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Abstract

Background: The Cancer Genome Atlas (TCGA) has collected transcriptome, genome and epigenome information
for over 20 cancers from thousands of patients. The availability of these diverse data types makes it necessary to
combine these data to capture the heterogeneity of biological processes and phenotypes and further identify
homogeneous subtypes for cancers such as breast cancer. Many multi-view clustering approaches are proposed to
discover clusters across different data types. The problem is challenging when different data types show poor
agreement of clustering structure.

Results: In this work, we first propose a multi-view clustering approach with consensus (CMC), which tries to find
consensus kernels among views by using Hilbert Schmidt Independence Criterion. To tackle the problem when poor
agreement among views exists, we further propose a multi-view clustering approach with enhanced consensus
(ECMC) to solve this problem by decomposing the kernel information in each view into a consensus part and a
disagreement part. The consensus parts for different views are supposed to be similar, and the disagreement parts
should be independent with the consensus parts. Both the CMC and ECMC models can be solved by alternative
updating with semi-definite programming. Our experiments on both simulation datasets and real-world benchmark
datasets show that ECMC model could achieve higher clustering accuracies than other state-of-art multi-view
clustering approaches. We also apply the ECMC model to integrate mRNA expression, DNA methylation and
microRNA (miRNA) expression data for five cancer data sets, and the survival analysis show that our ECMC model
outperforms other methods when identifying cancer subtypes. By Fisher’s combination test method, we found that
three computed subtypes roughly correspond to three known breast cancer subtypes including luminal B, HER2 and
basal-like subtypes.

Conclusion: Integrating heterogeneous TCGA datasets by our proposed multi-view clustering approach ECMC could
effectively identify cancer subtypes.
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Background
Recent technologies have made it convenient to address
medical and biological questions by using multiple and
diverse genome-scale data sets. For example, The Can-
cer Genome Atlas (TCGA) has made a large-scale efforts
to collect diverse types of genomic information from
thousands of patients for over 20 cancers. To capture
the heterogeneity of biological processes and phenotypes,
integrative computational methods are needed to find the
underlying data structure by combining all data types,
which could help identify cancer subtypes. For exam-
ple, [1] proposes a framework for joint modeling of dis-
crete and continuous variables that arise from integrated
genomic, epigenomic, and transcriptomic profiling which
is applied on distinct integrated tumor subtypes discovery.
In many other application domains, it is also common-
place that a single object can be described by multiple
feature representations or views. For example, a webpage
from the Internet can be represented by its text con-
tents and the hyperlinks to the webpage, and a scientific
publication can be represented by its text contents and
citations. A better clustering result of samples is expected
to be obtained if information from all views is taken into
account. Multi-view clustering aims to combine multi-
ple data information from different views to improve the
clustering performance.

The challenge in multi-view learning is to efficiently rec-
oncile the conflicting information among views. For the
learning task with multiple views, the geometric distri-
butions, similarity measurements and feature scales may
vary a lot across different views. Samples represented in
different views may have its own neighborhoods, density
of distribution, magnitude, or noise process. The dis-
agreement caused by these differences may hamper the
clustering task.

Multi-view approaches can be roughly divided into the
following two families. One is to learn an optimal lin-
ear combination of multiple kernels [2–12]. For example,
optimized kernel k-means is proposed in [3] to find opti-
mal linear combination of multiple kernels and an optimal
cluster assignment matrix together by minimizing a trace
clustering loss. The multiple kernel k-means clustering
[6] is proposed to find the optimal combination coeffi-
cients of kernels by minimizing the clustering loss. Kernel
k-means is then applied to the optimal combination of
kernels. The second line is to determine low-dimensional
projections by minimizing the differences or maximiz-
ing the correlations [13–19]. Other approaches propagate
information from different views to construct graphs or
similarities in a slightly different way. These methods
include Multi-view EM [20], Multi-view spectral clus-
tering [21, 22], Multi-view clustering with unsupervised
feature selection [23, 24], Nonnegative Matrix Factor-
ization [25], pattern fusion [26] and similarity network

fusion [16]. For example, multi-view EM [20] takes the
maximization and expectation in turn for different views,
and the similarity network fusion (SNF) [16] fuses mul-
tiple networks to one network by iteratively updating a
sequence of nonnegative status matrices.

However, all these methods assume that each view has
a relatively large amount of information which favors
the ground truth clustering structure. In other words,
there exists a relatively strong signal of a common clus-
tering structure across views. However, in real-world
datasets, the common clustering structure information
across views might be weak, while the disagreement
among views might be strong. The varying degree of
agreement and disagreement for each view might contam-
inate the underlying common clustering structure. Fur-
thermore, certain views may contain subsets of features
favoring different clustering structure. For example, in the
clustering task for university webpages by text features,
some words such as ‘major’, ‘position’ or ‘homework’ will
lead to a partitioning of webpages into categories such as
‘student’, ‘faculty’ and ‘course’. However, the above cluster-
ing structure might be contaminated by other words (e.g.
‘biology’, ‘cell’, ‘computer science’, ‘code’ etc.), which might
lead to a partitioning of webpages by their department
of affiliation. We take another example of glioblastoma
multiforme (GBM), an aggressive adult brain tumor. The
integrative analyses based on different datasets often lead
to conclusions including common and different parts.
For example, one analysis [27] identified two subtypes
by combining expression and copy-number-variant data,
which does not agree with later findings in [28], which
had identified four subtypes primarily by expression data.
Interestingly, two subtypes found by [28] roughly corre-
spond to the two subtypes identified in the work [29] by
a DNA methylation-based approach, which also found a
subtype related to somatic mutation in IDH1. Though
methylation data was used in [28], the IDH subtype was
not identified because the subtyping analysis was driven
by the expression data.

In this work, we first propose a kernel-based multi-view
clustering method with consensus (CMC), which aims to
reconstruct kernels with a common clustering structure
across views by maximizing the agreement among these
kernels with preserving the similarity among original sam-
ples. The agreement between two kernels is measured
by Hilbert Schmidt Independence Criterion (HSIC). To
tackle the problem when different views show poor agree-
ment, we further propose another multi-view clustering
method with enhanced consensus (ECMC). The main idea
of the ECMC model is to decompose each view into a con-
sensus part and a disagreement part. The consensus parts
for different views are supposed to be similar, and the dis-
agreement parts should be independent with the consen-
sus parts. Both of the two models can be efficiently solved
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by alternative updating with semi-definite programming.
We apply our models to several simulation datasets, a pub-
lication dataset Cora and four Webkb datasets, and the
results show that our ECMC model could achieve higher
clustering accuracies than other state-of-art multi-view
clustering approaches. We also apply the ECMC model
to find cancer subtypes by combining mRNA expression,
DNA methylation and microRNA (miRNA) expression
data for five cancer data sets in TCGA, and the results
show that our ECMC model outperforms other methods.

Methods
Problem statement
Suppose we are given a data set of n samples with v views,
X = {X1, X2, · · · , Xv}, where Xi ∈ Rpi×n(i = 1, 2, ..., v)
is the representation of data in the i-th view, and n is
the number of observations. We assume that each Wi ∈
Rn×n is a kernel computed by Xi for each i. We aim
to do clustering on the n samples with the v multiple
representations.

Hilbert schmidt independence criterion
In this subsection, we introduce a measure of statistical
independence which is called Hilbert-Schmidt Indepen-
dence Criterion (HSIC) [30]. Intuitively, HSIC can be
thought of as a squared correlation coefficient between
two random variables x and z computed in feature spaces
F and G. Let x be a random variable from the domain X
and z be a random variable from the domain Z . Let F and
G be feature spaces on X and Z with associated kernels
k : X × X → R and l : Z × Z → R. If we draw pairs of
samples (x, z) and (x′, z′) from x and z according to a joint
probability distribution p(x,z), then the Hilbert Schmidt
Independence Criterion can be computed in terms of
kernel functions via:

HSIC(p(x,z),F ,G) = Ex,x′,z,z′ [ k(x, x′)l(z, z′)]
+Ex,x′ [ k(x, x′)] Ez,z′ [ l(z, z′)]
−2Ex,z[ Ex′ [ k(x, x′)] Ez′ [ l(z, z′)] ] ,

where E is the expectation operator. The empirical estima-
tor of HSIC for m points X and Z from x and z with p(x,z)
was shown in [30] to be

HSIC((X, Z),F ,G) ∝ tr(KHLH), (1)

where tr is the trace of the products of the matrices, H is
the centering matrix H = I − eeT

m , K and L are the ker-
nel matrices on the two random variables of size m × m.
The larger HSIC, the more likely it is that X and Z are not
independent from each other. HSIC can be considered as
a similarity measurement between two kernels.

Consensus multi-view clustering model (CMC model)
In the multi-view clustering problem, it is often the case
that different views admit some degree of common under-
lying clustering structure of the data. Following a common
idea of multi-view clustering approaches (e.g. [31]), we can
also solve this problem by looking for clustering structures
that are consistent across the views. Differently, our pro-
posed CMC model for multi-view clustering aims to find
new consensus kernels Ki for all the views by encouraging
them to be similar or dependent across all the views. We
also hope that the similarity information among samples
in each view is preserved to some extent in the new ker-
nel. HSIC is used as the similarity measurement between
two kernels. Thus we propose the following CMC model:

max
K1,··· ,Kv

∑

i
tr(WiHKiH) + λ

∑

i�=j
tr(KiHKjH)

s.t. Ki ≥ 0, tr(Ki) = 1 i = 1, · · · , v,
(2)

where H = In − eeT

n is a centering matrix, In is an n × n
identity matrix, and e is an n-dimensional column vec-
tor with all ones. The first term in the objective function
makes sure the new consensus kernels preserve the orig-
inal pairwise similarity information among samples for
each view in the new consensus kernel, while The second
term tries to maximize the agreement of the cluster-
ing information among different views. The semi-definite
constraints of Ki ≥ 0 make sure Kis are kernels, and those
of tr(Ki) = 1 make sure the objective function has upper
bound. Once the reconstructed kernel for each view Ki is
obtained, we could use spectral clustering by using a linear
sum of Ki.

However, the CMC model could not solve the problem
when the common information among views are weak
and disagreement information are strong. In this case, the
ground truth clustering structure information in original
Wi is too weak, and the ground truth consensus kernels Ki
share little information with the original kernel Wi. Thus it
is very difficult to find the common clustering structure by
encouraging to preserve original pairwise similarity infor-
mation in the first term of the objective function. To tackle
this problem, we further propose another kernel-based
multi-view clustering model.

Enhanced consensus multi-view clustering model (ECMC
model)
To overcome the problem of poor agreement among
views, we decompose each new reconstructed kernel Ki
into two parts: a consensus part Ci and a disagreement
part Di. We hope that the consensus parts Cis are sim-
ilar across different views, while the disagreement parts
Dis are far away from the consensus parts Cis. Thus we
propose our enhanced consensus multi-view clustering
model (ECMC) as follows
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max
C1,··· ,Cv ,
D1,··· ,Dv

∑

i
tr(WiH(Ci+Di)H) + α

∑

i�=j
tr(CiHCjH)−β

∑

i, j
tr(CiHDjH)

s.t. Ci, Di ≥ 0, tr(Ci) = 1, tr(Di) = 1, i = 1, · · · , v.

(3)

Different to our CMC model (2), we don’t encourage
the similarity between the original kernel Wi and consen-
sus kernel Ci any more. Alternatively, we encourage the
similarity between Wi and the whole reconstructed kernel
Ki = Ci + Di, which is more reasonable when there’s very
weak common clustering information in Wi. The second
term in the objective function maximizes the similarity
among consensus kernels , and the third term aims to
make sure the consensus parts Cis are independent with
the disagreement parts Dis as much as possible. The con-
straints are similar with the CMC model (2). By the ECMC
model, we expect to throw away the disagreement infor-
mation Di from each view and keep the the consensus
kernel Ci for the clustering task later on. The linear sum of
consensus kernels Cis is finally used in spectral clustering
for clustering the samples. Figure 1 shows the flowchart of
our ECMC model.

With the computed Ci and Di, we define a consensus score

consensusi = tr(HKiHCi)

tr(HKiH(Ci + Di))
. (4)

to measure the amount of the consensus part in the i-th
view. Note that the consensus score ranges from 0 and 1.
If the score in one view is closed to one, it means the sig-
nals for the consensus part in the view are strong, and if it
is closed to zero, it means that the disagreement part are
dominant.

Optimization algorithm
We apply the strategy of alternative updating to solve the
optimization problems in both of the CMC model (2) and
the ECMC model (3). We only discuss the optimization
procedure for the ECMC model, and that for CMC model
can be obtained in the same way.

We first fix D1, · · · , Dv, and solve optimization problem
(3) for optimal C1, · · · , Cv one by one. The ith optimiza-
tion subproblem to solve for Ci can be written as

max
Ci

tr(WiHCiH) + 2α
∑

j �=i
tr(CjHCiH) − β

∑

j
tr(CiHDjH)

s.t. Ci ≥ 0, tr(Ci) = 1.
(5)

By defining

Mi = H
(

Wi + 2α
∑

j �=i
Cj − β

∑

j
Dj

)

H , (6)

the optimization problem in (5) is equivalent to

max
Ci

tr(MiCi) s.t. Ci ≥ 0, tr(Ci) = 1. (7)

We then fix C1, · · · , Cv and solve the optimization prob-
lem in (3) for D1, · · · , Dv one by one. The ith subproblem
can be written as

max
Di

tr(WiHDiH) − β
∑

j
tr(DiHCjH)

s.t. Di ≥ 0, tr(Di) = 1.
(8)

It can be simplified as

max
Di

tr(NiDi) s.t. Di ≥ 0, tr(Di) = 1 (9)

with

Ni = H
(

Wi − β
∑

j
Cj

)

H . (10)

The subproblems (7) and (9) are typical semi-definite
programming problem, and can be solved efficiently by
semi-definite programming toolbox CVX. The details of
the procedure to solve ECMC model is presented in the
ECMC algorithm box. In each outer iteration, line 4-line
7 is to update Ci one by one, using the current Dj(j =
1, · · · , v) and Cj(j �= i), and line 8-line 11 is to update
Di one by one, using the current Cj(j = 1, · · · , v). The
iteration stops when C1, · · · , Cv and D1, · · · , Dv converge
with a small tolerance. In our experiments, we choose Wi
- 2I and 2I as the initials for Ci and Di for each view,
respectively.

Algorithm 1 ECMC Algorithm :
Inputs. Xi, i = 1, · · · , v
α, β
Outputs. Ci, Di, i = 1, · · · , v
1. Compute the kernel Wi of Xi ,i = 1, · · · , v .
2. Set initial C1, · · · , Cv and D1, · · · , Dv
3. while (Ci and Di not converged)
4. for i = 1: v (update Ci)
5. Compute Mi from (6) by using current Cj(j �= i) and
Dj(j = 1, · · · , v)
6. Update Ci by solving the subproblem (7)
7. end
8. for i = 1: v (update Di)
9. Compute Ni from (10) by using current Cj(j �= i)
10. Update Ci by solving the subproblem (9)
11. end
12. end

Results
Measurements for clustering performance
We use the following two metrics to measure the cluster-
ing efficiency in the comparisons. The normalized mutual
information (NMI) of a clustering C = {Ck} is defined as
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Fig. 1 A flowchart of our ECMC approach for subtype identification

NMI(C, C∗) = I(C, C∗)√
H(C) · H(C∗)

with

I(C, C∗) =
∑

Ck∈C,C∗
� ∈C∗

p(Ck , C∗
� ) · log2

p(Ck , C∗
� )

p(Ck)p(C∗
� )

,

where H(C) = − ∑
Ci∈C p(Ci) log2(p(Ci)), p(Ck) :=

|Ck|/n, C∗ is the ground truth clustering, and p(Ci, C∗
j )

represents the joint probability of the two classes Ci and
C∗

j . This can be estimated by the following formula [32]:

NMI =
∑

C,C∗ NC,C∗ log
(

N ·NC,C∗
NCNC∗

)

√(∑
C NC log NC

N

) (∑
C∗ NC∗ log NC∗

N

) , (11)

where C∗ is a cluster in the true clustering assignment
and C is a cluster in the computed clustering assignment,
NC(NC∗) is the number of data objects in cluster C(C∗),
NC,C∗ is the number of objects in cluster C as well as in
cluster C∗, N is the number of all the objects. NMI takes
a value ranging from 0 to 1, and the closer to one it is, the
more similar to true clusters the computed clusters are.

The other measurement is the average clustering accu-
racy (ACC) with the class labels {lj} of C in a suitable class
ordering,

ACC(C, C∗) = 1
n

n∑

j=1
δ(lj, l∗j ),

where the function δ(lj, l∗j ) = 1 if lj = l∗j , or δ(lj, l∗j ) = 0
otherwise.

For all the methods, we apply the normalized spectral
clustering on the solutions of the compared algorithms.
Since k-means in the last step of spectral clustering is
sensitive to initials, 100 replications of k-means are per-
formed using randomly selected initializations, and then
the average clustering results are reported.

Simulation study
Data simulation
We simulate several synthetic datasets to evaluate our
proposed enhanced consensus model by comparing our
methods with other state-of-art single-view and multi-
view methods including spectral clustering on single
views(SV1 and SV2), feature concatenation(Concat), co-
regularized spectral clustering (Coreg) [15] and similarity
network fusion (SNF) [16]. We generate the dataset of
simulation 1 by the following procedure. We first gener-
ate 100 2-dimensional samples by a mixed Gaussian with
different means of μ1 =[ −4 3]T and μ2 =[ 7 − 8]T and
the same covariance matrix �1 =[ 10 0 ; 0 5]. By adding
white noises with strength 1, we could obtain two data
matrices A1 and A2 ∈ R2×100. A1 and A2 have strong
and similar clustering structure. We further obtain B1 and
B2 by randomly permuting the samples in A1 and A2 and
adding white noises again, respectively. After normaliz-
ing A1, A2, B1 and B2 such that each row has zero mean
and 1 norm, we construct a matrix Xi =[ Ai; tBi](i =
1, 2), where Ai and Bi is considered as the consensus part
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and the disagreement part, respectively. By changing the
value of t, we can control the degree of disagreement in
the dataset. We finally construct four datasets with t =
{0.95, 1, 1.2, 2} in simulation 1.

For simulation 2, we first generate A1 and A2 by another
mixed Gaussian with means of μ3 =[ 0 1]T and μ4 =
[ 11 −10]T and the same covariance matrix �2 =[ 1 0 ; 0 1]
with 100 samples. Different with the procedure in simu-
lation 1, we generate B1 and B2 by randomly exchanging
s samples from A1 and A2. Then we construct a matrix
Xi =[ Ai; Bi](i = 1, 2). We control the degree of disagree-
ment in the dataset by changing the value of s. We finally
construct four datasets with s = {25, 30, 40, 50} in
simulation 2.

Experimental setting and results
We first compute a Gaussian kernel for each view and then
apply all the comparison partners on the Gaussian kernels
to obtain the clustering result. Note that k-means cluster-
ing is the final step for all these methods. Since it is prone
to initials, we run 100 replicates of k-means and report the
average result. For Coreg, CMC and ECMC methods, the
parameters are all from the range of { 1e−10, · · · , 1e+10},
and the best results are reported in Table 1.

We can see that in simulation 1, our proposed ECMC
and SNF perform similarly with t = 0.96 and 1. How-
ever our ECMC outperform when t is more than 1.This
shows that when the consensus part is relatively weak,
our method can also find the agreement information
among all views. In simulation 2, we can find that,
our method can always obtain the best NMI and ACC
values.

To further show the effectiveness of the ECMC model,
we choose an example of t = 2 in simulation 1. Figure 2
visualizes the original Gaussian kernels Wis, the com-
puted consensus kernels Cis and the disagreement kernels
Dis. From the figure, we can see that, the clustering struc-
tures in the original kernels Wis seem very weak, and the
computed consensus kernels Cis have very clear clustering
structures consistent with the ground truth.

Benchmark machine learning datasets
We evaluate our approach on five benchmark machine
learning datasets including four from Webkb datasets and
one from Cora publication datasets.

Webkb webpage datasets
Webkb datasets consist of four sets of webpages from
four universities Cornell, Texas, Washington, and Wiscon-
sin, across five classes of course, project, student, faculty,
and staff. Each webpage is represented by its text con-
tent and its hyperlinks. The class of staff, which has only
a small number of samples, is removed. Table 2 lists the
data summary for the datasets from the four universities.
The datasets in each view are normalized such that each
feature has zero mean and one norm.

Cora publication datasets
The Cora dataset consists of 2708 scientific publications
over seven categories (Neural Networks, Rule Learning,
Reinforcement Learning, Probabilistic Methods, Theory,
Genetic Algorithms, Case Based). Each publication is
represented by two views. One is a 0/1-valued word vec-
tor indicating the absence/presence of the corresponding

Table 1 The average NMIs/ACCs and the standard errors obtained by the ECMC and other comparison partners in seven simulation data sets

Methods
Simulation 1 Simulation 2

t = 0.95 t = 1 t = 1.2 t =2 s = 25 s = 30 s =40 s = 50

NMI SV1 0.856 0.465 0.007 0.006 0.524 0.470 0.404 0.337

SV2 0.775 0.495 0.012 0.002 0.524 0.470 0.421 0.331

Concat 0.919 0.696 0.021 0.006 0.527 0.472 0.421 0.340

Coreg 0.919 0.566 0.344 0.007 0.542 0.491 0.421 0.344

SNF 0.960 0.889 0.012 0.005 0.562 0.510 0.421 0.519

CMC 0.919 0.542 0.493 0.335 0.594 0.503 0.480 0.744

ECMC 1.000 0.882 1.000 1.000 0.667 1.000 0.859 1.000

ACC SV1 0.975 0.878 0.550 0.545 0.875 0.850 0.800 0.745

SV2 0.960 0.886 0.565 0.525 0.875 0.850 0.800 0.750

Concat 0.990 0.945 0.585 0.545 0.875 0.850 0.800 0.748

Coreg 0.990 0.910 0.770 0.550 0.875 0.850 0.800 0.750

SNF 0.995 0.985 0.565 0.540 0.875 0.850 0.800 0.780

CMC 0.990 0.890 0.777 0.701 0.875 0.850 0.800 0.890

ECMC 1.000 0.975 1.000 1.000 0.898 1.000 0.980 1.000

Highest NMIs/ACCs are marked in bold
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Fig. 2 A demonstration of the ECMC model on a simulation dataset. Wis are given kernels from two views, and the ground truth clusters are the first
half and the second half samples. Cis and Dis are obtained consensus kernels and disagreement kernels by our ECMC model, respectively. Cis have
clear clustering structure consistent with ground truth labels

word from the dictionary which consists of 1433 unique
words.The other is the citation relation with all other pub-
lications. We create a smaller subset with 397 publications
which only consists of two categories of Rule Learning and
Reinforcement Learning, and this dataset is used for eval-
uate our approaches. Similar to Webkb datasets, we also
normalize the dataset for each view.

Experimental setting and results
For each dataset, we first compute Gaussian kernels for
each view. We then compare our methods with the com-
parison partners by using these kernels. For Coreg, CMC
and ECMC methods, the parameters are from the range of
{ 1e−10, · · · , 1e+10}, and the best results are reported in
Table 3. For SNF, we choose the size of neighbors K as the
average cluster size and η from the set {0.3, · · · , 1}, as sug-
gested by the original paper. The best average clustering
results over the parameters are reported.

We report the average NMIs and ACCs for the bench-
mark datasets by all the methods in Table 3, respectively.
From the table, we can see that, our proposed ECMC
achieves the highest NMI values and ACC values among

Table 2 Summary of the real-world benchmark data sets:
numbers of samples, features, views, and clusters

Data set Cora Cornell Texas Washington Wisconsin

# of samples 397 91 102 156 179

# of features view1 1,433 1,703 1,702 1,703 1,703

view2 2,708 195 187 230 256

# of clusters 2 4 4 4 4

all the methods across all the five benchmark datasets,
except that the Coreg obtains the highest ACC for the
Texas data. Table 3 also shows that our CMC model
could obtain the second highest NMIs among all the
results. By using the measurement of ACC in Table 3,
our CMC model is the second best for Cora data, and
SNF performs the second best for all the four Webkb
datasets. The results on the five benchmark datasets show
the strong advantages of our ECMC model for cluster-
ing tasks. We also check the convergence property of
our EMCM algorithm, and Fig. 3 shows that the algo-
rithm converges after several iterations. We also com-
pute the consensus scores of each view for each dataset.
For Cornell data, the consensus scores of the two views
are 0.141 and 0.896; For Washington data, the consen-
sus scores are 0.212 and 0.049; the scores for Wiscon-
sin data are 0.251 and 0.734; the scores for Texas data
are 0.482 and 0.494. The consensus scores imply that
each view may contain different amount of consensus
information.

Materials for subtype identification by TCGA data
We finally apply our ECMC model to identify cancer
subtypes by conducting experiments on cancer genomics
data from The Cancer Genome Atlas (TCGA) Research
Network [33] for five cancer types: glioblastoma multi-
forme (GBM), kidney renal clear cell carcinoma (KRCCC),
breast invasive carcinoma (BIC), colon adenocarcinoma
(COAD) and lung squamous cell carcinoma (LSCC). The
preprocessed data is provided by Wang et al. [16]. For each
type of cancer, three data types are available: DNA methy-
lation, mRNA expression and miRNA expression. We
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Table 3 The average NMIs and ACCs and standard errors obtained by the ECMC and other comparison partners on real benchmark
datasets

Methods Cora Texas Wisconsin Washington Cornell

NMI SV1 0.021±0.001 0.175±0.001 0.273±0.004 0.252±0.001 0.182±0.002

SV2 0.004±0.000 0.098±0.001 0.064±0.001 0.096±0.002 0.083±0.001

Concat 0.002±0.000 0.120±0.001 0.120±0.001 0.128±0.001 0.156±0.001

Coreg 0.025±0.001 0.234±0.002 0.284±0.005 0.306±0.002 0.213±0.005

SNF 0.013±0.000 0.156±0.003 0.303±0.001 0.204±0.006 0.200±0.001

CMC 0.085±0.003 0.316±0.002 0.343±0.003 0.328±0.002 0.326±0.002

ECMC 0.688±0.000 0.348±0.002 0.419±0.003 0.380±0.001 0.343±0.005

ACC SV1 0.587±0.003 0.570±0.001 0.533±0.004 0.440±0.001 0.456±0.004

SV2 0.544±0.000 0.563±0.001 0.462±0.002 0.490±0.001 0.453±0.001

Concat 0.511±0.001 0.383±0.003 0.375±0.003 0.375±0.002 0.411±0.001

Coreg 0.590±0.001 0.612±0.001 0.558±0.004 0.519±0.003 0.496±0.005

SNF 0.549±0.000 0.601±0.000 0.587±0.003 0.551±0.006 0.497±0.000

CMC 0.665±0.004 0.468±0.003 0.578±0.005 0.492±0.002 0.479±0.002

ECMC 0.935±0.000 0.566 ±0.001 0.635±0.001 0.648±0.002 0.539±0.002

The highest NMI and ACCs are marked in bold

summarize the data in Table 4. For expression data, GBM
and LSCC apply the Broad Institute HT-HG-U133A plat-
form, BIC and COAD apply the UNC-Agilent-G4502A-07
platform, and KRCCC applies the UNC-Illumina-Hiseq-
RNASeq platform. For miRNA expression data, BIC and
GBM apply the BCGSC-Illumina-Hiseq-miRNAseq plat-
form and the UNC-miRNA-8X15K platform,respectively,
and LSCC, KRCCC and COAD use the BCGSC-Illumina-
GA-miRNAseq. For the methylation data, GBM uses the

JHU-USC-Illumina-DNA-Methylation platform, and BIC,
LSCC, KRCCC and COAD apply the JHU-USC-Human-
Methylation-27 platform. All the datasets also contain the
clinical information including the overall survival data
for patients. The problem of subtype identification aims
to identify clusters where patients have a specific can-
cer subtype. Note that there’s no ground truth labels of
subtypes for these datasets, and thus it is a discovery
process.

number of iterations
0 5 10 15

va
lu

e 
o

f 
o

b
je

ct
iv

e 
fu

n
ct

io
n

24

25

26

27

28

29
Cornell

number of iterations
0 5 10 15

va
lu

e 
o

f 
o

b
je

ct
iv

e 
fu

n
ct

io
n

15

20

25

30

35

40

45
Washington

number of iterations
0 5 10 15

va
lu

e 
o

f 
o

b
je

ct
iv

e 
fu

n
ct

io
n

40

42

44

46

48

50

52
Wisconsin

number of iterations
0 5 10 15 20

va
lu

e 
o

f 
o

b
je

ct
iv

e 
fu

n
ct

io
n

21

22

23

24

25

26
Texas

Fig. 3 Convergence property of the ECMC by Webkb datasets
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Table 4 Data summary for the five TCGA cancer datasets

Cancer types Patient number mRNA expression DNA Methylation miRNA expression Subtype number

GBM 215 12042 1491 534 3

BIC 105 17814 23094 1046 5

KRCCC 124 20532 24976 1046 3

LSCC 105 12042 27578 1046 4

COAD 92 17814 27578 705 3

Clustering results
Two measurements, silhouette scores and Cox survival
p-values, are used to evaluate the performance of our
ECMC model for identifying subtypes for five cancers. Sil-
houette score [34] is used to measure the coherence of
clusters by evaluating the similarity of patients within or
between subtypes. Once we have the new representations
for the samples and the subtype result for them, we could
compute silhouette scores. The representations for differ-
ent methods are different. For SNF and our ECMC, the
new representations are obtained by spectral projection
of the new kernels. For each sample x, let mx represent
the average dissimilarity for all samples in the same sub-
type and nx represent the lowest average dissimilarity for
all other samples in different subtypes. Euclidean distance
is used to measure dissimilarity. The silhouette score for
sample x is defined by sx = (nx − mx)/(max(mx, nx)).
The silhouette ranges from -1 to 1. We compute the mean
Silhouette value over all samples to measure how tightly
all samples in the cluster are grouped. A silhouette score
close to 1 implies a properly discovered clustering result.
Another measurement is Cox survival p-values, which
are computed using the Cox log-rank test [35] to mea-
sure whether the survival time is significantly different
between the subtypes. For each sample, the survival time
in months are given in the TCGA datasets. Lower Cox
p-value implies that the survival profiles among subtypes
are different more significantly, and thus the subtypes
might be properly discovered.

For each cancer data, we first compute Gaussian kernel
Wis for the three data types respectively, and then apply
our ECMC model with Wis to reconstruct the consensus
kernels Ci for each view. We finally do spectral clustering
on the linear sum of these kernels C = ∑

i
Ci to identify

homogeneous cancer subtypes. The number of subtypes
is chosen as 3, 5, 3, 4, and 3 following the work [16]. We
also check the silhouette score with different number of
clusters, and the results in Table 5 show that the selected
number of clusters are reasonable since with them the sil-
houette scores achieve the highest or similar to the highest
values. The parameter α is fixed as 1010, and β in ECMC
model is chosen from the range of {108, 109, 1010} respec-
tively. In Table 5, we report the silhouette scores with

different β in this range, and we can see that for the five
cancer types, the silhouette scores are relatively stable. For
each combination of the parameters, we run 100 replicates
of k-means and record the average silhouette score and the
standard error.

We finally report the best average silhouette score in
Table 6 over all the parameter combinations. We also
report the average silhouette scores by single-view spec-
tral clustering with the gauss kernel Wi for each of the
three data types of mRNA expression, DNA Methyla-
tion and miRNA expression, respectively. The average
silhouette scores are also reported in Table 6. We also
apply the state-of-art multi-view clustering methods SNF
and Coreg to the five cancer data sets. The experimental
settings are similar with the ECMC model. The param-
eter λ in the Coreg method is chosen from the range of
{10−10, · · · , 1010}, and the parameters K and η in the SNF
method are chosen from the ranges of {10, 20, 30} and
{0.3, · · · , 0.8}, as suggested in the original paper, respec-
tively. The best average silhouette scores by the SNF and
the Coreg over all their parameters are also reported in
Table 6. From the results we can see that, our ECMC
model can obtain highest Silhouette scores for all the five
cancer data sets. This implies that the ECMC model is able
to capture the clustering structure with tight clusters.

Survival analysis
We further evaluate the performance of our ECMC model
by survival analysis. Once a clustering result is obtained,
we could conduct Cox log-rank test and compute the
Cox p-values. In Table 6, we report the lowest p-values
over all the possible parameters mentioned above for
each method, respectively. We can see that, single data
type analysis could not lead to significantly different sur-
vival profiles for most cases, while the ECMC model with
multiple data types could achieve the most significant
p-values for all the five cancer types, except for GBM
cancer, the ECMC and SNF obtain similar significant lev-
els. Figure 4 shows the Kaplan-Meier survival curves by
the ECMC clustering result with most significant p-values
for the five cancer types, where we could see the signifi-
cant different survival profiles over different subtypes. In
Table 7, we also report the consensus scores of the three
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Table 5 Silhouette scores for TCGA datasets for different parameters

k β

S-score 3 4 5 6 7 8 9 10 108 109 1010

GBM 0.932 0.917 0.905 0.891 0.888 0.719 0.688 0.621 0.77 0.93 0.93

BIC 0.893 0.844 0.761 0.675 0.671 0.751 0.741 0.606 0.75 0.72 0.73

KRCCC 0.892 0.878 0.798 0.767 0.695 0.738 0.661 0.489 0.77 0.79 0.88

LSCC 0.874 0.845 0.813 0.784 0.684 0.648 0.621 0.630 0.72 0.84 0.72

COAD 0.791 0.729 0.547 0.459 0.463 0.465 0.465 0.465 0.57 0.79 0.68

views for the five cancers, corresponding to the cluster-
ing result with the most significant survival p-values. The
results show that the average consensus scores are around
0.5, which implies that each view have half consensus
information with others.

Since the ECMC model could lead to the most signifi-
cantly different survival profiles for the breast cancer data,
we further analyze the obtained breast cancer subtypes.
Figure 5 shows the visualization of the three views in five
subtypes for Breast cancer. DNA Methylation has a very
different profile among the five subtypes. Interestingly,
Subtype 1 and Subtype 3 seem to have complementary
DNA Methylation profiles. We also see that Subtype 1 and
Subtype 5 have very different miRNA profiles as well. The
combined signatures in mRNA, expression DNA methy-
lation and miRNA expression data for the five subtypes
are very different. We also compute the pairwise logrank
p-values with Bonferroni correction, and found that
Subtype 2 has significantly different survival pro-
files with Subtype 1, 3, 5 with corrected p-values of
1.16e − 3, 3.72e − 4 and 1.88e − 2.

We finally conduct survival analysis to compare the
survival profiles for finding interesting breast cancer sub-
types. We choose three common treatments with drugs
of Cytoxan, Adriamycin and Arimidex for breast cancers
to do the analysis. For each treatment, survival analysis is

conducted in all patients and also each subtype to com-
pare the survival profiles between the patients with the
treatment and the patients without the treatment. The
computed Cox p-values for all treatments in all subtypes
are reported in Table 8. The three treatments could not
generate significantly different survival profiles between
the treated patients and untreated patients from all the
target population. However, in Subtype 1, and only in Sub-
type 1, both Cytoxan and Adriamycin could generate sig-
nificantly improved treatment effects for treated patients,
with p-values of 1.98e−5 and 1.24e−3. The Kaplan-Meier
survival curves of these two treatments in Subtype 1 are
shown in Fig. 6. In subtype 3, Arimidex could generate
significantly improved treatment effects, with p-value of
1.82e−2. We also do the similar survival analysis for GBM
cancer with treatment of Temozolomide. Figure 7 shows
that the drug of Temozolomide could generate signifi-
cantly improved survival profiles for GBM Subtype 1, and
there’s no significantly difference in other two subtypes.
This further shows that by our ECMC model, interesting
subtypes could be discovered corresponding to different
treatment effects.

Discussion
There are five known breast cancer subtypes includ-
ing luminal A, luminal B, HER2-enriched, basal-like,

Table 6 Silhouette scores (S-scores) and Cox p-values obtained by different clustering methods

Cancer types mRNA expression DNA Methylation miRNA expression Creg SNF ECMC

S-score GBM 0.809 ±0.000 0.428 ±0.001 0.814 ±0.021 0.804 ±0.001 0.613 ±0.003 0.930±0.000

BIC 0.254 ±0.001 0.318 ±0.002 0.468 ±0.003 0.310 ±0.002 0.526 ±0.002 0.752 ±0.014

KRCCC 0.422 ±0.003 0.463 ±0.000 0.649 ±0.021 0.395 ±0.003 0.868 ±0.012 0.889 ±0.000

LSCC 0.317 ±0.003 0.513 ±0.005 0.492 ±0.003 0.387 ±0.003 0.790 ±0.011 0.844 ±0.013

COAD 0.449 ±0.000 0.470 ±0.005 0.555 ±0.001 0.468 ±0.000 0.684 ±0.005 0.793 ±0.000

p-value GBM 0.805 0.563 0.188 8.40e-3 2.85e-5 3.12e-5

BIC 1.22e-2 3.11e-3 0.216 3.26e-4 9.20e-5 2.34e-7

KRCCC 1.16e-2 0.838 0.834 2.30e-3 8.71e-2 1.98e-4

LSCC 1.10e-2 2.36e-2 0.572 1.90e-3 1.65e-4 2.53e-4

COAD 0.171 8.53e-3 0.314 5.4e-3 1.20e-3 9.34e-4

The highest S-scores and lowest p-values are marked in bold
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Fig. 4 Kaplan-Meier survival curves for the five cancer types (p-values are reported in Table 6)

Table 7 Consensus scores in each view for the five TCGA cancer datasets

Cancer types Gene expression mRNA expression DNA methylation

GBM 0.092 0.117 0.032

BIC 0.496 0.500 0.498

KRCCC 0.421 0.468 0.412

LSCC 0.405 0.175 0.291

COAD 0.491 0.500 0.491
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Fig. 5 Visualization of the three data types in five subtypes for Breast cancer, with top row for mRNA expression, middle row for DNA methylation
and bottom row for miRNA expression

normal-like [36]. Oestrogen receptor (ER), progesterone
receptor (PgR), and HER2 are examined by usual
immunohistochemical methods to define the subtypes as
follows, luminal A subtype with ER and/or PgR (+), HER2
(-), luminal B subtype with ER and/or PgR (+) and HER2
(+), HER2 subtype with ER (-), PgR (-) and HER2 (+),
basal-like subtype with ER (-), PgR (-) and HER2 (-), and
unclassified subtype.

We first manually select some correlated genes for the
basal-like breast cancer subtype. Curtis et al. [37] shows
basal-like cancer enriched subgroup, harbours chromo-
some 5q deletions, and several signaling molecules, tran-
scription factors and cell division genes were associated
in trans with this deletion event in the basal cancers,
including alterations in BUB1, CDCA4, CHEK1, FOXM1,
HDAC2, KIFC1, MTHFD1L, RAD51AP1, TTK. Besides,
[38] also found that loss of PTEN protein expression was
significantly associated with the basal-like cancer sub-
type in both nonhereditary breast cancer and hereditary

Table 8 Survival analysis of three treatments on five BIC subtypes

Treatment All Subtype 1 Subtype 2 Subtype 3 Subtype 4 Subtype 5

Cytoxan 3.29e-2 1.98e-5 4.94e-2 0.310 0.447 0.226

Adriamycin 1.32e-2 1.24e-3 0.646 0.892 0.095 0.760

Arimidex 0.19 0.654 0.607 1.82e-2 0.433 0.352

The treatment could generate significantly improved treatment effects in the
subtype of p-value in boldface

BRCA1-deficient breast cancer. Pires et al. [39] show
alterations of EGFR, p53 and pTeN are cooperative and
likely to play a causal role in basal-like breast cancer
pathogenesis. These discoveries suggest that basal-like
subtype may also correlate with the genes BRCA1 and
EGFR, respectively. For each computed subtype (S1, for
example) by our ECMC algorithm, We first calculate t-test
p-values for each of these correlated gene to show whether
the gene expression levels are significantly changed
between the subtype S1 and the other subtypes. We then
apply the Fisher’s combined probability test [40] to com-
pute the group p-values for these genes, which could test
whether the group of the selected genes are significantly
different between subtype S1 and other subtypes. We do
the same computation for each computed subtype S1 to
S5, and report the results in Table 9. The results show that,
our computed Subtype 1 is highly likely to correspond to
the basal-like breast cancer subtype, with group p-value
being 7.99e-6. Note that the treatment with Cytoxan and
Adriamycin in Subtype 1 significantly extend the survival
time, as shown in Fig. 6. It implies that these two drugs
might be effective specially for basal-like breast cancer.
Our computed Subtype 2 may also contains the basal-like
breast cancer subtype, with group p-value being 2.03e-5.

We also manually select genes that are correlated with
luminal B and HER2 breast cancer subtypes. For lumi-
nal B subtype, we include MAP2K4 since [37] show
the recurrent deletion of MAP2K4 concomitant with
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Fig. 6 Survival analysis of the treatment with Cytoxan and Adriamycin in Breast cancer Subtype 1 (Cox log-rank p-value are 1.98e-5, and 1.24e-3
respectively)

outlying expression in predominantly ER-positive cases.
PPP2R2A is likely to correlate with luminal B since [37]
suggests the dysregulation of specific PPP2R2A func-
tions in luminal B breast cancers. The genes ZNF703
and DHRS2 are also included since [41] confirm ZNF703

as a luminal B specific driver and Tumors with ele-
vated ZNF703 levels were characterized by alterations
in a lipid metabolism and detoxification pathway that
include DHRS2 as a key signaling component. Curtis et al.
[37] found ER-positive subgroup composed of 11q13/14

Fig. 7 Survival analysis of the Temozolomide treatment in GBM subtypes. Significant p-value is obtained in Subtype 1(0.047) and no significant
difference is obtained in the other subtypes



Cai and Li BMC Medical Genomics 2017, 10(Suppl 4):75 Page 78 of 91

Table 9 Group p-values for three breast cancer subtypes
including luminal B, HER2 and basal-like

Group p-values Subtype 1 Subtype 2 Subtype 3 Subtype 4 Subtype 5

luminal B 2.35e-01 2.16e-13 1.33e-02 5.03e-04 4.68e-02

HER2 3.87e-01 1.90e-02 3.34e-02 3.18e-03 2.65e-01

basal-like 7.99e-06 2.03e-05 4.53e-01 2.91e-03 4.40e-01

The subtype we found out, p-value in boldface, is likely to correspond to the true
breast cancer subtype

cis-acting luminal tumors which PAK1, RSF1 C11orf67,
INTS4 reside in it. Loi et al. [42] found PIK3CA mutations
are associated with low MTORC1 signaling and good
prognosis with tamoxifen therapy in ER-positive which
indicates PIK3CA have relation with luminal B subtype.
Besides, ERBB2 is likely to correlate with HER2-enriched
and luminal B subtypes, since the results in [37] show
that HER2-enriched (ER-negative) cases and luminal (ER-
positive) cases both belongs to ERBB2-amplified cancer.
For HER2 breast cancer subtype, Pharmacologic FASN
inhibitors were found to suppress p185(HER2) oncopro-
tein expression and tyrosine kinase activity in breast
cancer overexpressing HER2 [43], which shows the cor-
relation between FASN and HER2 type breast cancer.
Bentires-Alj et al. [44] suggest that agents targeting GAB2
or GAB2-dependent pathways may be useful for treating
breast tumors that overexpress HER2, and thus we include
GAB2 as a correlated gene for HER2 type breast cancer.
Besides, Trastuzumab blocks the HER2-HER3(ERBB3)
interaction and is used to treat breast cancers with HER2
overexpression, although some of these cancers develop
trastuzumab resistance. By using small interfering RNA
(siRNA) to identify genes involved in trastuzumab resis-
tance, [45] identified several kinases and phosphatases
that were upregulated in trastuzumab-resistant cancers,
including PPM1H. This suggests that PPM1H and ERBB3
may have some link with HER2 type breast cancer. With
the manually selected gene sets for the two breast can-
cer subtypes, we also compute the group p-value for each
computed subtype by our ECMC model. The results in
Table 9 show that our Subtype 2 probably corresponds to
the luminal B breast cancer type, with group p-value being
2.16e-13, and our Subtype 4 is likely to correspond to the
HER2 breast cancer subtype.

Conclusion
Our goal in this work is to discover consensus from dif-
ferent views when disagreement signals are very strong.
We propose a novel decomposition strategy which tries
to break down the information in each view into a con-
sensus part and a disagreement part. The former parts
are expected to be similar across all views for the sake of
‘consensus’, while the latter parts are expected to conflict
with the consensus parts, for the sake of ‘disagreement’.
The idea can be realized by making use of Hilbert Schmidt

Independence Criterion, which could measure the sim-
ilarities among kernels. Our ECMC model is proposed
to reconstruct the consensus kernels and the disagree-
ment kernels by maximizing the agreement among these
kernels with preserving the similarity among original sam-
ples. Since consensus kernels are similar, the underlying
clustering structure should be easy to be obtained. Our
simulation experiments, real-world benchmark experi-
ments and TCGA subtype identification experiments all
show that the ECMC model outperforms other state-
of-art multi-view clustering algorithms. In particular, we
find some interesting subtypes in Breast cancer, and the
survival analysis shows that the subtypes are significant.
For the further research work, we will consider the fol-
lowing question. Although our ECMC model is effective
for discovering consensus parts, it involves semi-definite
programming which may be not as efficient as other com-
putations such as eigenvalue decomposition in spectral
clustering. We hope to formulate our idea in another way
by avoiding semi-definite programming.
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