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Abstract

Background: Malignant tumors are typically caused by a conglomeration of genomic aberrations—including point
mutations, small insertions, small deletions, and large copy-number variations. In some cases, specific chemotherapies
and targeted drug treatments are effective against tumors that harbor certain genomic aberrations. However, predictive
aberrations (biomarkers) have not been identified for many tumor types and treatments. One way to address this
problem is to examine the downstream, transcriptional effects of genomic aberrations and to identify characteristic
patterns. Even though two tumors harbor different genomic aberrations, the transcriptional effects of those aberrations
may be similar. These patterns could be used to inform treatment choices.

Methods: We used data from 9300 tumors across 25 cancer types from The Cancer Genome Atlas. We used supervised
machine learning to evaluate our ability to distinguish between tumors that had mutually exclusive genomic aberrations
in specific genes. An ability to accurately distinguish between tumors with aberrations in these genes suggested that the
genes have a relatively different downstream effect on transcription, and vice versa. We compared these findings against
prior knowledge about signaling networks and drug responses.

Results: Our analysis recapitulates known relationships in cancer pathways and identifies gene pairs known to predict
responses to the same treatments. For example, in lung adenocarcinomas, gene-expression profiles from tumors with
somatic aberrations in EGFR or MET were negatively correlated with each other, in line with prior knowledge that MET
amplification causes resistance to EGFR inhibition. In breast carcinomas, we observed high similarity between PTEN and
PIK3CA, which play complementary roles in regulating cellular proliferation. In a pan-cancer analysis, we found that
genomic aberrations in BRAF and VHL exhibit downstream effects that are clearly distinct from other genes.

Conclusion: We show that transcriptional data offer promise as a way to group genomic aberrations according to their
downstream effects, and these groupings recapitulate known relationships. Our approach shows potential to help
pharmacologists and clinical trialists narrow the search space for candidate gene/drug associations, including
for rare mutations, and for identifying potential drug-repurposing opportunities.
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Background
Typically, a single tumor contains anywhere from tens
to millions of genomic aberrations—including point mu-
tations, small insertions, small deletions, and large copy
number variations—that differ from the patient’s normal
cells [1–4]. Knowledge of these aberrations may be use-
ful in guiding therapeutic decisions. In some cases, a
genomic aberration is the target of an existing therapy
and thus may indicate that the therapy is a good match
for that patient. For example, Trastuzumab is a targeted
therapy for HER2-amplified breast cancers [5]. In other
cases, a genomic aberration may be a biomarker for an
existing therapy, even though the therapy was not expli-
citly designed to target that aberration [6]. Many such
relationships have been identified for combinations of
genomic aberration and therapy [7]. However, in many
cases, tumors contain no therapeutic biomarker. Fur-
thermore, few gene/drug associations have been made
for the “long tail” of genomic aberrations that occur in-
frequently at the population level [8]. Although it may
be economically infeasible to develop targeted therapies
for every rare mutation, we may be able to repurpose
existing cancer treatments by identifying similarities in
tumor biology between tumors that harbor rare and
common aberrations.
By disrupting signaling cascades—or pathways—within

tumor cells, genomic aberrations can cause the tumor to
grow, divide, or dedifferentiate in an uncontrolled man-
ner [9]. Genomic aberrations within tumors are highly
variable across cancer patients—each tumor carries a
unique panoply of genomic aberrations. However, a
much smaller number of signaling cascades is affected.
Even though different genes are mutated in two different
tumors, these mutations may affect common signaling
cascades (e.g., Ras ➔ Raf ➔ MEK ➔ ERK) [10]. We may
be able to better understand the effects of genomic aber-
rations by considering such downstream effects.
Although it is possible to place genomic aberrations in

the context of biological pathways, it may be difficult to
decipher whether two aberrations have a similar effect
on tumor biology, even though they occur within the
same signaling cascade. This observation may be espe-
cially true for rare mutations, because little is known
about the roles they play in tumorigenesis or therapeutic
responses, and samples sizes are small. An alternative
approach for understanding the effects of these muta-
tions and their potential as biomarkers is to evaluate the
transcriptional effects of the mutations. Using existing,
high-throughput technologies (e.g., microarrays and
RNA-Sequencing), it is possible to quantify gene-
expression levels across the entire transcriptome for a
modest cost. Two tumors may have similar gene-
expression profiles, even though they have no genomic
aberrations in common, ostensibly because the aberrations

in either tumor have led to similar downstream effects.
Therefore, the tumors may respond similarly to drug
treatments. When this approach is applied to many
tumors, it may be possible to identify transcriptional pat-
terns that can be used as biomarkers of treatment
response, independent of the genomic aberrations that
occur within these tumors.
We evaluated this idea using publicly available data

from The Cancer Genome Atlas (TCGA). We acquired
data representing mutations (SNVs, insertions, or dele-
tions), copy-number variations (large amplifications or
deletions), and transcription for 9300 tumors across 25
cancer types available in TCGA. We identified tumors
that carried mutations in frequently mutated genes (e.g.,
KRAS, EGFR, and ERBB2) and in genes that are mutated
relatively rarely. We made the simplifying assumption
that mutations at different genomic loci within a
given gene exert a similar effect on tumor biology.
We also assumed that mutations in individual genes
have a characteristic effect on tumor transcription,
despite the presence of additional mutations within
each of these tumors.
Initially focusing on lung adenocarcinomas and then

extending our analysis to other tumor types, we identi-
fied relatively common mutations and filtered the data
to include only tumors where these mutations occurred
in a mutually exclusive manner—harboring only one of
the mutations of interest. Having classified the tumors
by mutation status, we used a supervised, machine-
learning algorithm to predict mutation status based on
transcriptional patterns observed in the tumors. In many
cases, the transcriptional patterns were highly predictive
of mutation status, thus indicating that individual gen-
omic aberrations influence transcription in distinct ways.
Finally, using lower-frequency genes that had been ex-
cluded from the initial analysis, we identified genes that,
when mutated, resulted in transcriptional patterns that
were similar to some of the genes from our initial set. In
several cases, these similarities coincided with prior
knowledge about cancer pathways as well as with known
therapeutic biomarkers.
Our findings show promise as a way to identify pairs

of genes that, when mutated, may serve as biomarkers
for the same treatment. These observations promise to
be useful in guiding drug-repurposing efforts.

Methods
Somatic mutation data
In July 2016, we downloaded all available TCGA somatic
mutation data via the National Cancer Institute’s
Genomic Data Commons [11]. These data had been gen-
erated using high-throughput, exome-sequencing tech-
nologies. Using the MuTect tool [12], these data had
been compared against germline variation using human
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reference genome GRCh38 to make somatic calls. Subse-
quently, the variants had been annotated with the
Variant Effect Predictor (VEP) tool [13] to record popu-
lation frequencies and to predict effects of the mutations
on gene function. We used these annotations to filter
the somatic variant data. We excluded variants that did
not pass MuTect’s quality-control criteria or that had a
minor allele frequency greater than 0.01 in the ExAC
database. Any mutation predicted by VEP to have a
“LOW” or “MODIFIER” impact on protein function was
excluded. We retained variants that had been predicted
by SIFT [14] to be “deleterious” or “deleterious (low
confidence)” or by Polyphen-2 [15] to be “probably dam-
aging” or “possibly damaging.” Although some of these
variants were likely false positives, we preferred to err
on the side of inclusion rather than exclusion, to
minimize the chances of false negatives. In addition, we
retained variants that contained no predictions for SIFT
or Polyphen-2.

Copy-number variation data
We downloaded copy-number variation (CNV) data that
had been preprocessed and stored in the University of
California Santa Cruz Xena database [16]. These data
had been produced using whole-genome microarrays.
The CNVs had been called using the GISTIC2.0 algo-
rithm [17] and summarized to gene-level values. In
addition, the gene-level values were thresholded to esti-
mate whether each sample carried a homozygous dele-
tion, a single-copy deletion, a low-level amplification, or
a high-level amplification. We considered tumors with
either a homozygous deletion or a high-level amplifi-
cation to be “mutated.” We considered the remaining
samples either to have been in a normal state or to
have exerted only a modest effect, if any, on tumor
transcription.
Finally, we aggregated the somatic mutation and

CNV data to identify tumor samples that carried at
least one genomic aberration in a given gene. We
merged the somatic-mutation and CNV data to a sin-
gle value per gene and tumor sample, using Boolean
values to indicate whether the tumor harbored an ab-
erration in a given gene.

RNA-sequencing data
We downloaded gene-level, RNA-Sequencing data that
had been preprocessed and aligned using the Rsubread
package [18, 19] and had been summarized using the
transcripts per million (TPM) method. For tumor
samples that had been sequenced multiple times, we av-
eraged expression values across these samples. We log2-
transformed the RNA-Sequencing values to mitigate the
effects of extremely high expression values and to enable
easier visualization.

Disease-drug-gene mapping data
We downloaded disease-drug-gene mappings that had
been curated via a crowdsourcing effort and had been
made available via the CIViC database [7]. We used the
October 1, 2016 version of this database and focused
solely on evidence where the relationship between gene
and drug was “Supported.”

Machine-learning analysis
Our analysis focused exclusively on TCGA samples for
which data were available for all three molecular types
(somatic mutation, CNV, and RNA-Sequencing). To
reduce noise and computational complexity, we limited
the data to 325 genes considered to play a role in canon-
ical cancer pathways, according to the Pathways in
Cancer diagram in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [20].
Using the genome-aberration data, we categorized

each tumor according to cancer type and whether an ab-
erration had been identified in a given gene. We gener-
ated a “training set” by identifying samples that had at
least one mutation in one of the frequently mutated
genes (frequency threshold varied; see Results). We then
excluded tumor samples that had a mutation in more
than one of these genes. We used the resulting data set
for a classification analysis, using genes as class labels.
The remaining samples were set aside as a “test set.” As
a way to assess our therapeutic predictions, we limited
genes in the test set to those that were described in the
CIViC database.
Using the training set, we performed 5-fold cross val-

idation to evaluate our ability to predict mutation status
for each gene. Later, we trained a model on the entire
training set and made predictions for the test set. In
both cases, we used the Random Forests classification
algorithm [21] with default parameters, other than that
we requested probabilistic predictions.
Because mutation frequencies varied considerably

across genes, we subsampled the data. For example, if
the minimum number of mutated samples across all se-
lected genes were 15, we would randomly select 15 sam-
ples for each gene. We repeated this process 10 times
and averaged the results across the various subsampled
results. This approach ensured that class imbalance
would not bias our results.

Analysis pipeline
We wrote scripts in the Python programming language
[22] to parse, filter, and summarize the input data. To
enable easier analyses in subsequent steps, we restruc-
tured the data into “tidy data” format [23]. In performing
the analysis steps and producing graphics, we used the R
programming language [24]. These steps were aided by
the following packages: readr, dplyr, magrittr, ggplot2,
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RColorBrewer, randomForest, mlr, coin, and AUC [25–33].
The entire pipeline executes in 5–15 min on a laptop
computer with 4 cores and 16 GB RAM. We placed all
analysis code and the tidy data in an open-access reposi-
tory at https://osf.io/ndjkg.
To evaluate differences in expression for individual

genes, we calculated p-values using Student’s t-test and
then performed a Bonferroni correction to account for
all possible gene pairs (n = 52,650) in our data.

Results
We sought to identify genes whose transcriptional pro-
files were similar to each other when mutated in tumors.
From TCGA, we obtained somatic-mutation data for
10,391 tumor samples. The filtering steps (see Methods)
reduced the number of somatic mutations by 93.5%,
mostly due to the removal of synonymous variants and
common variants. Within our cancer-related genes of
interest (n = 325), we observed a total of 45,950 somatic
mutations (5.57 per sample). We observed 52,012 high-
level amplifications (8.63 per sample) and 19,037 large-
scale, homozygous deletions (4.13 per sample) within
these genes. After we removed samples that lacked data
for at least one type of aberration, data for 9300 patients
across 25 distinct cancer types remained.
As might be expected, strong, tissue-specific patterns

were apparent in the gene-expression data (Fig. 1a). In
particular, expression levels for Acute Myeloid Leukemia
(LAML) and Lower Grade Glioma (LGG) were clearly
distinct from the other cancer types, likely in part
because these cancers affect myeloid blood cells and

glioma cells, respectively, whereas most other cancer
types affect epithelial cells. Although in some contexts,
these tissue-specific differences may provide valuable in-
sights about how tumor biology differs among cell types,
our preliminary analyses revealed that these differences
caused a strongly confounding effect that would make it
difficult to derive pan-cancer insights. Therefore, to cor-
rect for these effects, we applied the ComBat algorithm
[34], using cancer type as batch. This adjustment
reduced cancer-type effects (Fig. 1b). We used these cor-
rected data in our analyses whenever we aggregated data
across multiple cancer types.

Single-gene analysis
For the first analysis phase, we examined the relation-
ship between genomic aberrations and expression levels
of individual genes. In lung adenocarcinomas (n = 515),
the most frequently mutated genes were TP53 (n = 233),
CDKN2A (n = 109), KRAS (n = 95), CDKN2B (n = 91),
and EGFR (n = 82). For decades, mutations in KRAS and
EGFR have been recognized to play a critical role in lung
adenocarcinoma and have been used to classify these
tumors into subtypes based on mutation status [35].
Codons 12, 13, or 61 are typically mutated in KRAS
[36]; similar mutations affect homologous genes HRAS
and NRAS, though infrequently for lung adenocarcin-
omas. EGFR is often affected by point mutations and
amplifications. Due to its role as a cell-surface receptor,
EGFR is the target of antibody-based therapies, includ-
ing Gefitinib [37], and vaccine-based immunotherapies
[38]. We examined the relationship between mutations

a b

Fig. 1 Principal component plots illustrating the relationship between cancer type and gene-expression levels. Values for the first two principal
components are shown. Each point represents data across all genes for a given tumor sample. The colors and legend indicate the cancer type of
each tumor sample. a Distinct, tissue-specific patterns were present in the original data. b After a regression-based adjustment for cell-type effects,
these patterns were no longer prominent in the data. Cancer type abbreviations are listed on the TCGA web site
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and expression levels of these genes. Tumors that
harbored an EGFR aberration—a mutation or a copy-
number variation—expressed EGFR at significantly
higher levels than tumors that harbored a KRAS aberra-
tion but no EGFR aberration (Fig. 2a). In addition,
tumors with a KRAS aberration expressed KRAS at sig-
nificantly higher levels than samples with an EGFR aber-
ration but no KRAS aberration (Fig. 2b). Although
genomic aberrations often do not correlate strongly with
gene-expression levels of the affected gene, we observed
strong patterns for these genes. EGFR interacts with
KRAS indirectly, via the Ras-Raf-MEK-ERK signaling
cascade; thus EGFR aberrations may have led to sup-
pression of KRAS activity in some samples. Indeed, mu-
tations in these genes are often mutually exclusive, and
KRAS mutations have been associated with a lack of
sensitivity to EGFR-targeted therapies, such as Gefitinib
and Erlotinib [39]. These observations suggest that, des-
pite some likely overlap, the downstream effects of aber-
rations in these genes are distinct. In contrast, we
examined differences in CDKN2A expression between
samples that harbored either an EGFR or a KRAS aber-
ration. No significant difference in expression was ob-
served (Fig. 2c), as might be expected, given that
CDKN2A is far downstream from these genes. We ob-
served similar patterns after merging data across all 25
cancer types (Fig. 3).

Supervised-learning analysis
Although it is interesting to examine the effects of gen-
omic aberrations on individual genes, most aberrations
cause transcriptional responses across a broad range of
genes expressed throughout tumor cells. To account for

these broad effects, we used a supervised-learning ap-
proach (see Methods). Initially for lung adenocarcin-
omas, we identified genes that were mutated in at least
10 tumor samples. Then we excluded tumor samples
that had a mutation in more than one of these genes.
Finally, we retained genes that still had mutations in at
least 10 tumor samples, resulting in a set of tumors with
mutually exclusive mutations. We used cross validation
to evaluate the ability of the Random Forests classifica-
tion algorithm to predict gene-mutation status based on
the gene-expression levels. We interpreted relatively
high accuracy levels to mean that the downstream, tran-
scriptional effects of mutations in these genes were dis-
tinct from each other. Figure 4 illustrates predictions for
the five genes selected. Across these genes, the average
classification accuracy was 0.42—whereas 0.20 would be
expected by chance in this scenario. For each gene, we
calculated the area under the receiver operating charac-
teristic curve (AUROC), an alternative measure of classi-
fication accuracy that accounts for the probabilistic
nature of predictions. The highest AUROC was 0.81 for
EGFR (0.50 expected by chance). The lowest AUROC
was 0.58 for KRAS. These findings suggest that EGFR
mutations have a particularly distinct effect upon tran-
scription levels in lung adenocarcinomas. To get a sense
for similarities and differences among genes, we calcu-
lated the Spearman correlation coefficient for probabilis-
tic predictions between each pair of genes. We observed
no strong positive correlations for lung adenocarcinoma,
providing evidence that the transcriptional effects of mu-
tations in KRAS, EGFR, MET, NTRK1, and PIK3CA are
distinct from each other (Fig. 5). We saw a modest nega-
tive correlation (rho = −0.18) between EGFR and

Fig. 2 Associations between genomic aberration status and expression levels of individual genes in lung adenocarcinoma samples. a EGFR expression
levels for tumors with an aberration in EGFR, KRAS, or neither of these genes. b KRAS expression levels for the same tumors. c CDKN2A expression
levels for the same tumors. Expression levels are log-transformed, transcripts-per-million values. P-values were calculated using Welch’s t-test and
adjusted using a Bonferroni correction
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KRAS—consistent with our single-gene analysis—and a
strong negative correlation (rho = −0.47) between EGFR
and MET. Both EGFR and MET are from the receptor
tyrosine kinase family, encode for cell-membrane recep-
tors, and act as oncogenes when mutated. Although
crosstalk mediated by microRNAs may occur between
these proteins [40], the negative correlation we observed
may indicate that these proteins cause very different
downstream effects and thus should be addressed differ-
ently from a therapeutic standpoint. Indeed, it has been
shown that MET amplification causes resistance to
Gefinitib, an EGFR inhibitor [41].

We applied the same methodology to breast tumors.
Seven genes passed the threshold for inclusion in the
training set, and the average accuracy was again 0.42
(0.14 expected by chance). The genes with the highest
individual AUROC were BIRC5 and TP53. Both play a
role in tumor cells’ ability to evade apoptosis, but our re-
sults suggest that mutations in these genes operate via
distinct mechanisms. The strongest positive correlation
(rho = 0.49; see Additional file 1: Fig. S1) was between
PTEN and PIK3CA, two genes known to play important
roles in breast tumorigenesis (Fig. 6). PIK3CA is an onco-
gene, activated by receptor tyrosine kinases and plays an

Fig. 4 Random Forest predictions, trained on gene-expression data, of gene-mutation status for lung adenocarcinoma. We identified genes that
had been mutated in at least ten tumor samples and that contained no mutation in other genes that had been mutated in at least ten samples.
Then using cross validation, we evaluated how well the Random Forest classification algorithm could identify which gene was mutated in a given
sample. The algorithm produced a probabilistic prediction for each gene (class), and we evaluated these predictions using the area under the
receiver operating characteristic curve (AUROC). The x-axis labels indicate AUROC values for each gene. Relatively high AUROC values indicate that
gene-expression levels are highly predictive of gene-mutation status and thus suggest that mutations in these genes exert a characteristic effect
on gene-expression levels

Fig. 3 Associations between genomic aberration status and expression levels of individual genes across 25 cancer types. a EGFR expression levels
for tumors with either an aberration in EGFR, KRAS, or neither of these genes. b KRAS expression levels for the same tumors. c CDKN2A expression
levels for the same tumors. Expression levels are log-transformed, transcripts-per-million values. P-values were calculated using Welch’s t-test
and adjusted using a Bonferroni correction
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important role in cellular proliferation via the PKB/Akt
signaling cascade. PTEN tightly regulates PIK3CA; thus,
PKB/Akt activity is expected to increase when PTEN loss
(via mutation or deletion) has occurred [42]. Our results
coincide with the expectation that the downstream effects
of genomic aberrations in these genes are similar. Indeed,
aberrations in these genes have been shown to correlate
similarly with prognostic factors [43].
We repeated this process for other cancer types—blad-

der carcinoma, head/neck squamous carcinoma, ovarian
cystadenocarcinoma, metastatic skin melanoma, stomach
adenocarcinoma—that had enough data; we required that
at least three genes be mutated at least ten times in a mu-
tually exclusive manner. Additional files 2, 3, 4, 5, 6, 7, 8
and 9 indicate correlation coefficients, nominal p-values,
and Bonferroni-adjusted p-values for each pairwise

comparison. The strongest negative correlation (rho =
0.83; see Additional file 1: Fig. S2) was between FGFR1
and FGFR3 in bladder carcinoma. Experimental work has
demonstrated that both genes are activated via mutations
and the genes play distinct roles in regulating bladder-
tumor growth [44]. The genes that showed the most sig-
nificant differences in expression between FGFR1- and
FGFR3-mutated tumors were SMAD3, FGFR3, FN1,
LAMA1, and FGFR1 (Additional file 1: Figs. S3-S7). In
addition to growth signaling, these genes play roles in
regulating extracellular matrix adhesion and intracellular
signaling.
The correlations we observed between pairs of mu-

tated genes were often tissue specific; for example, a
strong relationship between PTEN and PIK3CA was ob-
served in breast carcinomas but not in head/neck

Fig. 5 Heatmap showing Spearman correlation coefficients between gene pairs for lung adenocarcinomas. The data values and colors represent
correlation coefficients between probabilistic predictions for pairs of genes that exhibited mutually exclusive mutations. Warmer colors represent
higher levels of correlation, while cooler colors represent lower levels of correlation

Fig. 6 Heatmap showing Spearman correlation coefficients between gene pairs for breast carcinomas. The data values and colors represent correlation
coefficients between probabilistic predictions for pairs of genes that exhibited mutually exclusive mutations. Warmer colors represent higher levels
of correlation, while cooler colors represent lower levels of correlation
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squamous carcinomas, stomach adenocarcinomas, or
ovarian cystadenocarcinomas.
Next we extended the same methodology to all 25

cancer types in a pan-cancer approach. We increased
the threshold to 50 for the minimum number of mutu-
ally exclusive mutations per gene. Nine genes passed this
threshold (see Fig. 7). Perhaps due to the larger sample
sizes per gene, accuracy increased to 0.50 (0.11 expected
by chance). The AUROC was extremely high for BRAF
(0.97) and VHL (0.93), suggesting that the transcrip-
tional effects of aberrations in these genes are particu-
larly distinct. However, mutation status was predicted
accurately for all nine genes, with a minimum AUROC
of 0.73 (APC gene). Several interesting relationships
between genes were apparent, including a strong correl-
ation (rho = 0.44) between TP53 and RB1, which play
critical roles in regulation of the cell cycle and DNA re-
pair [45, 46]. FGFR1 was strongly correlated (0.42) with
PIK3CA, likely due to FGFR1’s role as an upstream acti-
vator of PIK3CA. Perhaps surprisingly, FGFR1 predic-
tions were also correlated strongly with RB1 predictions;
however, it has been shown recently that CDK6, a key
regulator of RB1, is regulated by MIR9, a microRNA that
also regulates FGFR1 activity [47].
For the last stage of our analysis, we trained the

Random Forests classification algorithm on the full train-
ing set and made predictions for tumor samples in the test
set. We interpreted that probabilistic predictions coincid-
ing with the actual mutation status of genes in the test set
would indicate that the expression profiles of genes in the
training set were similar to the expression profiles of genes
from the test set. We hoped this analysis would provide
insights about genes that are mutated rarely. Using a

minimum threshold of five mutated samples (test set) and
focusing initially on breast cancer, we found that MMP2
predictions were strongly associated with predictions for
PIK3CA (0.47), PTEN (0.49), and AKT1 (0.28), which op-
erate via the same pathway. Like MMP2, PIK3CA and
AKT1 play important roles in cancer cell migration and
metastasis [48–50].
We also observed a strong positive correlation (0.33)

between TP53 and AKT2 and a modest correlation be-
tween ERBB2 and AKT2 (0.20). AKT2 mediates TP53
activity via MDM2 [51]. Trastuzumab was originally de-
veloped as a targeted therapy for ERBB2 (Her2) amplifi-
cation; more recently, aberrant AKT2 expression has
been associated with longer time to progression and
overall patient survival in Her2-positive patients [52].
We also observed a slightly negative correlation (−0.20)
between AKT1 and AKT2 predictions; although the pro-
teins encoded by these genes operate within the same
signaling cascade, their roles in regulating cell migration
and differentiation are distinct [48].
When we made test-set predictions for all 25 cancer

types, we noted a few modestly positive correlations.
The first was between VHL and MTOR1. VHL inactiva-
tion leads to constitutive activation of HIF-2 and/or
HIF-1. In clear-cell renal carcinomas, the downstream
effects of HIF activation are inhibition of mTor Complex
1 [53]. The second positive correlation was between
NRAS and BRAF. These genes interact directly with
each other and operate via the Ras ➔ Raf ➔ MEK ➔

ERK cascade. Indeed, the CIViC database indicates that
several antibody-based treatments—including Cetuxi-
mab, Selumetinib, and Vemurafenib—target tumors with
mutations in either of these genes.

Fig. 7 Random Forest predictions of gene-mutation status across 25 cancer types. We identified genes that had been mutated in at least 50 tumor
samples and that contained no mutation in other genes that had been mutated in at least 50 samples. Then using cross validation, we evaluated how
well the Random Forest classification algorithm could identify which gene was mutated in a given sample. The algorithm produced a probabilistic
prediction for each gene (class), and we evaluated these predictions using the area under the receiver operating characteristic curve (AUROC).
The x-axis labels indicate AUROC values for each gene. Relatively high AUROC values indicate that gene-expression levels are highly predictive
of gene-mutation status and thus suggest that mutations in these genes exert a characteristic effect on gene-expression levels
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Although we used the ComBat software to correct for
tissue-type effects and used a principal component ana-
lysis to visually verify the effects of this correction
(Fig. 1), we conducted a follow-up evaluation to assess
whether tissue specificity might still have influenced our
results, because, in many cases, mutations occur in a
tissue-specific manner [54]. Initially, we used the Ran-
dom Forest algorithm to predict tumor type based on
the expression data that had not been adjusted using
ComBat. Then we repeated this process using the
ComBat-adjusted data. Using this approach, we could
predict tumor type with >90% accuracy for both versions
of the expression data. Even though ComBat had ad-
justed for tissue specificity, a subtle footprint remained,
which the Random Forest algorithm was able to detect.
In a second follow-up evaluation, we used the Random
Forest algorithm to predict gene-mutation status using
only tumor type (instead of gene-expression data).
Although tumor type predicted mutation status less ac-
curately than the gene-expression data (47% and 50%,
respectively), these results confirm that tumor type is
confounded with mutation status and thus that our pan-
cancer results—and results from other pan-cancer stud-
ies that examine the relationship between genomic and
transcriptomic variation—should be interpreted with
caution. However, it is difficult to distinguish between
correlation and causation; certain tissue environments
(driven by gene expression) may select for somatic vari-
ants in certain genes, and/or certain somatic variants
may strongly influence the tissue specificity of cancer.

Discussion
We have developed a computational approach that uses
publicly available, molecular-profiling data to identify
genes that have similar (or different) effects on gene ex-
pression in human tumors. Our overarching goal was to
develop a methodology that can be used to guide drug-
repurposing efforts and, more generally, to help cancer
researchers make sense of the vast complexity and het-
erogeneity of tumors. Using data from The Cancer
Genome Atlas, we observed relationships that recapitu-
late what was previously known about canonical cancer
pathways and treatment responses. Alternative methods
have primarily evaluated molecular data in a low-
throughput manner, have examined one type of mol-
ecule at a time, or have considered the expression of
individual genes associated with mutations; in contrast,
our method accounts for broad-ranging effects of gen-
omic aberrations on gene expression within cells. Using
a supervised-learning approach, we found that we could
predict mutation status, often with high accuracy. This
provides evidence that many mutations confer a clear
and distinct effect on transcriptional responses within
downstream genes.

To increase interpretability, we made simplifying as-
sumptions and simplified our approach in several ways.
We limited our analysis to genes known to play a role in
cancer, as described in KEGG’s Pathways in Cancer
diagram. We assumed that the effects of genomic aber-
rations are mutually exclusive. Even though this assump-
tion may not hold in every case, it reflects current
approaches that are used to prioritize targeted cancer
therapies. For example, even though it is clearly under-
stood that tumors with mutations in EGFR harbor
many variants in genes other than EGFR, mutations
in EGFR are used as a biomarker for treating lung
adenocarcinomas with therapies such as Gefitinib and
Erlotinib. In addition, evidence suggests that EGFR
and KRAS mutations occur in a mutually exclusive
manner and that tumors with KRAS mutations fail to re-
spond to these drugs [39]. Such findings suggest that
mutations in individual genes can strongly influence
treatment responses, despite a background of other
mutations. To an extent, our goal was to identify
such scenarios.
In addition, we ignored the potential impact of epige-

nomic factors, such as DNA methylation and miRNA
expression, as well as gene fusions. Our approach could
be refined in future studies to use such observations to
indicate whether a given gene is “mutated.” Although
genomic aberrations are often thought to be the main
drivers of tumorigenesis, epigenomic factors often play a
critical role in modulating tumor activity and/or inter-
acting with genomic aberrations. For example, DNA
hypermethylation of promoter regions can cause tran-
scriptional silencing of tumor-suppressor genes; BRCA1
hypermethylation has been shown to alter responses to
platinum-salt therapies [55]. miRNAs can also play im-
portant roles in regulating tumor transcription [56]; in
chronic lymphocytic leukemia, two miRNAs on human
chromosome 13q14 occur frequently [57] and likely play
important roles in regulating tumorigenesis and treat-
ment responses.
We treated all mutations equally within a given gene,

regardless of genomic loci or mutation type; but in many
cases, there may be considerable heterogeneity across
genomic loci and mutation types. As sample sizes in-
crease over time, it will be more feasible to sub-classify
mutations in finer detail.
We focused primarily on the genome- and cancer-

related aspects of this work rather than on algorithmic
aspects. In future work, it would be valuable to compare
(and perhaps combine) multiple algorithms as a way to
optimize our approach. We used the Random Forests
algorithm because it has been shown to deal effectively
with high-throughput transcriptomic data, executes
quickly, and is more amenable to post hoc interpretation
than many other algorithms [58].
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Finally, although we have demonstrated a potential to
learn about the effects of rare variants, our analysis
touched only briefly on such variants. To evaluate the
reliability of our method, we focused on genes that had
been affected by at least a modest number of mutations.
However, we believe this methodology can be applied in
cases where a given mutation has been observed in only
a single tumor, potentially providing insights for “n-of-1”
clinical trials.

Conclusions
We have used supervised-machine learning to integrate
genomic and transcriptomic data across 9300 tumors
and 25 cancer types to aid in deciphering the downstream
effects of genomic aberrations on tumor transcription.
This approach has potential to guide development of
treatment biomarkers and to understand similarities and
differences among genes that play a role in specific types
of cancer and across multiple cancer types. We hope this
approach will be useful to pharmacologists and clinical tri-
alists who seek to identify relationships between genomic
aberrations and treatment responses. In particular, we
hope this methodology will reduce barriers for drug-
repurposing efforts so that existing treatments can be used
on tumors with no current treatment biomarker. We be-
lieve such approaches will reduce the costs of developing
new cancer drugs and increase the number of tumors that
can be treated in a targeted manner.
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