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Abstract

Background: Recent advances in omics technologies have raised great opportunities to study large-scale regulatory
networks inside the cell. In addition, single-cell experiments have measured the gene and protein activities in a large
number of cells under the same experimental conditions. However, a significant challenge in computational biology
and bioinformatics is how to derive quantitative information from the single-cell observations and how to develop
sophisticated mathematical models to describe the dynamic properties of regulatory networks using the derived
quantitative information.

Methods: This work designs an integrated approach to reverse-engineer gene networks for regulating early blood
development based on singel-cell experimental observations. The wanderlust algorithm is initially used to develop
the pseudo-trajectory for the activities of a number of genes. Since the gene expression data in the developed
pseudo-trajectory show large fluctuations, we then use Gaussian process regression methods to smooth the gene
express data in order to obtain pseudo-trajectories with much less fluctuations. The proposed integrated framework
consists of both bioinformatics algorithms to reconstruct the regulatory network and mathematical models using
differential equations to describe the dynamics of gene expression.

Results: The developed approach is applied to study the network regulating early blood cell development. A graphic
model is constructed for a regulatory network with forty genes and a dynamic model using differential equations is
developed for a network of nine genes. Numerical results suggests that the proposed model is able to match
experimental data very well. We also examine the networks with more regulatory relations and numerical results
show that more regulations may exist. We test the possibility of auto-regulation but numerical simulations do not
support the positive auto-regulation. In addition, robustness is used as an importantly additional criterion to select
candidate networks.

Conclusion: The research results in this work shows that the developed approach is an efficient and effective
method to reverse-engineer gene networks using single-cell experimental observations.
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Background

The advances in omics technologies have generated huge
amount of information regarding gene expression levels
and protein kinase activities. The availability of the large
datasets provides unprecidental opportunities to study
large-scale regulatory networks inside the cell by using
various types of omics datasets [1, 2]. The majority of
the generated datasets are based on the measurements
using a population of cells. However, biological experi-
ments and theoretical studies have suggested that noise
is a very import factor to determine the dynamics of bio-
logical systems [3—5]. In recent years, a number of exper-
imental tools including single-cell qPCR, single-cell RNA
sequencing, and multiplex single-cell proteomic methods,
have been used for lineage tracing of cellular phenotypes,
understanding cellular functionality, and high-throughput
drug screening [6-8]. A centre theme in single-cell study
is the highly heterogeneity at virtually all molecular levels
beyond the genome [9]. The availability of large amount
single-cell data has stimulated great interests in bioin-
formatics studies for analysing, understanding and visu-
alizing single-cell data. A particular interesting research
problem is the development of regulatory network models
using single-cell observation data [10-12].

Mathematical methods for the analysis of single-
cell observation data is mainly for normalization of
experimental data, identification of variable genes,
sub-population identification, differentiation detection
and pseudo-temporal ordering [13]. These top-down
approaches are mainly based on statistical analysis and
machine learning techniques, and thus are able to deal
with large-scale single-cell datasets [14]. For example, the
algorithm Wanderlust represents each cell as a node and
then ensemble cells into k-nearest neighbour graphs [15].
For each graph, it computes iteratively the shortest-
path distance between cells. Another important type
of approaches is the graphic model that represents the
connection and/or regulations between genes and pro-
teins. Different methods, such as the probabilistic graphic
model, linear regression model, Bayesian network and
Boolean network, have been applied to develop the regu-
latory networks [16-21].

One of the major challenges in computational biology is
the development of dynamic models, such as differential
equation models, to study the dynamic properties of
genetic regulatory networks [17, 22, 23]. There are two
major steps in designing a dynamic model, namely to
determine the structure of network by specifying the con-
nection and regulation between genes and proteins [19],
and to quantify the strength of regulations [24]. In the
last decade, a number of approaches have been applied
to design dynamic models, including differential equation
model, neural network model, petri-network model, and
chemical reaction systems [25-29]. Recently we have
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proposed an integrated framework that combines both
the probabilistic graphic model and differential equation
model to infer the p53 gene networks that regulating
the apoptosis process [30]. Regarding single-cell data, an
additional step is to develop the pseudo-temporal tra-
jectory by assuming each cell is uniformly distributed at
different time points of the evolutionary process. A num-
ber of methods have been developed to analyse single-cell
data [15, 31-35]. For example, The dimensionality reduc-
tion methods and cellular trajectory learning technique
have been used to reverse-engineer the regulatory net-
work by using differential equation based models [31]. In
addition, the Single Cell Network Synthesis(SCNS) toolkit
has been designed to develop regulatory network using
single-cell experimental observation [36, 37]. Although
these methods use either logistic models or dynamic
models to infer genetic networks, a number of issues still
remains, such as inference of network structure, develop-
ment of appropriate dynamic models, and estimation of
model parameters in the dynamic model.

To address these issues, this work propose a novel
approach to reverse-engineer gene networks using single-
cell observations. To get pseudo-temporal ordering of
single cells, we first use a method of dimensionality
reduction, namely diffusion maps [36, 37], to get the
lower dimensional structure of gene expression data, and
then use the wanderlust algorithm [15] to order single
cells according to their relative position in the cell cycle.
Since there is substantial noise in the generated pseudo-
trajectory data, the Gaussian processes regression method
is used to smooth the expression data [38]. Then the
GENIE3 algorithm is employed to infer the structure of
gene regulatory network [39]. Using single-cell quanti-
tative real-time reverse transcription-PCR analysis of 33
transcription factors and additional marker genes in 3934
cells with blood-forming potential, we develop a graphic
model for the network of 40 genes and dynamic model for
a network of nine genes.

Methods

Experimental data

A recent experimental study used the single-cell qPCR
technique to identify the expression levels of 46 genes in
3934 single stem cells that were isolated from the mouse
embryo [37]. The FIkl expression in combination with a
Runx1-ires-GFP report mouse was used to measure cells
with blood potential at distinct anatomical stages across
a time course of mouse development. Single FIKI™ cells
were flow sorted at primitive streak (PS), neural plate (NP)
and head fold (HF) stages. In addition, the E8.25 cells
were subdivided into putative blood and endothelial pop-
ulations by isolating GFP™ cells (four somite, 4SG) and
FIKIT GFP~ cells (4SFG™), respectively. Cells were sorted
from multiple embryos at each time point, with 3934
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cells going to subsequent analysis. Experimental study
quantified the expression of 33 transcriptional factors
involved in endothelial and hematopoietic development,
nine marker genes, including the embryonic globin Hbb-
bHI and cell surface marker such as CdhS and Itga2b
(CD41), as well as four reference housekeeping genes (i.e.
Eif2b1, Mrpl19, Polr2a and UBC). We select 40 genes from
this dataset but exclude four house-keeper genes and two
other genes (i.e. HoxB2 and HoxD8) because the variations
in the expression levels of these fix genes are relative small.

The dCt values in Supplementary Table 3 [37] repre-
sent the relative gene expression levels. These values will
be employed as experimental data to reverse-engineer the
regulatory network of the remaining 40 genes in this work.
Note that the majority of these dCt values are negative. It
would be difficult to use a dynamic model to describe the
data with negative values. Therefore we conduct a shift
computation by assuming that the minimal dCt value is
zero in “Mathematical modelling” subsection.

Pseudo-temporal ordering

The process of pseudo-temporal ordering can be divided
two major steps. The first step uses Diffusion Maps
for lower-dimensional visualization of high-dimensional
gene expression data, then the Wanderlust algorithm is
employed to order the individual cells to get the trends of
different genes.

Diffusion Map is a manifold learning technique for deal-
ing with dimensionality reduction by re-organizing data
according to their underlying geometry. It is a nonlinear
approach of visual exploration and describes the rela-
tionship between individual points using lower dimension
structure that encapsulates the data [31]. An isotropic
diffusion Gaussian kernel is defined as

lla; — ]2
W (%, %)) = exp (_ZZSJ , 1)

where x; = (xl(l), e ,x;D)

>,i = 1,...,N, is the expres-
sion data of gene i, D is the number of single-cell, |- || is the
Euclidean norm, and ¢ is an appropriately chosen kernel
bandwidth parameter which determines the neighbour-
hood size of points. In addition, an N x N Markov matrix
normalizing the rows of the kernel matrix is constructed

as follows:
We (xi,%))
M= ——=, ()

P(xi)

where P(x;) is an normalization constant given by P(x;) =
Zi We(xi,%j). Mjj represents the connectivity between
two data points x; and x;. It is also a measure of similar-
ity between data points within a certain neighbourhood.
Finally we compute eigenvalues and eigenvectors of this
Markov matrix, and choose the largest d eigenvalues. The
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corresponding d eigenvectors are the output as the lower
dimensional dataset Y;,i = 1,...d.

Using the generated low dimensional dataset, we use
the Wanderlust algorithm to get a one-dimensional devel-
opmental trajectory. There are several assumptions about
the application Wanderlust to sort gene expression data
from single cells. Firstly, the data sample includes cells of
entire developmental process. In addition, the develop-
mental trajectory is linear and non-branching, it means
that the developmental processes is only one-dimensional.
Furthermore, the changes of gene expression values is
gradual during the developmental process, and thus the
transitions between different stages are gradual. Based on
these assumptions, we can infer the ordering of single cells
and identify different stages in the cell development by
using the Wanderlust algorithm.

The Wanderlust algorithm also consists of two major
stages, namely an initiation step and an iterative step for
trajectory detection. In the first stage, we select a set of
cells as landmarks uniformly at random. Each cell will
have landmarks nearby. Then we construct a k-nearest-
neighbours graph that every cell connect to k cells that
are most similar to it, then we randomly pick / neighbours
out of the k-nearest-neighbours for each cell and generate
a [-out-of-k-nearest-neighbours graph (I-k-NNG). Then
the second stage begins for the trajectory detection. One
early cell point s should be selected first in this algorithm,
which serves as the starting point of psuedo-trajectory.
The point s can be determined by the Diffusion Maps
method in the first. For every single cell, the initial tra-
jectory score can be calculated as the distance from the
starting-point cell s to that cell.

For each cell ¢ with early cell s and landmark cell /, if
d(s,t) < d(s,I), then t precedes [, otherwise ¢ follows [ in
the pseudo-trajectory. For each landmark cell, we define a
weight as

dd, v)?
ELCL) 3
Wit Zm d(l, Wl)2 ( )
and the trajectory score for ¢ is defined as
d,t
Score; = Z ( )Wl,t: (4)

where n; is the number of landmark cells and the sum-
mation is over all landmarks /. The scores also include
the beginning cell and landmarks. Then we use trajec-
tory score as a new orientation trajectory and repeat the
orientation step until landmark positions converge.

Data smooth

The pseudo-trajectory gene expression data determined
by the Wanderlust algorithm have a large variations in
the gene expression levels. Thus we use the Gaussian
processes regression method for smoothing the noisy
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data. The Gaussian processes regression is a generative
non-parametric approach for modelling probability dis-
tributions over functions. It begins with a prior distribu-
tion and updates this distribution when data points are
observed, and finally produces the posterior distribution
over functions [38].

Assume that we have the ordered data D = {t,y}. The
observation y can be regarded as samples of random vari-
ables with the underlying distribution function f (t), which
is described by a Gaussian noise model:

Y=/ +€e~N(0,0%).

We want to make prediction of the system state y* at a
point £* based on the above model. The joint distribution
of y and y* is:

vy K KT
BRI CIF#

Here K is a kernel trick to connect two observations.
One popular choice for the kernel is the squared exponen-
tial covariance function, defined by

K(t,¢) =o”exp |:_(t_t/)2i|

212

where o2 is a signal variance parameter and / is a length

scale parameter. If ¢ ~ ¢, it means that f(¢) is highly
correlated with f(¢'). However, if ¢ is distant from ¢/,
K(t,t') ~ 0, the two points is largely uncorrelated with
each other. Finally the posterior distribution is given by
¥y ~ N(p, X) with:

p=K.[K+0*] "y
¥ = K — K [K+ 0% KT

Networks construction

In this work the GENIE3 algorithm will be employed
for reconstruction of regulatory network using the deter-
mined pseudo-temporal trajectory based on single-cell
data in [40]. Instead of considering the regulation in a
whole network, this method studies the inference accu-
racy of N genes separately by using the regression model.
In this regression model, the expression level of a partic-
ular gene is described by the regulatory function that is
determined by the expression of the other N — 1 genes,
given by

s =6 (m ) +e, (5)

where x(=) = (x(l), .. .,x(/_l),x(7+1), .. .,x(N))T, € isaran-
dom noise with zero mean, and function f; is designed to
search for genes that regulate the expression of gene x)
using a random forest method. The function only exploits
the expression in x/ of the genes that are direct regu-
lators of gene j, i.e. genes that are directly connected to
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gene j in the targeted network. For each gene, a learning
sample is generated with the expression levels of that gene
as the output by using and expression levels of all other
genes as input. A function is learned from the data and a
local ranking of all genes except j is computed. The N local
rankings are then aggregated to get a global ranking of all
regulatory links.

The nature of function f; is unknown but they are
expected to involve the expression of several genes (com-
binatorial regulation) and to be non-linear. Each sub-
problem, defined by a learning sample, is a supervised
(non-parametric) regression problem. Using square error
loss, each problem amounts at finding a function that
minimizes the following error:

5 (-5 (=) ©)

Note that, depending of the interpretation of the weight,
the aggregation to get a global ranking of regulatory links
is not trivial. It requires to normalize each expression vec-
tor appropriately in the context of this tree-based method.

Mathematical modelling

We have designed a modelling framework by using dif-
ferential equations to study the genetic regulations based
on microarray gene expression data [30]. This general
approach is be extended to develop dynamic models using
single-cell expression data. Using the notations intro-
duced in previous subsection, the expression levels of the
i-th gene is denoted as x;(¢) at time £. The evolution
of gene expression levels is described by the following
dynamic model using differential equations, given by

dxi

E:Ci‘i‘kif(xl»”-

where ¢; and k; are the basal and maximal synthesis rate
of gene i in gene expression, respectively, d; is the decay
rate of transcript. The key point is the selection of the
regulatory function, which should include both positive
and negative regulations appropriately. Based on the Shea-
Ackers’ formula [41], this work uses the following function

rxN)_dixi; l:1,,N (7)

fi= aiix1(t) + ...+ ainxn(t) (8)
T+ bax1(t) + ...+ binxn(2)

Coefficients a;; represents regulation from gene j to
the expression of gene i. This regulation may be positive
(a; > 0) or negative (a;; = 0) if the corresponding coef-
ficient (b; > 0). For example, if a; > 0, a larger value in
the expression level of gene j will promote the expression
level of gene i. However, if a; = 0, a higher expression
level of gene j will only increase the value of denominator
of the regulatory function and thus decrease its value. This
model assumes that, if b;; = 0, then the coefficient ;; must
be zero. In addition, it may be no regulatory relationship
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from gene j to gene i if (a; = b; = 0). Since there is no
time scale for experiment, is is assumed that each cell in
the pseudo-trajectory is a unit time. Thus the time period
of model is [0, 3933] since there are 3934 single cells.

Note that the proposed model (7) is based on the
assumption that the expression levels x;(¢) > 0. How-
ever, the majority of the experimental data are negative.
To address this issue, we conduct a linear transformation
in order to change the negative values of dCt to posi-
tive values, denoted as dCt;. For each gene, we assume
the minimal value of the dCt values is zero and the shift
computation is

dCt (gene i) = dCto(gene i) + |min(dCty(gene i))|

It is clear that the transformed value dCt; is always non-
negative.

We use the Approximate Bayesian Computation (ABC)
rejection sampling algorithm [42, 43] to search for the
optimal model parameters. The uniform distribution is
used as the prior distribution of the unknown parameters.
Since the value of dCt; may be quite large, we use the rel-
ative absolute error the measure the difference between
simulations and experimental data, given by

oy i

i=1 j= 1max1{ l}}

|x11 - x

)

where x and x;; are the simulated and experimentally
measured gene expression levels at time point ¢ for gene i,
respectively. Due to the large number of single cells, which
leads to a long range of time period for numerical simu-
lation of model (7), the proposed model is stiff and sim-
ulation frequently breaks down when the search space is
not very small. Thus instead of obtaining simulation of the
whole time interval, we consider the numerical solution
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over k pseudo-time points and calculate the transfer
probability

N/k
L(0) = fo [(to,%0)16] nf([(tkirxki) [ (tkG—1)+1, ¥ki—1)+1) 30]) »
i=1
In this work we choose k = 100 and assume that
Jfo [(t0,%0)|0] = 1 and the transitional probability is calcu-
lated by using the absolute error kernel, given by

I ([ ) | (Brii—1) 41 Fa(i—1)+1) 5 6]) = Ei
L
where E; is the simulation error (9) using (fxi—1)+1,
Xk(i—1)+1) as the initial condition.

Since different sets of estimated model parameters may
generate simulations with similar simulation error, we
use the robustness property of the mathematical model
as an additional criterion to select the estimated model
parameters [44, 45]. The detailed computing process of
robustness analysis can be found in [30]. For each module
of gene regulation, we use the ABC algorithm to gener-
ate a number of sets of model parameters, and then select
the top 5 sets that have the minimal estimation error for
robustness analysis. In this way, we are able to exclude the
influence of simulation error on the robustness property
of the model.

Results and discussion

Diffusion map visualization

Using the single cell data, a Diffusion Map algorithm is
first employed to visualize the dataset [31]. The purpose
of this step is to reduce the dimension of dataset and
provide the pattern of the data in the three-dimensional
space. Generally we choose three eigenvectors of the ker-
nel matrix (2) for visualization. These three eigenvectors
are those that have the largest eigenvalues. Figure 1 gives

D3

Fig. 1 Diffusion map of 3934 single cells using the gPCR data
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the diffusion coordinates for the first, second and third
largest eigenvalues. It shows that all the data points in
the development trajectory form only one branch. This
result shows that the single cell dataset is appropriate
for generating a pseudo-temporal trajectory by using the
Wanderlust algorithm. This analysis also provides a single
cell that will be used the first cell in the development of
the pseudo-temporal trajectory.

Wanderlust ordering

After determining the starting cell s in the previous
section, the Wanderlust algorithm is then employed to
obtain the pseudo-temporal trajectory for the expres-
sion dynamics of genes. In this program, the widely
used Euclidean measure is used to calculate the distance
between different cells. Figure 2 provides the determined
pseudo-temporal trajectory of four genes based on the raw
dCt data in [31]. Based on the generated pseudo-temporal
trajectory, we find that the expression levels of the four
housekeeping genes are barely changed. Similar observa-
tions can also be applied to the expression levels of genes
HoxB2 and HoxD8. Therefore we will not consider these
six genes in the network development.

The pseudo-temporal trajectory has large variations in
the expression levels of every gene. Thus it is very diffi-
cult to use differential equation model to realize such data
with large variation. To address issue, the Gauss process
regression method is used to remove the variations in the
data and produce more smooth trajectory. Figure 2 also
provides the pseudo-temporal trajectory after the smooth
process for the four genes. Compared with the raw dCt
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data with large variations, the smoothed data for the same
gene have much smaller fluctuations in the expression
levels.

One characteristics of the expression levels is that all
genes (excluding the six genes) have both high and low
expression levels. Genetic switching exists in the expres-
sion levels. Based on the time interval with high or low
expression levels, the processed data can be classified into
a number of patterns. For example, gene Cdhl has high
expression levels in the pseudo-time interval [0, 500] and
low expression levels in the following time interval. How-
ever, genes Gfilb and Tall have low expression level in the
pseudo-time interval [0,2500] and [0, 800], respectively,
but the expression level is switched to high levels in the
following time intervals. A few of genes, such as gene
Kdr in Fig. 2, have two genetic switchings in the pseudo-
temporal trajectory. Since our proposed technique has
been used to realize the similar observations for genetic
switching [45], this modelling approach will be used in this
work to realized the pseudo-temporal trajectories.

Networks construction

With the availability of pseudo-temporal trajectory based
on single-cell data, we then reverse-engineer the network
structure for the regulatory network of 40 genes. The
GENIES3 algorithm is used to develop a graphic model of
these 40 genes. For each gene, a linear regression model
is used to infer the regulation of other 39 genes to the
expression of that gene. Then we can obtain 39 weight val-
ues for the possible regulation strength for each gene and
the total number of genetic regulation strength is 1560

Gene Cdh1

0 1000

2000 3000 4000

Gene Kdr

5
0 1000

2000
Pseudo-time

3000 4000

Fig. 2 Pseudo-expression trajectory of four genes using raw qPCR data and smoothed data (solid-bold line)

-5

Gene Gfilb

-10

0 1000 2000

-15

3000 4000
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I
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-15
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(= 39x%40). In order to maintain a certain number of regu-
lations to each gene, we select the top 10 weight values for
each gene. In this way the number of selected regulation
values is only 400. Since a network with 400 undirected
edges is still very dense, we set up a threshold value to
select the top regulation strength. An edge is selected if its
weight is larger than the threshold value. We have tested
different values of the threshold value by decrease the
threshold value gradually. The optimal threshold value is
determined if the number of remaining edges is relative
small but all genes should be connected to the network.
The constructed network is given in Fig. 3. In this net-
work there are 100 regulatory connections between these
40 genes. Among these 40 genes, the maximal number of
connection edges for a gene is 11; while the minimal num-
ber of edge for a gene is 1. The average number of edge
per gene is 2.5 and on average each gene connects to five
other genes,

We have developed a mathematical model to describe
the dynamics of the network with 40 genes. However,
numerical results suggest that it is difficult to use a
differential equation model to simulate the expression
dynamics of 40 genes. The mathematical model includes
a large number of model parameters that should be
estimated. Due to the complexity of searching space, the
simulation error is large. In addition, the genetic switch-
ing in the observation data makes the designed ODE
model is stiff. Therefore we consider a small network with
a less number of genes. We compare the designed graphic
model in Fig. 3 and the model in Figure 3C in [37], and
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then select nine genes, namely GATAI, Gfilb, Hhex,
Ikaros, Myb, Nfe2, Notchl, Sox7 and Sox17. The regula-
tion relationship between these nine genes in these two
networks are consistent. However, the regulation between
these nine genes in our graphic model in Fig. 3 is not a
fully connected network, thus the regulation between the
gene pair (it Sox7, Sox17), which exists in the network
in [37], was added to Fig. 4 in order to form a complete
network. The developed network model is presented
in Fig. 4.

Mathematical model

The nine genes selected in Fig. 4 is divided into two
groups based on their expression patterns. In these nine
genes, there are five genes, namely GATA1, Gfilb, Ikaros,
Myb, Nfe2, whose expression are activated at the pseudo-
time point ¢ =~ 2300 and their expression activities
are promoted a high level with different speeds for dif-
ferent genes. However, the expression of the remaining
four genes, namely Hhex, Notchl, Sox7 and Sox17, is first
inhibited and their expression levels go down to a low
level at he pseudo-time point ¢ =~ 700; but their expres-
sion is activated at ¢ =~ 2500 and the expressions return
to the high levels again. The observed gene expression
changes are consistent with other experimental observa-
tions showing that genes GATA I, Gfi1b and Ikaros do have
substantial changes of the expression levels over time [45].
The genetic switching in the expression levels of these
genes is important to maintain the functional activities of
blood stem cells. Using the proposed modelling method

Fig. 3 Regulatory structure of network with 40 genes that is generated by the GENIE3 algorithm
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NS /N Nfe2
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/

Fig. 4 Graphic model for the regu\atory network with nine genes. All
the regulations (except that for gene pairs Sox7 and Sox17) are
derived from the network in Fig. 3

in [45], it is assumed that some key model parameters are
variables of time rather than a constant. For the five genes
in the first group, we use the following synthesis rate for
gene expression, given by
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where kjp is the basal synthesis rate of gene i, and
A; > 1. Regarding the four genes in the second group,
it is assumed that both synthesis rate and degrada-
tion rate are variables of time, since we need to real-
ize the first switching from high expression level to low
expression level,

ki — kio % A;, 500 < t < 1000
7 kio else

dio x A;, 2500 < ¢t < 3000
d; =
dio else

Our simulation results suggest that the proposed ODE
system is still even when an implicit method with very
good stability property is used for numerical solution
of the proposed model. Numerical simulation will break
down if we try to find the solution over a relatively long
pseudo-time interval. Therefore we have to separate the
whole time interval into a number of subintervals, and
in each subinterval, we use the experimental observa-
tion data as the initial condition to generate solution of
the subinterval. Figure 5 shows simulation results using a
fixed time period of 100 unit time. We have also exam-
ined other lengths of time period, namely ¢ = 50 and

ki — kio, t < 2500 t = 200. Numerical results are consistent with those
' kio * A; else showing Fig. 5. In addition, the ABC algorithm is used
a b
14 14
12} 12
/
10} 10 I
= Q t \
5 8 < 8 f
[0}
s sf 5 6 !
[0 o \
4t 4 ! .
2t 2
0 0
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Pseudo-time Pseudo-time
c d
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Fig. 5 Expression levels of four genes based on the network in Fig. 4 (solid-line: the experimental data obtained by Gaussian process regression;

dash-line: expression levels predicted by mathematical model)
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to infer the unknown model parameters using the data
shown in Fig. 2. Figure 5 suggests that the proposed model
is able to match experimental data very well. Certainly the
simulation error is dependent on the length of subinterval.
The simulation error is larger if the length of subinterval
is larger.

Inference of network with more regulations

The proposed network in Fig. 4 includes nine one-way
or mutual regulations. It is fully consistent with the net-
work predicted in [37]. To make predictions about the
potential regulations among these nine genes, we extend
the network by including more regulations. We apply the
GENIES3 algorithm to the raw dCt data of these nine genes
only. According to the calculated weight of the target
edges, we select the highest weight of 27 one-way reg-
ulations. Since there are a few two-way regulations in
the selected 27 regulation edges, the generated network
includes 17 un-directional regulations (see Additional
file 1). Compared with the network in Fig. 4, the num-
ber of potential regulation edges has been doubled. The
structure of the extended network is shown in Additional
file 1: Figure S1 in Supplementary Information. Note that
the regulations in Additional file 1: Figure S1 do not
include all the regulations in Fig. 4. The added regulation
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(Sox 7, Sox 17) in Fig. 4 does not appear in Additional
file 1: Figure S1. However, the other eight regulations in
Fig. 4 also appears in Additional file 1: Figure S1.

For this extended network, we also use the ABC algo-
rithm to infer model parameters using the modified dCT
values. Simulation results of four genes are presented in
the Fig. 6. Numerical results for the total simulation error
suggest that the extended network (see Fig. 7b, index 1)
has better accuracy than the network in Fig. 4 (Fig. 7a,
index 1). Note that the model based on a network with
more regulations has more model parameters, which gives
more flexibility to match the experimental data. Thus it is
reasonable that the model based on network in Additional
file 1: Figure S1 has better accuracy than that in Fig. 4.
However, this simulation result suggests that, compared
with the network in Fig. 4, more regulations may exist.

Inference of network with auto-regulation

In the graphic model generated by the GENIE3 algorithm,
the auto-regulation, namely the positive or negative regu-
lation of a gene to the expression of itself, is not consid-
ered. To find the potential auto-regulations in these genes,
we test the network by adding positive auto-regulation to
a particular gene. For the i-th gene, we set b; > 0; and
the value of a;; is a;; > 0 for positive auto-regulation.
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Fig. 6 Expression levels of four genes based on the extended network in Additional file 1: Figure S1 (solid-line: the experimental data obtained by
Gaussian process regression; dash-line: expression levels predicted by mathematical model)
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We first test the gene network shown in Fig. 4 with posi-
tive auto-regulation for only one gene. Numerical results
in Fig. 7a suggest that no module with positive auto-
regulation (model index 2~ 10) has smaller simulation
error than that of the network without any auto-regulation
(index 1 in Fig. 7a). We have also tested the network
in which each gene has positive auto-regulation. Results
in (index 11 in Fig. 7a) shows that simulation error of
this module is larger than that of any other module in
Fig. 7a. Thus it is unlikely that all these genes have positive
auto-regulation.

We have also conducted the positive auto-regulation
test for the model based on the network in Additional
file 1: Figure S1. An interesting result is that, compared
with the network without auto-regulation (index 1 in
Fig. 7b), the model with positive auto-regulation to any
one gene (model index 2~ 10) has better accuracy than the
network model without auto-regulation. Note that, com-
pared with the network model without auto-regulation,
the network model with positive auto-regulation to one
gene has only two additional model parameters. The
small change in the number of unknown parameters
would not bring much flexibility to match experimental
data. Thus this result suggests that there may be positive
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auto-regulation for some genes in this network. However,
when we add auto-regulation to all genes (index 11 in
Fig. 7b), similar to the result in (index 11 in Fig. 7a), the
simulation error of this module is larger than any other
module. This gives further evidence that it is unlikely that
all these genes have positive auto-regulation.

Robustness analysis

We also test the robustness property of the developed
models and the models with positive auto-regulations .
We first use the estimated optimal parameter set to gen-
erate one simulation which is regarded as the exact simu-
lation of the model without any perturbation. Then all the
model parameters are perturbed by using a uniformly dis-
tributed random variable, and perturbed simulations are
obtained using the perturbed model parameters. We gen-
erate 1000 sets of perturbed simulations and calculate the
mean and variance of the simulation error for the per-
turbed simulation over the unperturbed simulations. For
the gene network shown in Figs. 4 and 8a suggests that the
models with auto-regulation for genes Gatal, Gfilb, Hhex
have better robustness property than the model without
any perturbation. However, for the gene network with 17
regulations in Additional file 1: Figure S1, the networks
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Fig. 7 Accuracy of the inferred network models without and with positive auto-regulations. a The accuracy of the inferred network models based
on the network in Fig. 6. b The accuracy of the inferred network models based on the network in Additional file 1: Figure S1. (model index: 1.
Network without aotu-regulation, 2~ 10. Network with auto-positive regulation for genes Gatal, Gfilb, Hhex, lkaros, Myb, Nfe2, Notch1, Sox17, Sox7,
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Fig. 8 Robustness property of various models for the gene network with nine genes. a Robustness for the gene network in Fig. 4. b Robustness for
the gene network with 17 regulations (Model index: 1: netwok without any auto-regulation, 2:10: positive auth-regulation for gene Gatal, Gfilb,
Hhex, lkaros, Myb, Nfe2, Notch1, Sox17, Sox7, respectively, 11: all nine genes have positive auto-regulation). For each model, the first bar is the mean of

with auto-regulation for genes Sox7, Sox17 have better
robustness property than the network without positive
auto-regulation. These simulation results do not provide
strong evidence to support the positive auto-regulation in
the nine genes in Fig. 4.

Conclusion

In this work we have designed an integrated approach to
reverse-engineer gene networks for regulating early blood
development based on singel-cell experimental observa-
tions. The diffusion map method is firstly used to obtain
the visualization of gene expression data derived from
3934 stem blood cells. The wanderlust algorithm is then
employed to develop the pseudo-trajectory for the activi-
ties of a number of genes. Since the gene expression levels
in the developed pseudo-trajectory show large fluctua-
tions, we then use Gaussian process regression method to
smooth the gene express data in order to obtain pseudo-
trajectory with much less fluctuations. The proposed inte-
grated framework consist of both the GENIE3 algorithm
to reconstruct the regulatory network and a mathemat-
ical model using differential equations to describe the
dynamics of gene expression. The developed approach
is applied to study the network regulating early blood

cell development, and we designed a graphic model for
a regulatory network with forty genes and a differential
equations model for a network of nine genes. The research
results in this work shows that the developed approach is
an efficient and effective method to reverse-engineer gene
networks using single-cell experimental observations.

In this work we use simulation error as the key criterion
to select the model parameters and infer the regulation
between genes. However, because of the complex search-
ing space of model parameters and noise in experimental
data, it may be difficult to judge which model is really bet-
ter than others if the difference between simulation errors
is small. In fact, simulation errors of various models for the
network of nine genes are quite close to each other. There-
fore, in addition to using simulation error as the unique
criterion to select a model, other measurements, such as
AIC value, parameter identifiability and robustness prop-
erty of a network, are also needed as important criteria.
All of these issues are potential topics for future research.

Additional file

Additional file 1: Figure S1. Extended gene network with 17 regulations.
(DOCX 76 kb)
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