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Abstract

Background: Prediction of drug-disease interactions is promising for either drug repositioning or disease treatment
fields. The discovery of novel drug-disease interactions, on one hand can help to find novel indictions for the approved
drugs; on the other hand can provide new therapeutic approaches for the diseases. Recently, computational methods
for finding drug-disease interactions have attracted lots of attention because of their far more higher efficiency and
lower cost than the traditional wet experiment methods. However, they still face several challenges, such as the
organization of the heterogeneous data, the performance of the model, and so on.

Methods: In this work, we present to hierarchically integrate the heterogeneous data into three layers. The drug-drug
and disease-disease similarities are first calculated separately in each layer, and then the similarities from three layers
are linearly fused into comprehensive drug similarities and disease similarities, which can then be used to measure the
similarities between two drug-disease pairs. We construct a novel weighted drug-disease pair network, where a node
is a drug-disease pair with known or unknown treatment relation, an edge represents the node-node relation which is
weighted with the similarity score between two pairs. Now that similar drug-disease pairs are supposed to show
similar treatment patterns, we can find the optimal graph cut of the network. The drug-disease pair with unknown
relation can then be considered to have similar treatment relation with that within the same cut. Therefore, we
develop a semi-supervised graph cut algorithm, SSGC, to find the optimal graph cut, based on which we can identify
the potential drug-disease treatment interactions.

Results: By comparing with three representative network-based methods, SSGC achieves the highest performances,
in terms of both AUC score and the identification rates of true drug-disease pairs. The experiments with different
integration strategies also demonstrate that considering several sources of data can improve the performances of the
predictors. Further case studies on four diseases, the top-ranked drug-disease associations have been confirmed by
KEGG, CTD database and the literature, illustrating the usefulness of SSGC.

Conclusions: The proposed comprehensive similarity scores from multi-views and multiple layers and the graph-cut
based algorithm can greatly improve the prediction performances of drug-disease associations.
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Background
On one hand, traditional drug development is a time-
consuming and costly process with low success rate [1-3].
To speed up the process and reduce the risks and costs,
drug repositioning has becoming a promising alternative
for de novo drug discovery [1, 4, 5]. However, to repo-
sition a drug might also be a haphazard process with a
bit of luck, for examples, repositioning sildenafil (brand
name: Viagra) from the treatment of angina to erectile
dysfunction [6], repositioning minoxidil from the treat-
ment of hypertension to hair loss [7], and so on. Thus,
there are urgent needs to develop effective computational
methods for drug reposition. On the other hand, the com-
monly used drugs for some diseases may suffer from the
problems of severe side-effects or resistance, for example,
the drug for Parkinson’s disease, L-dopa, has severe side
effects such as dyskinesia [8]. It is necessary to find better
pharmacological treatments of some diseases. Predicting
drug-disease interactions is devoted to above two issues.
There are lots of methods proposed to predict the
potential drug-disease relations. Some methods are based
on gene expression profile data under the hypothesis that
if the drug and disease have opposite expression signa-
tures, then the drug is possible to treat that disease [9]. For
instance, Sirota et al. integrated gene expression measure-
ments from 100 diseases and 164 drug compounds, and
predicted potential indications for these drugs, such as
lung adenocarcinoma as the potential indications of cime-
tidine [10]; Jahchan et al. proposed a systematic approach
to query gene expression profiles so as to identify antide-
pressant drugs to treat small cell cancer [11]. The vast
amount of information of drugs and diseases in litera-
ture and databases make it possible to mine or infer the
potential associations between drugs and diseases based
on literature mining and semantic inference. Suppose that
B is reported to be one of the characteristics of disease C
in some literature, and drug A is reported to affect B in
other literature, then it has a potential interaction between
drug A and disease C [12, 13]. For example, Ahlers et al.
found the potential link between the antipsychotic agents
and cancer based on MEDLINE citations [14]. Since high-
throughput experiments have accumulated massive data
on diseases and drugs, more and more methods focus on
building prediction models via machine learning strate-
gies. For example, Gottlieb et al. proposed a logistic
regression based method by integrating different infor-
mation on drugs and diseases [15]; Chen et al. regarded
the prediction of drug-disease associations as a recom-
mendation problem, and adopted two recommendation
algorithms to infer drug-disease interactions [16]; Liang
et al. developed a Laplacian regularized sparse subspace
learning (LRSSL) based method to predict drug-disease
interactions by integrating drug chemical structure, drug
target domain and target annotation information [17].
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In recent years, the network-based prediction, which
first builds a network based on the existed data and
then builds the prediction model, is very promising and
a few methods have been proposed, such as network-
based guilt-by-association (GBA) method [4], network-
based inference (NBI) method [18], random walk and
network propagation based algorithm [19], and so on.
Recently, Wang et al. proposed to build heterogeneous
graph model HGBI for the prediction of drug-target inter-
actions [20], and to build three-layer heterogeneous graph
model (TL-HGBI) for the prediction of drug-disease inter-
actions [21]. Even so, they did not take full advantages of
the diverse information from genes, drugs, diseases, and
their associations yet.

Since organizing heterogeneous data in a good way
may contribute to the discovery of drug-disease relations
[21, 22] and help to build accurate prediction models,
in this work we first present a framework to integrate
multiple sources/levels of data into base layer, gene layer
and treatment layer. Each layer is expected to reflect
one aspect of the drug-disease associations. Then we
construct a novel weighted graph where a node is a
drug-disease pair and an edge represents the node-node
relation with the similarity score between two pairs as
its weight. According to the observed data, some drug-
disease pairs have known treatment relationships whereas
others have not. Based on the weighted graph, we propose
a semi-supervised graph cut (SSGC) algorithm to predict
the drug-disease interactions that have been observed in
the data yet. The overall framework is shown in Fig. 1.

Methods

Data collection

We have collected drugs, genes, diseases, and the interac-
tions information from several data sources. With these
data, we attempt to investigate whether there is a treat-
ment relation within any unknown drug-disease pair.

From DrugBank (https://www.drugbank.ca) [23], we
obtained the chemical structures of 1186 drugs, 1141
genes, and 4594 drug-gene associations (the polypeptides
and drugs whose targets are not in human cells are not
included).

From DGIdb (http://dgidb.genome.wustl.edu) [24],
MINT (http://mint.bio.uniroma2.it) [25] and UniProt
(http://www.uniprot.org) [26], we have collected 6988
genes, and 42162 gene-gene associations. Among
the genes, 1141 genes are associated with drugs (in
DrugBank), and 700 genes are associated with diseases.

From OMIM (https://omim.org) [27] and Gottlieb’s
data set [15], we downloaded 449 diseases and 700
related genes that form 1365 disease-gene associa-
tions. Furthermore, 1827 treatment relations between
302 of the 449 diseases and 551 drugs [15] were also
collected.


https://www.drugbank.ca
http://dgidb.genome.wustl.edu
http://mint.bio.uniroma2.it
http://www.uniprot.org
https://omim.org
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Fig. 1 The framework of this work. Firstly, multi-sources of data, such as drug substructures, disease phenotypes, protein-protein interactions (PPI),
gene profiles and network profiles, are well organized into three layers. Secondly, those information are utilized to calculate similarity scores as well
as drug-disease treatment priori. Thirdly, the similarity matrices and the priori are integrated to construct drug-disease pair graph. Finally, SSGC

To facilitate the data integration, we organized the het-
erogeneous data into three layers. The base layer provides
information on drug substructures and disease pheno-
types; the gene layer provides genes and gene-gene asso-
ciations information; and the treatment layer provides
drug-disease interactions information (left part of Fig. 1).

For convenience, we suppose there are m drugs (m =
1186), n diseases (n = 449), [ druggable genes (I =
6988), and g drug-disease pairs (g = m X n) hereinafter.
Moreover, we denote the k-order identity matrix as I,
matrix element multiplication and division as ® and @
respectively, and the shorthand for the Euclidean norm
as|e|.

Similarity calculation in the base layer

Our approach is mainly inspired by the assumption that
similar drugs might treat similar diseases. Hence, similar-
ity calculation is the key issue of our approach. Different
with other methods, we first computed drug-drug and
disease-disease similarities from three different aspects,
corresponding to the drug structures/disease phenotypes,
functional information of genes, and drug-disease treat-
ment relationships respectively; And then we integrated
three similarities into the comprehensive drug (disease)
similarity.

In the base layer, we calculate the drug-drug and
disease-disease similarities respectively according to
drug chemical substructures and disease phenotype
information.

Structural similarity between drugs

The SMILES (simplified molecular-input line-entry sys-
tem) strings [28] for all drug structures are obtained from
the DrugBank database, based on which the 2D finger-
prints of the drugs are calculated via Openbabel tool [29].

Using the fingerprints information, we can calculate the
Tanimoto score (the size of the intersection divided by the
size of the union) [30] and use it as the structural similar-
ity for each drug pair. Obviously, the drug-drug structural
similarity matrix, denoted as Sy, is an m x m symmetrical
matrix with diagonal elements being ones.

Phenotype similarity between diseases

The normalized phenotype similarity scores (ranging from 0
to 1) between diseases are obtained directly from MimMiner
(http://www.cmbirunl/MimMiner/suppl.html) [31] which
are constructed based on MeSH terms [32]. The n x n
disease-disease phenotype similarity matrix, Spy, is also an
symmetrical matrix with diagonal elements ones.

Similarity calculation in the gene layer

Since diseases (drugs) associated with the same genes
or genes in the same pathways are likely to have simi-
lar functional mechanism, we can measure the functional
similarities of the disease (drug) pairs according to the
associated genes’ information.

Gene-gene association measurement

Based on the gene-gene interaction network, we first
measure all gene pairs distances by using all-pairs
shortest path algorithm. Suppose the result gene-gene
distance matrix is Dg. For genes i and i, we then calculate
their association according to the following Perlman’s
formula [33]:

Se (i, i/) = ae_ng(i’i/)

where S, is the / x [ association matrix which is obviously
symmetrical and with diagonal elements ones; a and b
are two scalars that are respectively set to 0.3 and 1.0 by
experience.


http://www.cmbi.ru.nl/MimMiner/suppl.html
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Profile similarity between drugs or diseases

We first get the profile for each drug or disease according
to the drug-gene or disease-gene interaction informa-
tion. The profile is represented as an /-dimensional vector
in which every element corresponds to one gene and is
encoded as either 1 or 0 indicating whether the gene asso-
ciates with the drug or disease. Suppose the profiles of
drugs i and i are ¢; and c;., the profiles of disease j and
j are dj and d}/«. We then separately calculate the profile
similarities according to the following two fomulas:

See (1)

T
c; Sgcl./

| Tc . [T
c; Sgci ¢ Sgc;

T
di Sgd/

[d] Syd; /dfsgd/

where Sy is the m x m drug profile similarity matrix, and
Sga is the n x n disease profile similarity matrix. Obviously
they are symmetrical and with elements ones on the main
diagonal.

Sea (i) =

Similarity calculation in the treatment layer

If two drugs (diseases) share some diseases (drugs), they
might be similar. Therefore, the known drug-disease
associations can also be utilized to calculate the drug-
drug (disease-disease) similarities. According to the drug-
disease associations, we first build a drug-disease bipartite
graph, and then compute the drug-drug (disease-disease)
distances by using the all-pairs shortest path algorithm.
The distances can easily be converted into the similarity
scores according to the Perlman formula [33]:

S/tc (i, i/> = aeithc(i’i/); S/td <j,j/) = e P4 (j'j/)

where Dy, is the 551x 551 dimensional drug distance
matrix; Dy, is the 302x 302 dimensional disease distance
matrix. Accordingly, S;c is the 551x 551 dimensional drug
similarity matrix; S/t ,;, is the 302x 302 dimensional disease
similarity matrix. We set the scalars a and 5 to 0.9 and 1 by
experience, and set the self-similarity of a drug (disease)
to one.

It is noticeable that we have collected 1186 drugs and
449 diseases in all, yet we can only calculated the simi-
larities for 551 drugs and 302 diseases in the treatment
layer according to the information from Gottlieb’s data set.
Therefore, we adopt the same method as in [34] to project
those drugs (diseases) that do not occur in Gottlieb’s data
set into a unified network similarity space. By this way, we
can get all drug-drug (disease-disease) similarities from

/

St (S; d)' We denote the final similarity matrice in treat-

ment layer as S (m x m dimension) and Sy; (n x n
dimension) respectively.
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Integrating similarities from three layers

Similarity measurements respectively from three layers
can be integrated via various approaches. For simplifica-
tion, we just adopt the linear combination strategy in this
work. More sophisticated strategies will be considered
in the future. Concretely, the comprehensive drug-drug
(disease-disease) similarity matrix S, (S;) are obtained as
follows.

Se = acSpe + ﬂchc + VeSte (1)
Sa = a4Spa + BiSgd + VdSta (2)

where o, B¢, Ve, o4, Bg and y,; are combination weights
satisfying that o + B + y. = land oy + By + yg = 1.

To determine the values of «, B¢, Ve, 0g, Ba and yy, a
simple way to integrate the similarities is to assign equal
weights to each layer. However this integration strategy
has a weak point: the information from the layer with
much smaller scores might be neglected due to the inte-
gration, and vice verse. A more rational way is to make
each layer has equal contribution to the final results. In
this work, we adopted the latter strategy to integrate the
similarities from three layers.

Novel weighted drug-disease pair graph

There are m * n drug-disease pairs in all based on m
drugs and n diseases, where some pairs have known
treatment relationships according to the observed data
whereas others have not. The aim of this work is to
determine whether an unknown drug-disease pair has a
treatment relationship or not. We propose to construct a
novel weighted completed graph G = (V, E) for this pur-
pose, where V' = {(i,)|drug i € [1, m],disease j € [1,n]}.

E = {eals #ts=(0j)e[Lal.t=(/.]) € [Lq]} In
fact,s = (i—1) xn+j,t = (i/ — 1) xn—|—j/. For every edge

es;, we assign a weight to it as the similarity score between
two nodes that is calculated as follows:

W(s, t) = { Se (i’ ‘J) Sa (j’j/> R (3)

0, s=t

where W is the g x g weight matrix that is symmetrical
and with the diagonal elements zeros.

Obviously, In all g drug-disease pair nodes in the graph,
some drug-disease pairs have known treatment relation-
ships whereas others are unknown which need to be
predicted.

Let f = (fifor  oforee ,ﬁ])T,fS e {0,1} indicates
whether the drug-disease pair (i, /) has a treatment rela-
tionship or not. Then the problem of predicting the
drug-disease treatment relationships could be addressed
by determining the value of f. In this work, we consider
this problem as a graph cut problem [35], and cluster
all drug-disease pair nodes into two groups (treatment
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and non-treatment) by cutting the graph into several sub-
graphs so that pairs within the same sub-graph belong to
the same group.

Semi-supervised graph cut approach

Suppose the treatment label matrix obtained from the
databe Y (m x n). Yy is 1 if drug i can treat disease j, oth-
erwise 0. If drug i relates to genes or pathways that also
associated with disease j, then the drug would potentially
treat the disease. We take this priori knowledge into con-
sideration by introducing a priori matrix P (m x n), where
the element Pj; is calculated as the following:

c; Sg -0
,/c Sgcl /d Sed; (4)

Yy =1

P;/' =

Equation (4) illustrates that we only consider the priori
values of unknown drug-disease pairs.

Let Ar(Labeled) and Ay(Unlabeled) are two g x ¢
diagonal matrices indicating the treatment states of
drug-disease pairs observed from the data set; p =
Pp1Lp2 P »pq)T(ps = Py y = Ouyn-
Yoo s yq)T(ys = Yj). Obviously, y is the diagonal vector
of matrix AL; Ay = Iy — Az and AF = A, AN = Ay
ALY =Y, Aup = p.

We define a loss function Loss(f) to be minimized as
follows:

1
Loss(f) =1 Z W (s — f)°+
st

(5)

Iz §
SIALf =3P+ Sl Auf = piI?

Where 1 and £ are two parameters. Obviously, in order
to minimize Loss(f), f should meet the requirements that
similar drug-disease pairs should have similar treatment
relationships; the derived treatment relationships should
be in accord with the known observed facts and also
should be inclined to consistent with the priori knowl-
edge. In this work, we set © > & > 0 with the considera-
tion that violating the observed facts would receive greater
penalty than out of the priori knowledge. Obviously, the
f with the minimal Loss(f) corresponds to the optimal
graph cut.

Let A be a g x g diagonal matrix with diagonal vec-
tora = (a1, a2, ,ds,-- - ,dq), where ag = ), Wy =

D/ Se (z, )Z 1S4 (]]) — 1. Then we have

L Wl — 0 = oS - Wy ©)
s,t
Suppose L = A— W, obviously L is the Laplace matrix of
G, and the normalized matrix [36] isL = A~ V2LA~1/2 =
I; — A2 WAT12 Let § = A~Y2WA~1/2, then we have
L=1,-5.

Page 21 of 83

Hence, Eq. (5) turns into the following equation:

Loss(f) = 2fTLf-I- I ALf =yl +§ I Auf—pl?* (7)

According to the original definition of f, every element
fs € {0,1}, which makes the problem of minimizing
Loss(f) be NP-hard. We therefore relax the constraint and
let f; € [0, 1] hereinafter. Correspondingly, we can get the
derivative of Loss(f):

VLoss(f) = (g +un AL +Au) f—Sf — (uy +£p) (8)

To minimize Loss(f), VLoss(f) is expected to be O.
According to the gradient descent algorithm, VLoss(f) =
0 equals that Eq. (9) is convergent (« is a learning rate).

FED = f® _ o4 VLoss(f) lr=rto
= o[ —& ru+SIfP + 1 -0

Fortunately, Eq. (9) is convergent when setting o =
1/04+w),y=y+ %p and f© = 7 according to [37]. It
is expected to minimize Loss(f) by repeating the iterative
process until Eq. (9) converges. However, we find that the
memory consumption is too large when running the iter-
ation because of the extreme large matrix S (for example,
if n = 103, m = 102, then the dimension of S is 10'2).

Now that directly calculating Sf in Eq. (9) is space
expensive, we provide a method to calculate it without

explicit storage consumption. Let F and A are two 11 x m
auxiliary matrices respectively with elements as

Fij = fs = fli-1)xn+j
Aij = Va5 = JaG
LetA=A ®Z, then we have (A~1f); = (F @Z)ij and
(47" + )],
[A7Y2(1, + WHATV2f],
_ 5 Gt W
t

)

NN

Ly Se (i) FeySa (7))

Ai/j/

)

ij /7
1. -~ .
= Tsc(lr *) (F @A) Sd(*:])
where S.(i, %) represents the i-th row of matrix S, and
S4(%,j) indicates the j-th column of matrix S;. Therefore,
we have

S5 =[S (FoA)Si0A-FoA], (10)

Equation (10) implies that we can compute Sf with a
space complexity ® (max (2, m?)), rather than @ ((nm)?),
which enables the iteration process to go through on the
desktops.
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To sum up, the framework to find the optimal graph cut
is listed in Algorithm 1.

Algorithm 1 SSGC Algorithm
1: Input: fused comprehensive drug similarity matrix S,
(n x n) and comprehensive disease similarity matrix
S4 (m x m); label matrix Y (m X n); priori matrix P
(m x n), parameters u and & (u > & > 0).
2: Data preparation:

a=1/1+p)
U=1,x,—Y /*U indicates unlabeled pairs */
Y=Y+2P

Compute the vector a
Al, = Mand/l A ®A
5 Initialization: F© =Y
4: Iteration until convergence:
FOD = o[ (n—6)U @ F9 +
S(F0 @ S, 0A —F0 @A)+
(1-a)Y
5. Qutput: F

Results

Redundancy check of the data set

We desire to check the redundancy of the data set, since
high redundant data set could lead to worse general-
ization. The redundancy is measured by similarity score
distribution of drugs and diseases. Figure 2a shows the
similarity scores distribution of drugs. Obviously, the
number of drug pairs with high similarity score is small
(only 0.12% of the drug pairs have similarity scores larger
than 0.5) and the majority similarity scores are around
zeros. Figure 2b demonstrates the similarity scores distri-
bution of diseases, and the case is similar. Only 0.23% of
the disease pairs have similarity scores larger than 0.5, and
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the majority of the scores are around zeros. Therefore, we
can conclude that the majority similarity scores of both
drug pairs and disease pairs are small and the redundancy
of data set is negligible.

Rationality validation by guilt-by-association assumption
As multiple sources of information has been collected and
organized into three layers based on the inherent relation-
ships, we wish to illustrate the rationality and validity of
the collected information as well as the way to organize
them by guilt-by-association (GBA) principle. The basic
assumption of GBA is that similar drugs are inclined to
be associated with similar diseases and vice versa, which
implies two aspects: the drugs treating the same dis-
ease share structure/network properties and the diseases
treated by the same drug also share phenotype/network
properties. Therefore, similarity scores of drugs (diseases)
which share some diseases (drugs) should be apparently
greater than those which don’t share any diseases (drugs).
Obviously, the validation results (Table 1) on the data sup-
port the GBA assumption. At the same time, the GBA
ratios increase along with the layers, it is reasonable that
the higher layer integrates more information.

Setting of thresholds and combinations weights

Previous studies imply that small similarity scores are
usually noise data which provide little information and
sometimes even have adverse effect to the prediction per-
formance [20, 21]. Therefore, we chose thresholds to cut
off the small similarity scores. However, taking the thresh-
olds together, there are 12 parameters in Egs. (1) and
(2) in all, which makes it impractical to search all the
parameter space to get the optimal parameter settings.
For feasibility, we set the parameters based on two princi-
ples: (1) each layer has close GBA ratio; and (2) each layer
has nearly equal contribution to the ultimate similarity
matrices.

Drug frequency
(]

0 L
0.0 0.2 04 0.6 08 1.0
Similarity scores

(@) and (b) indicate self similarity scores

Disease frequency
-

[ ]

0 I L L
0.0 0.2 04 06 0.8 1.0
Similarity scores

Fig. 2 Similarity scores distribution. a Similarity scores distribution of drugs. b Similarity scores distribution of diseases. The right most bars of both




Wu et al. BMC Medical Genomics 2017, 10(Suppl 5):79 Page 23 of 83
Table 1 GBA analysis

Base layer Gene layer Treatment layer

avg-same avg-diff ratio avg-same avg-diff ratio avg-same avg-diff ratio
Drug 0.25 017 147 0.29 0.12 241 033 0.06 5.50
Disease 0.23 0.10 2.30 0.40 0.13 3.08 032 0.05 6.40

avg-same: represent the overall average similarity scores of drugs/diseases which share some diseases/drugs. avg-diff: represent the overall average similarity scores of

drugs/diseases which don't share any diseases/drugs. ratio = avg-same / avg-diff

Thresholds setting based on GBA assumption

We want to let each layer have similar GBA ratio.
Since the treatment layer achieves the highest GBA
ratios (Table 1), we set the similarities thresholds for
Stc, Stq to zeros and then accordingly choose the thresh-
olds for other two layers so that three layers have
similar GBA ratios. As a result, the thresholds of
Sber Sger Spa and Sgq are set to 0.1, 0.01, 0.14 and 0.01
respectively.

Integrating weights setting based on equal contribution
strategy

We want to let each layer have nearly equal contribu-
tion to the ultimate similarity matrices. After choosing of
thresholds, the average of each matrix (Spc, Sgc, Ste) Spa» Sga
and S;;) are calculated to be 0.017, 0.028, 0.057, 0.006,
0.028 and 0.038 respectively. Accordingly we can obtain
the combination weights by setting equal contributions to
each layer. If the average of one layer is small, we assign a
large weight to enhance its final effect, on the same time,
if the average of one layer is large, we assign a small weight
to weaken its final effect. By this strategy, we set «,, B, and
¥ to 0.53, 0.32 and 0.15; and a4, B4 and y,; to 0.72, 0.16
and 0.12 respectively.

Evaluating the performance of SSGC
Since SSGC is a network-based approach, we compared
it with three network-based methods (NBI, HGBI and

TL-HGBI) on Gottlieb’s data set using 10-folds cross
validation [15]. For fairness, we optimize the parame-
ters for each method by grid search: © = 4 and £ =
0.67 for SSGC, « = 0.7 for HGBI and « = 0.2 for
TL-HGBL

Using each of four algorithms, we can respectively pre-
dict a candidate drug list for every disease. We consider
each observed drug-disease pair in the data set has true
treatment relation (positive sample). Since we only have
positive samples, the calculation of the receiver operating
characteristic (ROC) curve is different from the standard
approach [21]. For an observed drug-disease pair in the
data set, if the treatment relation value (obtained from F)
is greater than the threshold, then it is regarded as a true
positive (TP), otherwise a false negative (FN). For other
pairs not observed in the data set, if the value is above
the threshold, then it is regarded as a false positive (FP),
othervise a true negative (TN). In this experiment, the
threshold is set 0.05. Accordingly, we can calculate the
true positive rate (TPR) and false positive rate (FPR) for a
given threshold as follows:

7’ R — FP
- TP+ FN’ - FP+ 1IN

As shown in Fig. 3 (left), SSGC method obtains higher
AUC score than the compared approaches.

At the same time, we investigate the number of correctly
retrieved known drug-disease pairs among the top ranked

TPR

x100
1.0 w20
L == SSGC
g EmHGBI
o 08 == TL-HGBI
2 £ 15/ mmnBI
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Fig. 3 Performance evaluation. The left panel is the ROC curves of original NBI, HGBI, TL-HGBI and SSGC. The right panel is the numbers of correctly
retrieved disease-drug interactions with respect to different percentiles
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prediction results. Figure 3 (right) shows that SSGC per-
forms the best. For example, among the 1827 known drug-
disease associations, 310 of them are retrieved among the
top 1% ranked predictions by SSGC, whereas only 170 (78)
of them are retrieved by HGBI (TL-HGBI).

Investigating the integration strategy

In order to investigate whether our comprehensive sim-
ilarities combination strategy contributes to the good
performance of SSGC, we try to modify the compared
methods so that they can adopt the same strategies. As
HGBI and TL-HGBI also utilize drug-drug and disease-
disease similarities to infer drug-disease interactions, it
is easy to modify them to employ the combined com-
prehensive similarities as our method does. At the same
time, SSGC can be turned to partly or fully adopt the
comprehensive similarities. After the modification, we can
investigate three methods in the way that multiple lay-
ers of data are added gradually. Because NBI method only
makes use of the topology structure of drug-disease asso-
ciation network, we do not include it in this comparing
experiment.

The experiment results (Table 2) show that three meth-
ods are neck and neck when just using the base layer.
While along with the addition of more layers of data,
SSGC and HGBI achieve considerable improvements in
performance, TL-HGBI differs little at first, but its perfor-
mance is also improved with information in all layers and
priori added in. The results reflect the effectiveness of the
comprehensive similarities obtained by our integration
strategy. It is interesting to find that SSGC can be modi-
fied to be HGBI when setting Wy = S.(i,i)S4(,j ), p = 0
and p = &, HGBI is a particular case of SSGC. Compared
with HGBI, SSGC has better performance, which illus-
trates that SSGC benefits from introducing prior knowl-
edge and removing the self-loops in the heterogeneous
network.

Validating the predicted drug-disease associations
Distribution of predicted values

The overview of predicted interaction values is shown in
Fig. 4. From the histogram we can see that the predicted

Table 2 AUC scores of different algorithms modified to integrate
different layers

SSGC HGBI TL-HGBI
base 0.80 0.78 0.74
base + gene 0.87 0.85 0.74
base + gene + network 093 091 0.75
base + gene + network + priori 0.95 093 0.84

The valuesin bold are the original AUC scores of three algorithms before modification.
To investigate the effect of integration strategy of SSGC, we modified three algorithms
to integrate different layers and got other AUC scores listed in the table
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values of most of drug-disease pairs are around zeros (In
fact, there are only 20% of the pairs with predicted val-
ues bigger than 0.1), suggesting that only a small part of
the unknown drug-disease pairs have repositioning rela-
tions, which is consistent with the common sense that the
drug-disease treatments are specific. And the predicted
values of drug-disease pairs with known treatment rela-
tionships are above 0.8, but it is not easy to find them in
the histogram. To display the distribution of significant
predicted values more clearly, we further ploted a subplot
in Fig. 4. The predicted values of pairs with known treat-
ment relations (red points) are larger than most of pairs
with unknown relations (blue points), which also indi-
cates that our method can capture the known knowledge
very well.

Validation in tissue-specific expression data

If a disease is manifested in a tissue in which the tar-
gets (genes) of a drug are also expressed, then the
drug is more likely to have treatment association with
the disease. Based on this hypothesis, we utilize tissue-
specific expression data to check whether our predicted
results are reasonable or not. On one hand, we gather
the disease-tissue associations from literature [38]. On
the other hand, we get target-tissue (gene-tissue) asso-
ciations from tissue-specific gene expression data [39],
then further obtain the drug-tissue associations. We
observe the predicted association scores of drug-disease
pairs associated with the same tissue (Table 3). As
expected, those scores (from 0.09 to 0.33) are far greater
than the average (0.014) of all drug-disease association
scores, which further shows the efficiency and ratio-
nality of SSGC to discover the potential drug-disease
associations.

Case studies for potential drug-disease relations

We select four diseases as case studies: Huntington
disease (HD, OMIM 143100), Non-small-cell lung can-
cer (NSCLC, OMIM 211980), Alcohol dependence (AD,
OMIM 103780) and Small-cell lung cancer (SCLC, OMIM
182280). After excluding the known approved drugs
which are also predicted in the results (value > 0.8), we
observe other predicted top-20 ranked drugs. The investi-
gation of the predicted drug-disease associations included
three parts as follows.

Investigation of the pathways overlapping between the
disease and drugs

For a specific disease, if the related pathways of the
drugs are overlapped with those of the disease, the pre-
diction results should be convincible. Therefore, we first
extracted the disease related genes from OMIM, and the
target genes of the top-20 drugs from DrugBank; and
then we got the enriched pathways of the two gene sets
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Fig. 4 The overview of the predicted scores. The histogram represents the distribution of predicted values of all drug-disease pairs. The red and blue
points in the subplot represent the predicted values of observed true treatment relations and other drug-disease pairs (unknown treatment
relations) respectively

respectively with DAVID [40, 41], and investigated the
overlap between them.

For HD, each of the top-20 ranked drugs has KEGG
pathways overlapping with the disease pathways, shown
in Fig. 5. The overlapped pathways are “Neuroactive
ligand-receptor interaction’;, “Calcium signaling pathway’,
“Serotonergic synapse’, “Dopaminergic synapse’, “CAMP
signaling pathway” and “Cocaine addiction” Each drug
has 5 overlapped pathways in average.

For NSCLC, 11 of the top-20 drugs have overlapped
KEGG pathways with the disease pathways, shown in
Fig. 6. Especially, Caffeine (DB00201) has 12 overlapped
pathways, Sorafenib (DB00398) and Bosutinib (DB06616)

Table 3 The drug-disease pairs related to the same tissue

have 10 overlapped pathways, Regorafenib (DB08896) has
9 overlapped pathways.

For AD, 18 of the top-20 drugs have overlapped KEGG
pathways with the disease pathways, shown in Fig. 7. The
overlapped pathways are “Calcium signaling pathway’,
“Neuroactive ligand-receptor interaction’, “Serotonergic
synapse” and “Gap junction”.

For SCLC, Carboplatin (DB00958) , Adenosine triphos-
phate (DB00171) and Glutathione (DB00143) have over-
lapped KEGG pathways with the disease pathways. The
overlapped pathways are “ABC transporters’, “Bile secre-
tion” and “Drug metabolism - cytochrome P450’, which
are shown in Fig. 8. Besides, Sorafenib (DB00398),

Tissue Drug Disease Value
Pancreas Acetylsalicylic acid (DB00945) Diabetes Mellitus, Noninsulin-Dependent (125853) 0.20
Pancreas Acetylsalicylic acid (DB00945) Cystic fibrosis by Pseudomonas aeruginosa (219700) 032
Pancreas Acetaminophen (DB00316) Diabetes Mellitus, Noninsulin-Dependent (125853) 0.13
Pancreas Acetaminophen (DB00316) Cystic fibrosis by Pseudomonas aeruginosa (219700) 0.26
Skeletal Muscle Acetaminophen (DB00316) Myasthenic syndrome (601462) 0.22
Skin Lorazepam (DB00186) Immunodysregulation, Polyendo-crinopathy, And X-Linked Enteropathy (304790) 0.17
Testis Lorazepam (DB00186) Persistent Mullerian duct syndrome, type Il (261550) 0.09
Testis Alprazolam (DB00404) Persistent Mullerian duct syndrome, type Il (261550) 0.10
Testis Acetaminophen (DB00316) Persistent Mullerian duct syndrome, type Il (261550) 0.24
Heart Acetylsalicylic acid (DB00945) Thrombosis, Susceptibility to thrombin defect; thph1 (188050) 0.20
Heart Acetaminophen (DB00316) Thrombosis, Susceptibility to thrombin defect; thph1 (188050) 033
Heart Acetaminophen (DB00316) Afibrinogenemia, congenital (202400) 0.25
Heart Acetylsalicylic acid (DB00945) Afibrinogenemia, congenital (202400) 0.24
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treat Huntington disease, the red vee nodes represent overlapped KEGG pathways between drugs and Huntington disease

Regorafenib (DB08896) and Ponatinib (DB08901) have
cancer related pathways, such as “Pathways in cancer’,
“Central carbon metabolism in cancer” and “Proteoglycans
in cancer”.

Verification in CTD database

The Comparative Toxicogenomics Database (CTD, http://
ctdbase.org) provides information about associations
among chemicals, genes and diseases [42]. We search
these four diseases in the CTD database, and their related
chemicals will be listed out. These listed chemicals are

associated with the disease or its descendants. If a chem-
ical has a curated association to the disease, it will be
signed with “marker/mechanism” or “therapeutic” in the
“Direct Evidence” item, otherwise if the chemical just has
inferred association via a curated gene interaction, there
is no sign in “Direct Evidence” item. To evaluate our
approach, we check the top-20 ranked drugs predicted in
our method one by one to verify whether the drug-disease
interaction can be found in CTD database (Table 4).

As shown in Table 4, Five drugs are associated with HD,
Olanzapine (DB00334) and Aripiprazole (DB01238) have

Pancreatic cancer

Non-small cell lung cancer
ErbB signaling pathway S

Bladder cancer¥
Proteoglycans in cancer

A\
Prostate cancer¥._ \

Chemical carcinogenesisyY—
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@Adenosine triphosphate
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Fig. 6 Overlapped KEGG pathways between Non-small-cell lung cancer and the predicted drugs. The blue hexagon nodes represent drugs predicted
to treat Non-small-cell lung cancer, the red vee nodes represent overlapped KEGG pathways between drugs and Non-small-cell lung cancer
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curated association to HD, which are signed with “T”
in the “Direct Evidence” item. Eleven drugs are asso-
ciated with NSCLC, Carboplatin (DB00958), Epirubicin
(DB00445) and Cisplatin (DB00515) have curated asso-
ciation to NSCLC. Seven drugs have association to
AD, Lorazepam (DB00186) has curated association to
AD. Nine drugs are associated with SCLC, Carboplatin
(DB00958), Irinotecan (DB00762), Doxorubicin (DB00997)
and Epirubicin (DB00445) have curated association
to SCLC.

Verification in literature

To further examine the predicted results, we check them
using literature support, and list out the drugs which have
been verified in the published papers (Table 5). Among
the top ranked drugs, six drugs have been reported in the
treatment of HD [43-48]; three drugs have been found to
treat NSCLC [49-51]; the study of Butriptyline (DB09016)
on AD has already been reported by Pani etc [52], and
the clinical trial of drug Lorazepam (DB00186) on AD

has already been done [53]; Carboplatin (DB00958),
Irinotecan (DB00762), Doxorubicin (DB00997) and
Epirubicin (DB00445) have already been studied to treat
SCLC [54-58].

All above results have demonstrated the effectiveness
of our approach to discover the potential drug-disease
interactions.

Discussion and conclusion

In this paper, we propose a novel method, SSGC, to
uncover the potential associations between drugs and dis-
eases. The main contributions are as follows: Firstly, we
have presented a hierarchial framework to integrate multi-
ple source of data, including information of drug substruc-
tures, disease phenotypes, gene-gene interactions, and
known drug-disease treatment relationships. The integra-
tion framework can be easily extended to integrate more
data. Secondly, we measured the comprehensive similar-
ities of drugs and diseases from multi-view and multi-
ple layers, which is different with many other methods

Bile secretion

ABC transporters

Drug metabolism\- cytochrome P450

Adenosine triphosphate

Carboplatin

Glutathione

Fig. 8 Overlapped KEGG pathways between Small-cell lung cancer and the predicted drugs. The blue hexagon nodes represent drugs predicted to
treat Small-cell lung cancer, the red vee nodes represent overlapped KEGG pathways between drugs and Small-cell lung cancer
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Table 4 The top-ranked predictions for selected diseases(Verification in CTD database)
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Disease Known drugs Part of top-ranked predictions Direct evidence
HD (143100) Baclofen (DB0O0181) Clozapine (DB00363, rank:01)
Tetrabenazine (DB04844) Olanzapine (DB00334, rank:03) T
Aripiprazole (DB01238, rank:06) T
Amitriptyline (DB00321, rank:10)
Risperidone (DB00734, rank:12)
NSCLC (211980) Doxorubicin (DB00997) Carboplatin (DB00958, rank:01) T
Adenosine triphosphate (DB00171, rank:02)
Glutathione (DB00143, rank:05)
Ponatinib (DB08901, rank:09)
Sorafenib (DB00398, rank:10)
Dasatinib (DB01254, rank:14)
Daunorubicin (DB00694, rank:15)
Epirubicin (DB00445, rank:16) T
Bosutinib (DB06616, rank:18)
Caffeine (DB00201, rank:19)
Cisplatin (DB00515, rank:20)
AD (103780) Citalopram (DB00215) Lorazepam (DB00186, rank:04) T
Chlordiazepoxide (DB00475) Diazepam (DB00829, rank:10)
Acamprosate (DB00659) Clomipramine (DB01242, rank:13)
Naltrexone (DB00704) Flunitrazepam (DB01544, rank:14)
Disulfiram (DB00822) Adenosine triphosphate (DB00171, rank:17)
Ondansetron (DB00904) Trazodone (DB00656, rank:18)
Imipramine (DB00458, rank:20)
SCLC (182280) Cisplatin (DB00515) Carboplatin (DB00958, rank:01) T
Methotrexate (DB00563) Adenosine triphosphate (DB00171, rank:02)
Teniposide (DB00444) Irinotecan (DB00762, rank:04) T
Etoposide (DB00773) Glutathione (DB00143, rank:07)
Topotecan (DB01030) Doxorubicin (DB00997, rank:09) T
Daunorubicin (DB00694, rank:11)
Sorafenib (DB00398, rank:13)
Ponatinib (DB08901, rank:16)
Epirubicin (DB00445, rank:18) T

In the “Direct Evidence” item, according to the instructions in CTD database, “T" means “therapeutic”, i.e., the drug has a curated association to the disease, other top-ranked
drugs aren't signed with “T" in this table means that they have an inferred association via a curated gene interaction

Table 5 The top-ranked predictions for selected diseases(Verification in literature)

Disease

Known drugs (DrugBank IDs)

Part of top-ranked predictions

HD (143100)

NSCLC (211980)

AD (103780)

SCLC (182280)

Baclofen (DB00181)

Tetrabenazine (DB04844)

Doxorubicin (DB00997)

Citalopram (DB00215)
Chlordiazepoxide (DB00475)
Acamprosate (DB00659)
Naltrexone (DB00704)
Disulfiram (DB00822)
Ondansetron (DB00904)

Cisplatin (DB00515)
Methotrexate (DB00563)
Teniposide (DB00444)
Etoposide (DB00773)
Topotecan (DB01030)

Clozapine (DB00363, rank:01)

Olanzapine (DB00334, rank:03)
Ziprasidone (DB00246, rank:05)
Aripiprazole (DB01238, rank:06)
Quetiapine (DB01224, rank:07)
Risperidone (DB00734, rank:12)

Carboplatin (DB00958, rank:01)
Epirubicin (DB00445, rank:16)
Cisplatin (DB00515, rank:20)

Butriptyline (DB09016, rank:03)
Lorazepam (DB00186, rank:04)

Carboplatin (DB00958, rank:01)
Irinotecan (DB00762, rank:04)
Doxorubicin (DB00997, rank:09)
Epirubicin (DB00445, rank:18)
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that just obtain the similarity from the chemical struc-
ture and the disease phenotype. The base layer reflects
the drug structural similarity and disease phenotype sim-
ilarity, which are the original features. The gene layer
reflects the functional similarities of drugs and diseases,
which are calculated based on the assumption that dis-
eases (drugs) associated with some common genes or
gene pathways might have analogous functional mecha-
nism. The treatment layer takes the known drug-disease
relationships into account, which can improve the similar-
ities of drugs and diseases. Therefore, the comprehensive
similarities can improve the prediction accuracy and are
easily interpretable. Thirdly, we model the prediction as a
graph cut problem, and develop a semi-supervised algo-
rithm, SSGC, to resolve it. The experimental results imply
that SSGC significantly outperforms three representative
approaches. Besides, KEGG pathway enrichment analysis
and the validations via CTD database and literature also
demonstrated that SSGC is useful to predict the poten-
tial associations between drugs and diseases. In fact, the
proposed SSGC algorithm can also be used in other rec-
ommendation systems, such as recommending products
to customers.

Of course, there is a long way to go in the process
of drug discovery. And there are many other types of
data (side effect data of chemicals, clinical symptoms and
signs, and so on) could be utilized to predict drug-disease
interactions. For example, Rastegar-Mojarad et al. utilized
phenome-wide association studies (PheWAS) data and
further expanded the horizon for the prediction of drug-
disease interactions [59]. However, how to fuse multiple
sources of data more properly and rationally and how to
develop prediction models with better performance and
interpretability are still full of challenges.
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