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Abstract

Background: Genome-wide association studies (GWASs) have revealed relationships between over 57,000 genetic
variants and diseases. However, unlike Mendelian diseases, complex diseases arise from the interplay of multiple
genetic and environmental factors. Natural selection has led to a high tendency of risk alleles to be enriched in
minor alleles in Mendelian diseases. Therefore, an allele that was previously advantageous or neutral may later
become harmful, making it a risk allele.

Methods: Using data in the NHGRI-EBI Catalog and the VARIMED database, we investigated whether (1) GWASs
more easily detect risk alleles and (2) facilitate evolutionary insights by comparing risk allele frequencies of different
diseases. We conducted computer simulations of P-values for association tests when major and minor alleles were
risk alleles. We compared the expected proportion of SNVs whose risk alleles were minor alleles with the observed
proportion.

Results: Our statistical results revealed that risk alleles were enriched in minor alleles, especially for variants with
low minor allele frequencies (MAFs < 0.1). Our computer simulations revealed that > 50% risk alleles were minor
alleles because of the larger difference in the power of GWASs to differentiate between minor and major alleles,
especially with low MAFs or when the number of controls exceeds the number of cases. However, the observed
ratios between minor and major alleles in low MAFs (< 0.1) were much larger than the expected ratios of GWAS’s
power imbalance, especially for diseases whose average risk allele frequencies were low, such as myopia, sudden
cardiac arrest, and systemic lupus erythematosus.

Conclusions: Minor alleles are more likely to be risk alleles in the published GWASs on complex diseases. One
reason is that minor alleles are more easily detected as risk alleles in GWASs. Even when correcting for the GWAS’s
power imbalance, minor alleles are more likely to be risk alleles, especially in some diseases whose average risk
allele frequencies are low. These analyses serve as a starting point for future studies on quantifying the degree of
negative natural selection in various complex diseases.
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Background
Advances in genomic technologies such as DNA sequen-
cing and single nucleotide variant (SNV) genotyping
have greatly contributed to our understanding of gene-
disease associations. Indeed, sophisticated genetic
methods such as linkage analysis and genome-wide
association studies (GWASs) have facilitated the

identification of over 57,000 phenotype–genotype associ-
ations in the NHGRI-EBI Catalog (http://www.ebi.ac.uk/
gwas, accessed on September 12, 2017) [1]. VARIMED
[2] has also been built as a master database of disease-
associated SNPs. Although GWASs have greatly im-
proved our understanding of the genetic basis of disease
risk, the missing heritability for common complex dis-
eases remains mystifying [3, 4]. Gorlov et al. [5] reported
that the overall proportion of risk alleles was higher
among alleles with a frequency of < 50% (minor alleles)
than among major alleles in the NHGRI-EBI Catalog. By

* Correspondence: kido.takashi@gmail.com; kido@preferred.jp
1Rikengenesis Co., Ltd., 1-2-2 Ohsaki, Shinagawa-ku, Tokyo 141-0032, Japan
2Preferred Networks, Inc., Otemachi Bldg. 2F, Chiyoda-ku, Tokyo 100-0004,
Japan
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Kido et al. BMC Medical Genomics  (2018) 11:3 
DOI 10.1186/s12920-018-0322-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-018-0322-5&domain=pdf
http://www.ebi.ac.uk/gwas
http://www.ebi.ac.uk/gwas
mailto:kido.takashi@gmail.com
mailto:kido@preferred.jp
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


introducing an environmental/lifestyle index to assess
the influence of environmental/lifestyle factors on
disease etiology, they tested the hypothesis that negative
selection has different effects on environmental/lifestyle-
dependent diseases than on environmental/lifestyle-inde-
pendent diseases. They hypothesized that previously
selectively neutral variants become risk alleles when the
environment changes. Chan et al. [6] also investigated
the ratio of detected risk to protective variants (R/P
ratio) for several common diseases and showed that an
increase in this ratio can be a strong signal of polygenic
inheritance in some complex diseases (such as schizo-
phrenia and type 2 diabetes). They found that an
increase in the R/P ratio could occur if (1) there is a
higher power to detect risk variants than to detect pro-
tective variants, or if (2) risk variants are present and
maintained at lower frequencies because of negative
selection. In addition, Park et al. [7] reported that minor
alleles more often confer risk than protection, and that
an inverse relationship exists between regression effects
and allele frequencies.
Unlike Mendelian diseases, complex diseases are

affected by both genetic and environmental factors [4, 8,
9]. Since some carriers of the risk allele responsible for a
Mendelian disease have lower-than-average fitness, the
frequency of the allele is uniformly low [10]. For a non-
Mendelian disease, however, not only the minor allele
but also the major allele of an associated locus can be
the risk allele [11–14]. This may be explained by genetic
drift, through which a slightly deleterious allele may
have the chance to expand and become a major allele
[15]. Alternatively, a neutral or advantageous allele that
was previously common may become associated with a
disease owing to changes in the environment, and may
then serve as a risk allele for a non-Mendelian disease.
In addition, overdominance, frequency-dependent selec-
tion, and gene–gene or gene–environment interactions
may affect the disease allele [16].
We therefore sought to determine whether reported

risk alleles for common diseases tend to be minor alleles,
and if so, whether there are any biases that lead to more
frequent identification of minor alleles as risk alleles. In
this study, we empirically show that the reported risk
alleles for non-Mendelian diseases are indeed enriched
in minor alleles (with frequencies of < 0.5), particularly for
SNVs with low minor allele frequencies (MAFs < 0.1). We
also found that even at the same effect size, the minor
allele is more likely to be identified as an associated allele,
because P-values are lower in association studies when the
minor rather than the major allele is the risk allele.
Furthermore, we found that diseases with different
average risk frequencies exhibit different disease charac-
teristics (e.g., ancient/early-onset diseases versus modern/
late-onset diseases), suggesting the possibility that

previously selectively neutral variants become risk alleles
when the environment changes. We provide supportive
results for the hypothesis postulated by Gorlov et al. [5]
that negative selection may have different effects on
different diseases.

Methods
SNV–disease associations from GWAS catalog data
We downloaded the NHGRI-EBI Catalog of 57,181 associ-
ations. We filtered the data to include only those associa-
tions with P-values less than 5.0 × 10− 8 and valid risk
allele frequency values (e.g., no NR (denoting that gene
location information was not reported), pending, etc.).
Following this, 22,566 associations for 1071 diseases and
traits remained. After checking the “Initial Sample Size”
column, we defined 16,084 associations as “European” and
6482 as “other.” On the basis of this classification, we
collected 16,224 unique associations for 795 diseases and
traits in the European population. Finally, we decided to
focus our analysis on a set of 3284 SNVs for 280 diseases
obtained after filtering out non-disease traits.

SNV–disease associations from VARIMED
SNV–disease associations were obtained from VARiants
Informing MEDicine (VARIMED) [2], a curated database
of human SNV–disease associations. VARIMED con-
tains 465,246 unique SNVs that can be matched with
dbSNP138 SNVs. First, we selected only the associations
with disease phenotypes (as opposed to non-disease
traits). The selected set of associations comprised
351,162 unique SNVs. Next, we selected only the associ-
ations for which the P-value was < 5.0 × 10− 8, which
reduced the size of the set to 11,957 unique SNVs.
Furthermore, we focused only on associations with
reported risk alleles, which were available for 7610
unique SNVs. We then focused on SNV–disease associa-
tions reported in Caucasians, which further reduced the
size of unique SNVs to 6478. Finally, we mapped SNVs
in VARIMED to SNVs in the 1000 Genomes Project
using their genomic positions, and the resulting final set
comprised 16,415 associations, including 6378 unique
SNVs and 213 unique diseases.

Disease-associated LD blocks
For each SNV–disease pair, we first attempted to iden-
tify the risk allele from the previously filtered VARIMED
table. We found that of the 7556 pairs, single risk alleles
were identified in 7218 pairs, whereas multiple risk
alleles were identified in the remaining 338 pairs. We
then filtered out the ambiguous associations and
obtained a set of associations with 14,271 alleles that
comprised 6179 unique SNVs, 210 unique diseases, and
7218 unique SNV–disease pairs. For each disease, we
grouped SNVs with high linkage disequilibrium (LD;

Kido et al. BMC Medical Genomics  (2018) 11:3 Page 2 of 11



pairwise r2 > 0.8 in the European population in the 1000
Genomes Project Phase 1) into LD blocks. From each
LD block, we selected the SNV with the lowest P-value.
The risk allele frequency of the selected SNV was used
as the representative allele frequency of the LD block. By
extracting SNVs present in VARIMED for which we had
LD information, we selected 1944 LD block SNVs for
280 diseases in European association studies in the
NHGRI-EBI catalog.

Simulation of P-values for association tests when major
and minor alleles are risk alleles
An SNV with a low MAF is likely to have a lower
chance of being discovered than a more common SNV.
Even when discovered, the former has a lower chance to
be included in SNV platforms than the latter. Therefore,
we tested whether a minor allele was more likely to be a
risk allele than a major allele using data from SNVs with
similar MAFs. We first divided the SNVs into five equal
MAF intervals, i.e., (0–0.1), (0.1–0.2), (0.2–0.3),
(0.3–0.4), and (0.4–0.5). In each category, we performed
binomial tests to examine whether the proportion of
SNVs whose risk alleles were minor alleles was 0.5.
Because there were five categories, the significance level
was set at 0.05/5 = 0.01 according to a Bonferroni
correction for multiple comparisons.
We then examined whether an SNV was more

frequently identified as an associated locus when the
minor allele rather than the major allele was a risk allele.
Because the probability of significance in an association
test is affected by sample size, effect size (such as odds
ratio), penetrance, and MAF, we performed simulations
under various conditions by altering the values of these
parameters. In these simulations, we estimated P-values
for the two different conditions, i.e., the minor allele as a
risk allele and the major allele as a risk allele.
First, relative proportions of the three genotypes in

each case and control subpopulation were calculated
according to the genotype frequencies in the population
(assuming Hardy–Weinberg equilibrium) and pene-
trance of the three genotypes (calculated from the pene-
trance of the lowest-risk genotype and the odds ratio,
assuming an additive model). Let p be the minor allele
frequency for a locus, and let xx, xX, and XX be the
three genotypes at this locus, where x is the minor allele.
Let d1, d2, and d3 be the penetrance for xx, xX, and XX,
respectively. If the Hardy–Weinberg equilibrium holds,
the frequencies of xx, xX, and XX in the population will
be p2, 2p(1 − p), and (1 − p)2, respectively. The propor-
tions of cases in the population with genotypes xx, xX,
and XX will be d1p

2, 2d2p(1 − p), and d3(1 − p)2, respect-
ively, and the proportions of controls in the population
with the genotypes xx, xX, and XX will be (1 − d1)p

2,
2(1 − d2)p(1 − p), and (1 − d3)(1 − p)2, respectively. Using

these proportions, the relative proportion of each geno-
type in the test cases will be:

D xxð Þ ¼ d1p2

d1p2 þ 2d2p 1−pð Þ þ d3 1−pð Þ2

D xXð Þ ¼ 2d2p 1−pð Þ
d1p2 þ 2d2p 1−pð Þ þ d3 1−pð Þ2

D XXð Þ ¼ d3 1−pð Þ2
d1p2 þ 2d2p 1−pð Þ þ d3 1−pð Þ2

The relative proportions of the genotypes in the
controls will be:

N xxð Þ ¼ 1−d1ð Þp2
1−d1ð Þp2 þ 2 1−d2ð Þp 1−pð Þ þ 1−d3ð Þ 1−pð Þ2

N xXð Þ ¼ 2 1−d2ð Þp 1−pð Þ
1−d1ð Þp2 þ 2 1−d2ð Þp 1−pð Þ þ 1−d3ð Þ 1−pð Þ2

N XXð Þ ¼ 1−d3ð Þ 1−pð Þ2
1−d1ð Þp2 þ 2 1−d2ð Þp 1−pð Þ þ 1−d3ð Þ 1−pð Þ2

Second, the relative proportion of a genotype in the
test cases or control group was multiplied by the sample
size. Let n denote the number of cases and let controls
have the same sample size. The expected numbers of the
genotypes in the disease group will be nD(xx), nD(xX),
and nD(XX), and those in the control group will be
nN(xx), nN(xX), and N(XX).
The expected numbers were rounded to obtain the

numbers of each genotype in the disease and non-di-
sease groups, and the data were analyzed by a logistic re-
gression model using the R environment as follows:

log
pd

1−pd

� �
¼ βX1 þ ε 1ð Þ

where Pd denotes the probability of the disease, X1

denotes the number of the risk alleles (0, 1, or 2) of the
individual, β denotes the coefficient, and ε denotes the
variable for residual variation.
Finally, the P-value for the association between the

genotype and phenotype was calculated as follows:

1. N (for example, 500), d1 (for example 0.02), and
p (for example, 0.2) were given.

2. Odds ratio r (for example, 1.3) was given, and d2 and
d3 were calculated as follows:

d2 ¼ d1r
1−d1 þ rd1
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d3 ¼ d2r
1−d2 þ rd2

The above equations were obtained by solving the
following equations to derive the common odds ratio
r from penetrance values.

r ¼ d1

1−d1
=

d2

1−d2

r ¼ d2

1−d2
=

d3

1−d3

3. The numbers of genotypes in cases and controls
were obtained by rounding the expected numbers,
and a test to determine whether β in eq. (1) = 0 was
performed to obtain the P-value.

Running multiple simulations with a variety of parameters
We then examined the conditions under which minor
alleles were more likely than major alleles to result in
significance as risk alleles with a variety of parameters:
the odds ratio (r), the genotype with the lowest risk (d1),
and the number of controls (nc).
First, we fixed the number of cases (N_case = 1000)

and the number of controls (N_controls = 1000). We
changed the penetrance for the genotype with the lowest
risk (d1) from 0.01 to 0.25 with increments of 0.01. We
changed the minor allele frequency (p) from 0.05 to 0.50
with increments of 0.05 and the odds ratio (r) from 1.06
to 2.00 with increments of 0.01. For each parameter set
(d1, p, r), we calculated the P-value with the procedure
described in the previous section. We generated a graph
of (p, log(P-value)) plots with d1 and r and compared
the black line (minor allele as the risk allele) with the
red line (major allele as the risk allele; Additional file 1:
Figure S1).
We defined the relative difference (S′) between the

lines as the ratio of the difference in area between the
lines (S = S_black – S_red, gray color area in
Additional file 1: Figure S1) to the area above the black
line (total area of gray color and red color in
Additional file 1: Figure S1). We plotted the relative
difference in a heat map (Fig. 1) given the odds ratio (r) and
the penetrance for the genotype with the lowest risk (d1).
Each value in the heat map (right part of the figure)

shows the relative difference between the log(P-value) of
minor and major risk allele given the odds ratio (r) and
the penetrance for the genotype with the lowest risk (d1)
in the association test simulations. The sample size was
1000 for both cases and controls. The penetrance for the
genotype with the lowest risk (d1) ranged from 0.01 to

0.25 in increments of 0.01, and the odds ratio (r) ranged
from 1.06 to 2.00 in increments of 0.01. As shown in the
right part of the figure, blue in the heat map indicates
that the differences are small (relative difference < 0.05),
white that the differences are medium (relative
difference = 0.10), and red that the differences are high
(relative difference > 0.15).
Next, we fixed the total of number of cases and

controls (N = 2000), set the penetrance for the lowest
risk (d1 = 0.03), changed the odds ratio (r) from 1.06 to 2
with increments of 0.01, and changed the number of
controls (nc) from 200 to 1800 with increments of 100.
We plotted the relative difference in a heat map
(Additional file 2: Figure S2) given the odds ratio (r) and
the number of controls (nc).

Statistical power calculation in NHGRI-EBI catalog studies
We reconfirmed our simulation results with studies in
the NHGRI-EBI Catalog database using an online GAS
power calculator, (http://csg.sph.umich.edu//abecasis/
cats/gas_power_calculator/index.html). Using the same
parameters (number of cases and controls) as used in
the representative studies in the NHGRI-EBI Catalog,
we compared the statistical powers for minor (p ≤ 0.5)
and major risk alleles (1 − p > 0.5) under the following
conditions: the significance level of the study design
P < 5.0 × 10− 8; the disease allele frequency p = 0.05, 0.1,
0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, and 0.50; the preva-
lence was selected for the target disease (for example,
0.073 for type 2 diabetes); and the disease model was
multiplicative, additive, dominant, or recessive.

Assessing the explanatory power of the observed data
using GWAS power simulations
To assess the magnitude of the explanatory power of the
observed data using GWAS power simulations, we

Fig. 1 A minor allele is more likely to result in significance as a risk
allele than a major allele when the odds ratio (r) is larger and the
penetrance for the genotype with the lowest risk (d1) is smaller
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compared the expected and observed proportions of
SNVs whose risk alleles were minor alleles. To estimate
the expected proportion, we calculated the statistical
power for detecting minor alleles and that for major al-
leles in each MAF interval [(0–0.1), (0.1–0.2), (0.2–0.3),
(0.3–0.4) and (0.4–0.5)] with parameters of real GWAS
studies. For example, for a type 1 diabetes study by
Barrett et al. [17], we simulated the GWAS power calcu-
lations with 7514 cases and 9054 controls (significance
level = 5.0 × 10− 8, prevalence = 0.002, genotype relative
risk = 1.15, assuming a multiplicative disease model). We
calculated the statistical powers of detecting minor
alleles (y_minor) and major alleles (y_major) for each
interval. For example, for the (0–0.1) interval, we com-
pared the statistical power when the risk allele frequency
was 0.05 (y_0.05) and 0.95 (y_0.95) using the method de-
scribed in the previous section. The expected proportion
was calculated by y_minor / (y_minor + y_major). We
then calculated the P-value by conducting the binomial
test with the null hypothesis that the observed propor-
tion was the expected proportion.

Results
The distribution of risk allele frequencies for 3284 SNVs
in 280 diseases were extracted from the NHGRI-EBI
Catalog (Fig. 2). We observed a clear enrichment of minor
alleles (risk allele frequency < 0.5); 63.4% of the SNVs had
risk allele frequencies of < 0.5, whereas 36.6% of SNVs had
risk allele frequencies of > 0.5 (average, 0.419).
The hypothesis that a risk allele is more likely to be a

minor allele was supported by a similar analysis carried
out using the curated associated SNVs from VARIMED
[2]. Slight enrichment of the rare SNVs (risk allele
frequency < 0.5) was replicated in the VARIMED data-
base (Additional file 3: Figure S3). The average risk allele
frequency for the SNVs from VARIMED was 0.46,

whereas the fraction of SNV–disease associations with a
risk allele frequency < 0.5 was 57%.
The actual discovery of SNVs is largely biased by

MAFs. Thus, SNVs with very low (e.g., < 0.01) MAFs
have a lower chance of being discovered or associated
with a disease than those with higher frequencies. In
addition, SNVs with very low MAFs are less likely to be
included in SNV arrays. Therefore, we classified disease-
associated SNVs into five categories according to their
MAFs. For each category, the number of SNVs in which
minor alleles were the risk alleles was compared with
the number of SNVs in which major alleles were the risk
alleles. In each of the categories, the former was signifi-
cantly larger (P < 0.01 with Bonferroni correction) than
the latter (Table 1). The proportion of SNVs in which
minor alleles were the risk alleles was high, particularly
for SNVs with small MAFs; for example, for the interval
(0–0.1), the proportion was 0.794, while the proportions
were 0.591–0.631 for the other intervals (Table 1). There
are two possible explanations for the above trend: (a)
risk alleles are more likely to be minor alleles, or (b) as-
sociation tests are more likely to result in significance
when minor alleles rather than major alleles are risk al-
leles. The latter possibility was assessed by simulation.
We examined whether an SNV was more frequently

identified as an associated locus when the minor allele
rather than the major allele was a risk allele. Since the
probability of significance in an association test is af-
fected by sample size, effect size (such as odds ratio),
penetrance, and MAF, we performed simulations under
various conditions by changing the values of these pa-
rameters. In these simulations, we estimated P-values for
the two different conditions, i.e., the minor allele as a
risk allele and the major allele as a risk allele. We found
that P-values in logistic regression analysis tended to be
lower when minor alleles were risk alleles. Different
sample sizes, penetrance levels for the lowest-risk geno-
type, and odds ratios between the lowest-risk genotype
and the heterozygote were examined. Odds ratios

Fig. 2 Risk allele frequencies for 3284 SNVs in 280 diseases extracted
from the NHGRI-EBI Catalog of European association studies

Table 1 SNVs with different MAFs whose risk alleles are minor
alleles

MAF
interval

Total
number

SNVs whose
risk alleles
are minor
alleles

Proportiona Lower
limitb

Upper
limitb

P-valuec

(0–0.1) 476 378 0.794 0.755 0.830 < 2.2E-16

(0.1–0.2) 616 389 0.631 0.592 0.670 6.8E-11

(0.2–0.3) 698 417 0.597 0.560 0.634 2.97E-07

(0.3–0.4) 723 440 0.609 0.572 0.644 5.75E-09

(0.4–0.5) 771 456 0.591 0.556 0.626 4.29E-07
aProportion of SNVs whose risk alleles are minor alleles
bLower and upper limits of the 95% confidence interval for the proportion as
determined by the Clopper–Pearson method
cP-value for the binomial test with the null hypothesis that the proportion is 0.5

Kido et al. BMC Medical Genomics  (2018) 11:3 Page 5 of 11



between the heterozygote and the highest-risk genotype,
as well as MAFs, were also examined (Fig. 3a, b, and
Additional file 4: Figure S4). The results consistently in-
dicated that the P-value of the association test was gen-
erally lower when the minor rather than the major allele
was the risk allele. The differences in P-values of the
association test between the minor (risk allele frequency:
p) and major risk allele (risk allele frequency: 1 − p)
progressively decreased as p approached 0.5 (Fig. 3b).
We then visualized the relationships between the

parameters (r: odds ratio, d1: penetrance for the genotype
with the lowest risk) and the degree of differences between
the log(P-values) when the minor or major allele was the
risk allele (Fig. 1). The differences were larger when r was
larger and d1 was smaller, and they were relatively small
when r was less than 1.2 or d1 was larger than 0.24.
Additional file 2: Figure S2 shows heat map plots for r and
the number of controls (nc) for the relative differences in
log(P-values) between the minor and major allele as the
risk allele. The differences were larger when r and nc were
larger, and they were relatively small when r was less than
1.1 or nc was less than 300.
We also confirmed our results with real examples in the

NHGRI-EBI Catalog using the statistical power test of an
online GAS power calculator. The statistical power was
indeed greater for risk alleles that were found at p = 0.05
(risk allele frequency, 5%) than at p = 0.95 (risk allele
frequency, 95%), assuming multiplicative, additive, and
dominant disease models. For example, one of the
GWASs for late-onset Alzheimer’s disease (PubMed ID:
24,162,737) used 17,008 Caucasian patients and 37,154
Caucasian control individuals. Under the multiplicative
disease model, if prevalence = 0.05, genotype relative

risk = 1.15, and the significance level of the study design
P < 5.0 × 10− 8, then the statistical power (y) was 0.326 when
the risk allele frequency (p) was 0.05 (y_0.05 = 0.326),
whereas y was 0.256 when p was 0.95 (y_0.95 = 0.256). The
statistical power was also greater for the risk alleles that
were found at p = 0.10 (y_0.10 = 0.922) than at p = 0.90
(y_0.90 = 0.878). The difference in statistical power between
p = 0.10 and p = 0.90 (y_0.10 – y_0.90 = 0.044) was smaller
than the difference in statistical power between p = 0.05
and p = 0.95 (y_0.05 − y_0.95 = 0.07). When p (p < 0.1) is
larger, the difference is smaller. When p is larger than 0.1
(0.1 < p < 0.5), the statistical powers of both p and 1 − p are
almost 1.0. Assuming the additive model, the result was
quite similar to that of the multiplicative model. Assuming
the dominant model, the difference in y between p = 0.05
(y_0.05 = 0.235) and p = 0.95 (y_0.95) = 0.0 was much larger
than that in the additive model. On the other hand,
assuming the recessive model, y of p = 0.05 (y_0.05 = 0) was
smaller than that of p = 0.95 (y_0.95 = 0.191). The same
trends have been observed in other studies. We showed
some examples of statistical power analyses in real studies
on type 1 diabetes, type 2 diabetes, schizophrenia, and
myopia (Additional file 5: Figure S5, Additional file 6:
Figure S6, Additional file 7: Figure S7, and Additional file 8:
Figure S8).
To assess the magnitude of the explanatory power of

the observed data using GWAS power simulations, we
compared the expected proportion of SNVs whose risk
alleles were minor alleles with the observed proportion.
Table 2 shows the comparisons of the observed and
expected proportions in myopia. The statistical power of
detecting minor and major alleles was calculated by the
methods explained in the previous paragraph given the

Fig. 3 a Log-transformed P-values of association tests determined by logistic regression analysis with odds ratio increments of 0.1. The sample
size was 1000 for both cases and controls. The penetrance for the genotype with the lowest risk was 0.03, and the odds ratio (r) ranged from 1.1
to 2.0 in increments of 0.1. b Log-transformed P-values of association tests determined by logistic regression analysis with odds ratio increments
of 0.2. The sample size was 1000 for both cases and controls. The penetrance for the genotype with the lowest risk was 0.03, and the odds ratio (r)
ranged from 1.2 to 2.0 in increments of 0.2. Red and blue circles/lines indicate values for risk allele frequencies shown in red and blue, respectively
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parameters according to Meng et al. [18]. For example,
under the multiplicative disease model, if prevalence = 0.25,
genotype relative risk = 1.60, and the significance level of
the study design P < 5.0 × 10− 8, then the statistical power
(y) was 0.02 when the risk allele frequency (p) was 0.05
(y_0.05 = 0.02), whereas y was 0.01 when p was 0.95
(y_0.95 = 0.01). A minor allele (y_0.05 = 0.02) was more
likely to result in significance as a risk allele than a major
allele (y_0.95 = 0.01). The expected proportion of SNVs
whose risk alleles were minor alleles was 0.67 (y_0.05 /
(y_0.05 + y_0.95) = 0.67). When we consider this GWAS’s
power imbalance, the P-value for the binomial test was
significant (P = 0.0015), given the null hypothesis that the
observed proportion (observed prop = 1.0) is the expected
proportion (expected_prop = 0.67). When we do not
consider the GWAS’s power imbalance, the P-value for the
binomial test was much smaller (P = 0.0000076), given the
null hypothesis that the observed proportion is 0.5. For
each MAF interval, the number of SNVs in which minor
alleles were the risk alleles was compared with the ex-
pected number of SNVs in which major alleles were the
risk alleles. In the interval (0–0.1), the former was sig-
nificantly larger (P < 0.01 with Bonferroni correction)
than the latter (P = 0.0015; Table 2). The average of the
risk allele frequency of 31 SNVs was 0.250, and 23 of
the total 31 (74.2%) were minor alleles. Twenty-one of
the 23 (91.3%) minor risk alleles had risk allele frequen-
cies less than 0.2.
As in myopia, in sudden cardiac arrest and systemic

lupus erythematosus, which have low MAFs (< 0.1 or 0.1
≤ MAFs < 0.2), the observed excess in the ratios of minor
to major alleles was much larger than the expected excess
considering GWAS power imbalance (observed propor-
tion > expected proportion) (Additional file 9: Tables S1
and S2). For example, in the interval (0.1–0.2) of sudden

cardiac arrest studies (2 studies), the number of SNVs in
which minor alleles were the risk alleles was significantly
larger (P < 0.01 with Bonferroni correction) than the
expected number of SNVs in which major alleles were
the risk alleles (P = 0.0078; Additional file 9: Table S1).
In the 2 studies on sudden cardiac arrest, the average
risk allele frequency of 13 SNVs (12 SNVs were
reported in [https://www.ncbi.nlm.nih.gov/pubmed/
21658281] and 1 in [https://www.ncbi.nlm.nih.gov/
pubmed/21738491]) was 0.121, and all SNVs were
minor alleles. Twelve of the 13 (92.3%) minor risk al-
leles had risk allele frequencies less than 0.2. In the
interval (0.1–0.2) of systemic lupus erythematosus stud-
ies (6 studies), the number of SNVs in which minor
alleles were the risk alleles was significantly larger
(P < 0.01 with Bonferroni correction) than the expected
number of SNVs in which major alleles were the risk
alleles (P = 0.00031; Additional file 9: Table S2). In the 6
studies on systemic lupus erythematosus, the average risk
allele frequency of 32 SNVs was 0.203, and 31 of the total
32 SNVs (96.8%) were minor alleles. Twenty of the 32
(62.5%) minor risk alleles had risk allele frequencies < 0.2,
and no major risk alleles had risk allele frequencies < 0.2
(100% of the 20 SNPs were minor alleles in the
(0–0.2) interval).

Discussion
Our analyses showed that minor alleles exhibit a greater
tendency to be risk alleles, especially when the minor
risk allele frequency is below 0.1. We investigated
whether any biases exist in the identification of risk
alleles, leading to more frequent identification of minor
alleles as risk alleles. Our statistical simulations showed
that association tests were more likely to result in
significance when minor alleles rather than major alleles

Table 2 Comparisons of observed and expected proportions of SNVs whose risk alleles were minor alleles in myopia

MAF
interval

SNVs whose
risk alleles
were minor
alleles

SNVs whose
risk alleles
were major
alleles

Observed
proportiona

Statistical
power of
detecting
minor alleles

Statistical
power of
detecting
major alleles

Expected
proportionb

P-valuec

(Original)
P-valued

(Considering
the GWAS’s
power
imbalance)

Lower limite

(Considering
the GWAS’s
power
imbalance)

Upper limite

(Considering
the GWAS’s
power
imbalance)

(0, 0.1) 18 0 1.0 0.002 0.001 0.67 0.0000076*f 0.0015 *f 0.81 1.00

(0.1, 0.2) 3 3 0.5 0.100 0.059 0.63 1.00 0.68 0.11 0.88

(0.2, 0.3) 2 2 0.5 0.330 0.248 0.57 1.00 0.66 0.05 0.85

(0.3, 0.4) 0 2 0 0.507 0.444 0.53 0.50 0.22 0.00 0.84

(0.4, 0.5) 0 1 0 0.579 0.558 0.51 1.00 0.49 0.00 0.975

The parameters for the statistical power calculation were chosen according to Meng et al. [18]: Cases = 190, controls = 1064, significance level = 5.0E-08, prevalence = 0.25,
genotype relative risk = 1.60
aProportion of SNVs whose risk alleles were minor alleles
bExpected proportion of SNVs whose risk alleles were minor alleles (Considering the GWAS’s power imbalance)
cP-value for the binomial test with the null hypothesis that the observed proportion is 0.5
dP-value for the binomial test with the null hypothesis that the observed proportion is the expected proportion
eLower and upper limits of the 95% confidence interval for the proportion by the Clopper–Pearson method with the null hypothesis that the observed proportion
is the expected proportion
f*P-value ≤0.01
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were risk alleles. The differences in detecting power of
GWASs between minor and major alleles become, larger
particularly with low minor allele frequencies and higher
numbers of controls than case samples. The discrepancy
between the proportion of minor and major alleles that
are risk alleles increases almost linearly with risk allele
frequency. Our results support a recent independent
study by Chan et al. [6]; using a different simulation
model, they reported more power to detect risk variants
than to detect protective variants in GWAS summary
association statistics. However, our statistical simulation
of P-values could not fully explain why this tendency
was greater than expected. For example, the proportion
of minor alleles that were risk alleles in the MAF cat-
egory of (0.4–0.5) was approximately 60%, which was
higher than our expected value of around 50% when the
risk allele frequency was 0.5. Furthermore, the observed
excess in the ratios of minor to major alleles was much
larger than expected in myopia, sudden cardiac arrest,
and systemic lupus erythematosus, especially in low
MAFs (< 0.1).
As suggested by Chan et al. [6], an increase in the

R/P ratio can occur if risk variants are present and
have been maintained at low frequencies by negative
selection. We therefore considered our results from
an evolutionary viewpoint.
Numerous germline mutations are removed immedi-

ately after being generated, either by selection or ran-
domly. The retained variants are maintained and may

expand in the population; however, some mutations
may, over time, cause diseases and disorders owing to
environmental changes. If a disease-associated allele has
a lower fitness from the beginning, it is not likely to be-
come a major allele. However, an allele that has become
disease-related owing to an environmental change can
be a major allele. In our study, the deviation from 0.5 in
the proportion of SNVs in which minor alleles were the
risk alleles was rather small (0.591–0.631) when the
MAF was relatively high (> 0.1), indicating that most of
the SNVs with those MAFs were associated with diseases
resulting from environmental changes. Moreover, the ra-
ther small deviation from 0.5 may be explained by a
preference of association studies to detect significance in
SNVs in which minor alleles are the risk alleles.
However, the predominance of SNVs in which minor al-
leles are the risk alleles (79.4%) among those with low
MAFs (< 0.1) may reflect the fact that numerous risk
alleles in this category might be the result of mutations
that occurred recently (probably a few thousand to ten
thousand years ago).
According to the analysis of NHGRI-EBI Catalog data,

diseases whose average risk allele frequencies were low
included myopia, sudden cardiac arrest, systemic lupus
erythematosus, systemic sclerosis, melanoma, atrial
fibrillation, and chronic kidney disease (Fig. 4). In
contrast, diseases whose average risk allele frequencies
were high included Alzheimer’s disease (late onset),
Parkinson’s disease, inflammatory bowel disease, multiple

Fig. 4 Distribution of disease-specific risk allele frequencies for major diseases in the NHGRI-EBI Catalog. Neuropsychiatric diseases (blue), autoimmune
diseases (green), metabolic and cardiovascular diseases (orange), cancer (red), and unclassified diseases (black) are shown. Numbers on the right-hand
side denote the number of SNVs
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sclerosis, chronic lymphocytic leukemia, metabolic syn-
drome, schizophrenia, ulcerative colitis, and type 1 dia-
betes (Fig. 4).
We speculate that for diseases whose average risk

allele frequencies were low, negative natural selection
had long been keeping deleterious mutations at a very
low frequency until recently, for instance, myopia
(before the advent of glasses) or sudden cardiac arrest.
Chan et al. [6] suggested that an excess of risk variants
compared to protective variants can be caused by nega-
tive selection. They simulated negative selection and ob-
served an increase in the R/P ratio for the frequency
bins within 1–15% but not for the 30–50% bin. They
concluded that risk variants would be kept at lower fre-
quencies, whereas protective variants would drift to
higher frequencies. In Table 2, we showed that the
observed excess in the ratios of minor to major alleles
were much larger than the expected ratios of GWAS
power imbalance in myopia. We think that natural selec-
tion has had enough time to keep the frequency of the
risk allele of myopia low.
Meanwhile, for diseases whose average risk allele

frequencies were high, we speculate that recent environ-
mental changes (including epigenetic changes, micro-
biome changes, or other factors) might play a crucial
role. For example, diabetic traits may have been benefi-
cial in a low-energy environment in the past [19].
Modern psychological disorders may be largely influ-
enced by the complexity of human communication in
current times. Coronary heart disease may not have
occurred frequently in individuals with low fat intake,
characteristic of ancient human diets, and Alzheimer’s
disease may not have been a major problem in the past,
because average life expectancy was not very high. Our
speculation is supported by the recent research of
Gorlov et al. [5], who hypothesized that negative selec-
tion may have different effects on environment/lifestyle-
dependent and -independent diseases. They suggested
that environment/lifestyle-dependent diseases tend to
have a higher frequency of risk-associated variants,
suggesting a weak effect of negative selection. We think
that natural selection has not had sufficient time to
influence the frequencies of environment/lifestyle-
dependent diseases.
There are several limitations to our approach. First,

the data used for this analysis were based on manual
curation from previous publications, which may have
introduced errors or publication bias. Second, because
most GWASs have been carried out on Caucasians, we
excluded non-Caucasian studies and thus did not
explore whether our findings are consistent across other
populations. Third, because most of the associations that
we explored here were obtained through GWASs, rare
variants associated with diseases were not included.

Similar analyses on rare variants should be carried out
for other populations of interest using advanced genome
sequencing technologies. Finally, most of the variants
listed in the NHGRI-EBI Catalog are merely SNVs that
tag risk, as opposed to being causal SNVs. Because of
this, we need to interpret the results of Fig. 4 carefully.

Conclusions
In summary, we reported that the risk alleles from
GWASs of common diseases tend to be minor alleles in
both the NHGRI-EBI Catalog and the VARIMED data-
base. Notably, our computer simulations revealed that
one reason was the larger difference in the power of
GWASs to differentiate between minor alleles and major
alleles, particularly for studies with low MAFs or those
with more controls than case samples. However, we
found that the observed excess in the ratios of minor to
major alleles in low MAFs (< 0.1) were much larger than
the expected ratios of GWAS power imbalance,
especially for diseases whose average risk allele frequen-
cies were low, such as myopia and sudden cardiac arrest.
We speculate that this could be the result of negative
natural selection; however, further systematic studies are
necessary to confirm this possibility.

Additional files

Additional file 1: Figure S1. Calculating the relative difference (S′) in
(p, log(P-value)) plots. The y-axis represents the log(P-value), and the
x-axis represents the risk allele frequency (p). The relative difference (S′)
was defined as the ratio of the area between the black line (minor allele
as the risk allele) and the red line (major allele as the risk allele) to the
maximum area surrounded by the black and red lines. (TIFF 479 kb)

Additional file 2: Figure S2. A minor allele is more likely to result in
significance as a risk allele than a major allele when the odds ratio (r) and
the number of controls (nc) are larger. Each value in the heat map (right
part of the figure) shows the relative difference between the log(P-value)
of a minor and major risk allele given the odds ratio (r) and the number
of controls (nc) in the association test simulations. The total number of
cases and controls was 2000 (n = 2000). The penetrance for the genotype
with the lowest risk (d1) was 0.03, and the number of controls (nc) ranged
from 200 to 1800 in increments of 100. The odds ratio (r) ranged from 1.06
to 2.00 in increments of 0.01. As shown in the right part of the figure, blue
in the heat map indicates that the differences are small (relative difference
< 0.05), white that differences are medium (relative difference = 0.10), and
red that differences are high (relative difference > 0.15). (JPEG 3725 kb)

Additional file 3: Figure S3. Risk allele frequencies of LD block SNVs
for 213 diseases extracted from the VARIMED database of European
association studies. (TIFF 156 kb)

Additional file 4: Figure S4. Log-transformed P-values of association
tests determined by logistic regression analysis with penetrance for
genotype with the lowest risk of 0.01 and odds ratio increments of 0.2.
The sample size was 1000 for both cases and controls. The penetrance
for the genotype with the lowest risk was 0.01, and the odds ratio (r)
ranged from 1.1 to 2.0 in increments of 0.2. Red and black circles/lines
indicate values for risk allele frequencies shown in red and black, respectively.
(TIFF 570 kb)

Additional file 5: Figure S5. Statistical power analysis for type 1
diabetes study [17]. The number of cases was 7514, and the number of
controls was 9045. We assumed that the significance level of the study
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design was 5.0 × 10− 8, the prevalence was 0.002, the genotype relative
risk was 1.15, and the disease model was multiplicative. The graph shows
the relationships between disease allele frequency (x-axis) and the statistical
power (y-axis). The right top table shows the difference between the statistical
power in the minor and major risk allele frequency (p= 0.05 vs. p= 0.95,
p= 0.15 vs. p= 0.85, p= 0.25 vs. p= 0.75, p= 0.35 vs. p= 0.65, and p= 0.45 vs.
p= 0.55). (TIFF 689 kb)

Additional file 6: Figure S6. Statistical power analysis for type 2
diabetes study [20]. The number of cases was 4595, and the number of
controls was 5579. We assumed that the significance level of the study
design was 5.0 × 10− 8, the prevalence was 0.073, the genotype relative
risk was 1.2, and the disease model was multiplicative. The graph shows
the relationships between disease allele frequency (x-axis) and the statistical
power (y-axis). The right top table shows the difference between the statistical
power in the minor and the major risk allele frequency (p= 0.05 vs. p= 0.95,
p= 0.15 vs. p= 0.85, p= 0.25 vs. p= 0.75, p= 0.35 vs. p= 0.65, and p= 0.45 vs.
p= 0.55). (TIFF 757 kb)

Additional file 7: Figure S7. Statistical power analysis for schizophrenia
study [21]. The number of cases was 5001, and the number of controls
was 6243. We assumed that the significance level of the study design
was 5.0 × 10− 8, the prevalence was 0.01, the genotype relative risk was
1.2, and the disease model was multiplicative. The graph shows the
relationships between disease allele frequency (x-axis) and the statistical
power (y-axis). The right top table shows the difference between the
statistical power in the minor and major risk allele frequency (p = 0.05 vs.
p = 0.95, p = 0.15 vs. p = 0.85, p = 0.25 vs. p = 0.75, p = 0.35 vs. p = 0.65, and
p = 0.45 vs. p = 0.55). (TIFF 777 kb)

Additional file 8: Figure S8. Statistical power analysis for myopia study
[18]. The number of cases was 190, and the number of controls was 1064. We
assumed that the significance level of the study design was 5.0 × 10− 8, the
prevalence was 0.25, the genotype relative risk was 1.6, and the disease model
was multiplicative. The graph shows the relationships between disease allele
frequency (x-axis) and the statistical power (y-axis). The right top table shows
the difference between the statistical power in the minor and major risk allele
frequency (p= 0.05 vs. p= 0.95, p= 0.15 vs. p= 0.85, p= 0.25 vs. p= 0.75,
p= 0.35 vs. p= 0.65, and p= 0.45 vs. p= 0.55). (TIFF 646 kb)

Additional file 9: Table S1. Comparisons of observed and expected
proportions of SNVs whose risk alleles are minor alleles in sudden cardiac
arrest. Table S2. Comparisons of observed and expected proportions of
SNVs whose risk alleles are minor alleles in systemic lupus erythematosus.
(DOCX 16 kb)
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