle components of common variation (>1%) is shown as a
color-metric bubble chart. c The distribution of variants within the groups within the right PCA plot, correlating to sections in B, where individuals
clustering near those of European, Asian, and African Ancestry
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1000 Genomes (AFR) individuals for a second cluster,
and those near Eastern and Southern Asian individuals
in 1000 Genomes (SAS/EAS). Examining the mean
number of missense variants separating into three ap-
proximate groups, we see individuals clustering with
those of European ancestry with a mean of 101 private
missense variants, individuals clustering or admixed
with individuals of African ancestry with a mean of 108
missense variants, and those clustering with individuals
of South or East Asian ancestry show a mean of 117
missense variants. A 1-way ANOVA analysis between
these groups shows significant differences in the num-
ber of private variants (p < 0.003). These results are
overall consistent both within 1000 Genomes popula-
tions and within individuals not included with existing
databases, showing that individuals of non-European
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ancestry have greater number of private variants per in-
dividual. Still, the wide distribution of individuals of
Caucasian ancestry indicates that ancestry alone, as
driven by common variation, does not explain all of the
variation. Likely admixture with individuals from popu-
lations that have recently undergone rapid expansions
indicate there is considerably heterogeneity within pop-
ulations. Taken together, these results are consistent
with a lack of diversity being a major but the exclusive
factor in the higher number of private variants for indi-
viduals of non-European descent. Additional population
factors are likely also at play such as the when popula-
tions have undergone recent expansions leading to a
larger number of variants only within the most recent
generations.
The observation that most non-hypermutated cancers

have approximately the same number of somatic muta-
tions (~100) as private germline variants has significant
implications towards using tumor only sequencing in
precision medicine. In Fig. 1c, group 1 would have an
approximate 50% false discovery rate with filtering alone,
whereas the African group would have over a 70% false
discovery rate. Our results suggest filtering-based ap-
proaches are substantially more effective for European
American individuals. Since using databases to filter
germline variants from tumour only somatic variant calls
does not appear sufficient, we examine integrating vari-
ant allele frequency information.

Framework for considering allele fraction shifts as a
function of copy number and clonal heterogeneity
Since somatic variants will only occur in tumor cells, but
germline variants will occur in all cells, we can leverage
differences in allele frequencies to differentiate between
somatic and normal variants in impure tumor samples. In
solid tumours, stromal cells and infiltrating lymphocytes
are typically interspersed among the tumour cells [31, 32].
The normal cell contamination in tumours can be lever-
aged to differentiate somatic from germline variants. For
example, in a normal diploid region, a heterozygous germ-
line variant should have an allele frequency around 50%
while a heterozygous somatic mutation in an impure
tumour should have a lower allele frequency. Still, tu-
mours often have many copy number alterations that will
affect the expected allele frequencies of both germline and
somatic variants. One approach, implemented by Smith
et al., is to fit distribution of allele frequencies of common
germline variants in each segment and detect outliers as
likely somatic variants [4]. We chose to explicitly model
allelic copy number and clonal sample fractions so that we
can examine how these factors impact the power to detect
somatic variants. A conceptual overview of our approach
is shown in Fig. 2 and a more detailed illustration is pro-
vided in Additional file 3: Figure S1.
A key aspect of our strategy is modeling the clonal
and subclonal allele specific copy number alterations,
which can also effect the allele frequencies of both som-
atic and germline variants. The expected allele frequen-
cies can be calculated (see methods Eqs. 1 and 3).
Figure 3 illustrates how the expected allele frequencies
for somatic and germline differ with tumor content for
different copy number alterations. As we would expect,
the biggest differences in allele frequencies between the
somatic and germline variants occurs at the lowest
tumor content regardless of copy number state. In a nor-
mal diploid region, the difference in allele frequencies
monotonically decreases as tumor content increases.
However, other copy number states result in points of
intermediate tumor content where the allele frequencies
for somatic and germline variants are similar. Therefore,
we would expect copy number alterations to make it
more difficult to detect somatic variants based on allele
frequencies.

Simulations
We would expect that at higher read depth we would be
able to measure allele frequency more precisely, there-
fore would be better able to detect somatic variants. The
read depth required should depend on the tumor con-
tent and the copy number state. We used simulations to
examine how the power to detect somatic variants de-
pends on tumor content, mean target coverage, and
copy number state. We simulated somatic variants in
eight different copy number states, with sample fraction
from 5%–95% and mean target coverage from 50 to
3200 with 1000 variants for each condition. Then we
found the percentage that would be called somatic
using the default thresholds. We can see in Fig. 3 that
the read depth required depends greatly on the sample
fraction and copy number state. In a diploid region
(N = 2,M = 1), we would only need 200X mean target
coverage to detect almost 80% of the somatic variants
with a sample fraction of 50%. However, we would need
800X mean target coverage to detect a similar propor-
tion of variants with a sample fraction of 75%, and
3200X coverage to detect a similar proportion of vari-
ants with a sample fraction of 85%. Copy number alter-
ations reduce the power to detect somatic variants in
specific ranges of sample fractions. For example copy
neutral loss of heterozygosity (LOH) (N = 2,M = 0)
makes it very hard to detect variants with a sample
fraction around 35%–40%, while a one copy gain
(N = 3,M = 1) makes it very hard to detect variants
with a sample fraction around 50%–55%.

Evaluation dataset
A set of nine samples consisting of two glioblastoma
samples and seven triple negative breast cancer samples



Fig. 2 Overview of Variant Calling Strategy. After filtering candidate variant positions by quality, an EM approach is used to fit a model of clonal
allelic copy number. The plots on the left show example copy number plots for three conditions, the top panel showing high tumor content and
moderate coverage, the middle panels with high tumor content and high coverage, and the bottoms panel with moderate tumor content and
moderate coverage. A one copy loss is detected in the segment indicated by the blue line in the first left-most column. Next the expected
somatic and germline allelic fractions are modeled in subsequent column. The center two columns plots the expected allelic fractions for germline
variants (grey), somatic main clone (blue), and somatic sub clonal (green and red) for diploid regions (left) and one copy loss regions (right). We can
see that in high tumor content, moderate coverage, the main clone distribution overlaps with the germline and is difficult to detect in the diploid
region, while the red sub-clone is more difficult to detect in the one copy loss region. Increasing the coverage increases sharpness of the distributions
making the somatic variants easier to detect. In the moderate tumor content sample, all clones are easy to differentiate from germline in the diploid
region, but the main clone is hard to detect in the one copy loss region. Using these distributions to calculate conditional probabilities, as well as using
1000 genomes population frequencies and COSMIC mutation counts to calculate prior probabilities, somatic and germline variants can be called. The
right most columns show plots of the allelic fractions of germline (grey) and somatic variants colored by clone. In these, encircled ‘+’ indicates the
variant was detected and empty “o” indicates a false negative. As expected, in the high tumor content moderate coverage condition, variants in the
main clone are detected better in the deleted region, and the number of variants detected increases in the high coverage condition

Halperin et al. BMC Medical Genomics  (2017) 10:61 Page 11 of 17
were used to evaluate the tumor only caller. These in-
cluded four African Americans, three European Ameri-
cans, one Ghanaian, and one Hispanic. One of the
glioblastoma samples was sequenced to 2101X mean
target coverage for downsampling and in silico dilution
experiments. The other samples were sequenced to
454X-1012X mean target coverage. We used a consensus
calling approach to define true somatic and true germ-
line variants, as consensus calling typically outperforms
any individual caller [33]. Using strict criteria of detec-
tion by three out of three somatic variants callers (or
two out of two for indels) we found that each sample
had an average of 129 somatic (range 75–196) muta-
tions. We also used three out of three consensus calling
to define germline variants, and considered variants pri-
vate those that did not appear in dbSNP. By these strict
criteria, we found an average of 224 (range 126–319)
private germline variants per sample.

Variant quality filtering
Strict quality filtering is required to exclude variants that
are not mapped cleanly because any mapping artifacts
may shift the measured allele frequency and result in an
incorrect classification. Therefore we adopt a two-tiered



Fig. 3 Allele Frequencies of Somatic and Germline Variants and Required Coverage for Somatic Variant Detection by Simulation. The top half of
each graph shows the expected allele frequency of somatic (blue) and germline variants (red) by tumor content (x-axis) for different copy number
states (plot titles, N indicates total copy number, M indicates minor allele copy number). The bottom half of each graphs shows the coverage required
(indicated by the color) to get the power indicated by the y-label. Black squares indicate that the detection power was not achieved even at the
highest coverage evaluated. We can see that the closer the somatic and germline allele frequencies, the more difficult it is to detect somatic variants
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approach to variant quality filtering. About 80% of som-
atic variants and 78% of private germline variants have
sufficient quality to call (Additional file 6: Figure S2). A
much lower percentage of indels meet the strict quality
criteria as they are much more difficult to map. We
find that increasing coverage increases the number of
somatic and private germline variants that pass the
strict quality criteria (Additional file 7: Figure S3),
while changing the tumor content has little effect
(Additional file 8: Figure S4).

Sample fraction and copy number calling
In the downsampling and in silico dilution experi-
ments, we find that the main copy number events are
consistently called, except for at the lowest dilution
(Additional file 9: Figure S5). For the one copy loss and
LOH events, the sample fraction decreases linearly with
the dilution as expected. In our approach, we observe that
there is some ambiguity in calling segments as a one copy
gain in the highest sample fraction or a higher level gain
in a lower sample fraction. Though too small to see in the
plot, there is also a ~0.2 megabase deletion on chromo-
some 9 that is detected as a two copy loss in all but the
lowest dilution encompassing CDKN2A. The TNBC
samples show a large number of gains and losses
(Additional file 10: Figure S6). The large number of copy
number alterations are evidence of genome instability
which is typical of triple negative breast cancer [34].

Somatic variant detection sensitivity
Only polymorphic variants appearing in dbSNP are
considered false negatives in the filtering approach
since the same callers were used to define the truth set,
so the sensitivity of the filtering approach does not rep-
resent the sensitivity of the callers. There were an aver-
age of 16 somatic variants found in dbSNP per sample
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(range 6–28). LumosVar’s sensitivity varies greatly
between samples (Fig. 4). We expect the power to de-
tect somatic variants to depend on the sample frac-
tion, copy number states, and read depth. Using the
sample fraction and copy number state assigned to
each variant, we simulated somatic variants, and de-
termined proportion of simulated somatic variants
that would be called somatic by our model (Fig. 5).
These simulations are able to predict very accurately
the proportion of somatic variants that we are able to
detect, which indicates that the samples with poor
sensitivity have copy number states and sample fractions
that are not conducive to detecting somatic variants by al-
lele frequency. As we would expect the sensitivity to de-
tect somatic variants increases with coverage (Fig. 4). Also
consistent with expectations, we see that the detection
sensitivity is best at intermediate tumor content, where
the somatic variants would generally have the biggest
Fig. 4 Comparison of Calls of True Somatic Variants and True Values of Varian
(bottom bar in pair) compared to filtering approach (top bar in pair) in calling
the number of true somatic variants falsely called germline heterozygotes or
on quality or not detected as variants, and the blue represents true positive s
(mean TPR 87%, range 78%–96%) compared to the tumor only caller (mean T
somatic calls by the LumosVar (bottom bar in pair) compared to the filtering
(red), germline heterozygous database variants (pink), homozygous (grey) or t
precision (mean PPV 75%, range 56%–89%) compared to the filtering approac
comparison for eight of the nine evaluation samples. The middle of panels sh
ninth evaluation sample (GBMEA1), while the bottom panel shows a down-sa
difference in expected allele frequency from the germline
variants (Fig. 4). We also find that we can adjust the caller
threshold to tune the tradeoff between sensitivity and pre-
cision (Additional file 11: Figure S7).

Somatic variant detection precision
All of the private germline variants are called as false
positives in the filtering approach. Because the number
of private germline variants varies by ancestry, the posi-
tive predictive value of the filtering approach also
depends on ancestry. For the samples of European
American ancestry, the positive predictive value of the
filtering approach ranges from 35 to 62%, while the sam-
ples of Hispanic, African American, or African ancestry
the positive predictive value of the filtering approach
ranges from 20 to 40%. LumosVar is able to correctly
classify most of the private germline variants, and has
much better positive predictive (range 67–91%). While
ts Called Somatic. The graphs on the left shows the calls of LumosVar
true somatic variants. The size of the yellow portions of the bars indicate

homozygous, the grey represents true somatic variants that were filtered
omatic calls. We can see that the filtering approach has better sensitivity
PR 52%, range 27%–62%). The graphs on the right shows the number of
approach (top bar in pair) that are truly germline private heterozygous
ruly somatic (blue). We can see that the tumor only caller has better
h (mean PPV 35%, range 19%–55%). The top pair of panels shows the
ows the comparison for an in-silico dilution series preformed using the
mpling experiment on the same sample



Fig. 5 Simulations were used to predict the power to detect each true somatic variant assuming the sample fraction and copy number were
correctly called. For each clone and each sample, the true positive rate is plotted against the power predicted from the simulations. The size of
the bubble is proportional to the number of true positive variants in each clone, the color the points represents the sample fraction of the clone,
and the number indicates the sample number. As expected, the highest sample fraction clone has the worse predicted and observed sensitivity.
The graph on the left includes all of the true somatic variants, and the graph on the right only includes those that pass the quality filters. We can
see that the predicted power correlates well with the measured sensitivity, particularly when the low quality variants are excluded
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there still are some false positive germline variants,
many are found in dbSNP (Fig. 3). Combining the filtering
approach with the tumor only caller could further im-
prove the positive predictive value.

Discussion
Private germline variants are difficult to distinguish from
somatic variants when a constitutional sample from the
same individual is not available. These variants are not
present in polymorphism databases, so they may not be
easily filtered out. Of critical importance, our results
show that the number of private variants is dependent
on ancestry. Underlying these differences are under-
sampling of some populations within databases along
with population-specific characteristics, such as admix-
ture or that have recently undergone rapid expansions.
There are often logistical reasons why only a tissue

sample may be available, but the tumor tissue is often a
mixture of tumor and surrounding stromal tissue. We
demonstrated that a model leveraging deep sequencing
to measure differences in allele frequencies between
somatic and germline variants can be utilized to call
somatic mutations with greater specificity than using
population variant frequencies alone. We find that our
allele frequency based strategy can reduce by 2/3rds the
number of false positives. However, the sensitivity of the
allele frequency strategy is highly dependent on the
tumor content and the copy number alteration profile of
the sample, as well as the sequencing depth. Deep sequen-
cing is important for these models. A minimum sequen-
cing depth of 200-400X is needed with even higher depth
required for samples with high tumor content. We believe
that the Bayesian calling strategy described here, along
with appropriate sample collection and sequencing depth
will enable the more accurate detection of somatic vari-
ants when the germline samples are not available.
The intuitive question moves to what is the accuracy

of tumor only sequencing. It turns out, accuracy is not
the most informative statistical tool since one is assured
99% + accuracy due to the millions of true negatives –
even if one reports zero variants in a hypermutated sam-
ple. Positive predictive value is a natural tool, but it
brings forth a different problem. In the case of tumor
only sequencing, the positive predictive value for vari-
ants called somatic will depend on the number of true
mutations. The number of mutations or mutational bur-
den varies by cancer type. Hypermutated phenotypes
often seen in melanomas, bladder, and lung cancer can
be 100-times higher than the mutational burden scene
in lymphomas. Recent data shows the importance of
mutational burden as it correlates to the response to im-
mune checkpoint blockade therapies [35]. Given the de-
pendence of mutational burden on cancer type and the
relationship between tumor only false positives and an-
cestry, a more complex picture appears. In some cases,
for some ancestries and some cancers can stack in favor
of a low false discovery rate. For example, cutaneous
melanomas have a higher a mutational burden and are
more frequently found in individuals of European ances-
try. However, acral melanomas have a low mutational bur-
den and are much more frequent found in individuals of
non-European decent (as compared to cutaneous). In this
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example, a melanoma of a person with non-European de-
cent would show a very low positive predictive value and a
European-American would have a higher positive pre-
dictive value.
While the goal of the present study was to evaluate

the benefit and limitations of leveraging allele frequen-
cies to distinguish somatic and germline variants in un-
matched tumor samples, in the process we have
developed a tool that we have made available to the re-
search community. We have clearly demonstrated that
LumosVar has improved positive predictive value in
calling somatic variants compared to database filtering,
which is the most commonly used approach with un-
matched tumor samples. The sensitivity of LumosVar is
clearly too low for us to advocate its use in a clinical set-
ting. While future work could make some improvements
in sensitivity (such as through optimizing variant quality
filtering), we believe that there are inherent limitations
to using allelic fractions to distinguish somatic and
germline variants that are clearly demonstrated by our
simulations. When high sensitivity and specificity are re-
quired in a clinical setting, comparative analysis with a
matched germline sample remains the ideal choice.
When analyzing archival samples in a research setting,
we believe LumosVar would be of great utility.
In addition to calling somatic and germline variants,

LumosVar also calls allele specific copy number and as-
signs both mutations and copy number alterations to
clonal sample fractions. There are number of other tools
that call allele specific copy number such as exomeCNV
[36] and sequenza [37], but these require a tumor/
normal pair and do not identify subclones. There are
also a number of tools that detect subclonal popula-
tions from mutations such as pyClone [38], or from
copy number such as Theta [39]. A thorough com-
parison of lumosVar to these other approaches is be-
yond the scope of this work, but future work will
focus on validating and benchmarking the copy num-
ber and clonality functions of LumosVar.
Overall, our results provide insight into how experi-

mental design and sample characteristics can have a
large impact on the sensitivity of the allele frequency
based tumor only somatic variant detection. Moderate
tumor content is optimal and could be achieved through
strategic sectioning of FFPE blocks. High sequencing
depth is also critical to sensitivity, and as the cost of se-
quencing continues to decline, high depth sequencing is
becoming more common practice. The researcher can-
not control the copy number alterations of a tumor, but
can be aware that cancer types that stray farther from
diploid will be less amenable to this approach. The copy
number model assumes that only one type of copy num-
ber event may occur in a given segment, which may
sometimes be violated, particularly in cancer types with
highly unstable genomes. It is possible that the inability
of our model to completely capture the complexity of
the triple negative breast cancer copy number profiles in
our evaluation dataset may have contributed to some of
our variant misclassification. However, our impression
from visual inspection of misclassified variants due to in-
correct copy number calls is due to uncertainty in the
placement of segmentation boundaries rather than in-
correct assignment of a copy number state within a seg-
ment. Since different copy number alterations have
tumor content where the somatic and germline variants
are most difficult to distinguish, it could be valuable to
sequence different sections of the same tumor that may
have different tumor content. We intended to extend
our model to leverage multiple samples from the same
patient.

Conclusions
The number of germline false positives detected in tumor
only sequencing is dependent on the individual’s ancestry.
Our Bayesian framework, which integrates modeling copy
number and clonality, is able to greatly reduce the number
of germline false positives. Sensitivity of our approach
depends on tumor purity, coverage and copy number alter-
ations. With appropriate experimental design, our approach
has the potential to be extremely useful for somatic variant
calling when matched normal tissue is not available, par-
ticularly in individuals of non-European ancestry.

Availability and requirements
LumosVar requires Perl, Samtools, htslib, and MATLAB
runtime. The main inputs are bam files, which may be
generated by BWA. LumosVar is available for download
at https://github.com/tgen/LumosVar.

Additional files

Additional file 1: Figure S8. Performance by Variant Type. The graphs
on the left shows the calls of LumosVar (bottom bar in pair) compared to
filtering approach (top bar in pair) in calling true somatic variants. The size
of the yellow portions of the bars indicate the number of true somatic
variants falsely called germline heterozygotes or homozygous, the grey
represents true somatic variants that were filtered on quality or not
detected as variants, and the blue represents true positive somatic calls. The
graphs on the right shows the number of somatic calls by the LumosVar
(bottom bar in pair) compared to the filtering approach (top bar in pair)
that are truly germline private heterozygous (red), germline heterozygous
database variants (pink), homozygous (grey) or truly somatic (blue). We can
see that proportion of false positives in the filtering approach is much
higher in non-coding variants than other variant types. (PNG 47 kb)

Additional file 2: Table S1. Definition of True Variants. Describes the
criteria for counting a variant as a true variant. Germline variants were
called by haplotype caller, samtools, and freebayes. Somatic variants were
called by Mutect, Seurat, and Strelka. (DOCX 15 kb)

Additional file 3: Figure S1. Somatic Variant Calling Workflow. Illustrates
a detailed workflow of the somatic variant calling process. The steps from
“Transpose to pileup” and below are performed by the lumosVar software.
(PNG 151 kb)
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dx.doi.org/10.1186/s12920-017-0296-8
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Additional file 4: Table S2. Filtering Metrics. The criteria used to initially
classify a variant in the training set for the quadratic discriminant model.
(DOCX 14 kb)

Additional file 5: Table S3. One thousand Genomes Population Codes.
Abbreviations used to describe the populations from the 1000 Genomes
Project. (DOCX 17 kb)

Additional file 6: Figure S3. Mapping coverage as a function of variant
calls. (PNG 38 kb)

Additional file 7: Figure S2. Variant Quality Filtering By Sample. Shows
the number of variants of each type, in each quality filtering category.
Each graph represents a variant type, each bar represents a sample, and
the color of the bar represents the number of variants in each quality
category. High quality positions have a PT > 0.99. Low quality positions
have a PT < 0.99 but PV > 0.99. Artifacts have a PV < 0.99 and non
variants are not considered by the tumor only caller (NaN). (PNG 49 kb)

Additional file 8: Figure S4. Variant Quality Filtering Across Dilutions.
Shows the number of variants of each type, in each quality filtering
category. Each graph represents a variant type, each bar represents a
dilution, and the color of the bar represents the number of variants in
each quality category. High quality positions have a PT > 0.99. Low quality
positions have a PT < 0.99 but PV > 0.99. Artifacts have a PV < 0.99 and non
variants are not considered by the tumor only caller (NaN). (PNG 43 kb)

Additional file 9: Figure S5. Copy Number and Sample Fraction Across
Dilutions. The copy number (left), minor allele copy number (center) and
sample fraction of the copy number events (right) are plotted as
heatmaps. (PNG 35 kb)

Additional file 10: Figure S6. Copy Number of and Sample Fractions
Across Sample Set. The copy number (left), minor allele copy number
(center) and sample fraction of the copy number events (right) are
plotted as heatmaps. (PNG 68 kb)

Additional file 11: Figure S7. Effect of Threshold on Sensitivity and
Precision. The true positive rate (left) or positive predictive value (right) is
plotted against the pSomatic threshold. Each line represents different mean
target coverage (top) or dilution (bottom). Only high trust true somatic or
private germline variants are included in this graph. As we would expect, the
sensitivity decreases with the threshold, but the positive predictive value
increases. We also find that higher coverage results in better sensitivity, but
lower positive predictive value. At higher coverage, the threshold may be
increased to improve the positive predictive value with less loss sensitivity.
(PNG 185 kb)
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