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Abstract

Background: Oscillations of different origin, period and amplitude play an important role in the regulation of
cellular processes. Most widely studied is the circadian or approximately daily variation in gene expression
activity. Timing of gene expression is controlled by internal molecular clock keeping steady periodic expression.
In this study, we shift attention towards a broad range of periodically expressed genes involved in multiple
cellular functions which may or may not be under direct control of the intrinsic circadian clock. Are all molecular
functions represented in expressed genes at all times? Alternatively, are different molecular functions performed
at different times? Is there a pattern of succession for molecular processes and functions throughout their daily
activity period?

Results: To answer these questions, we re-analyzed a number of mouse circadian gene expression data available
from public sources. These data represent the normal function of metabolically active peripheral tissues (white
adipose tissue, brown adipose tissue, liver). We applied novel methods for the estimation of confidence in phase
assignment to identify groups of synchronous genes peaking at the same time regardless of the amplitude or the
absolute intensity of expression. Each synchronous group has been annotated to identify Gene Ontology (GO)
terms and molecular pathways. Our analysis identified molecular functions specific to a particular time of the day
in different tissues.

Conclusion: Improved methodology for datamining allowed for the discovery of functions and biological
pathways in groups of genes with synchronized peak expression time. In particular, such functions as oxidative
phase of energy metabolism, DNA repair, mRNA processing, lipid biosynthesis and others are separated in time.
This timewise compartmentalization is important for understanding the cellular circuitry and can be used to
optimize the time of intervention with drug or genome medication.

Background
A wealth of knowledge has been generated on the se-
quence of physiological and behavioral processes that os-
cillate within the diurnal cycle of a mammalian life. The
triggers and downstream effectors of circadian rhythm are
well characterized on an organismal and molecular level,
and several tissue types have been assessed for periodicity
of global gene expression. The question of how many
genes oscillate in a circadian (i.e. approximately daily)

period has been the subject of many debates [1–4] and
the answers vary with tissue type, experimental conditions,
technology, and statistics used to infer oscillating genes.
With the exception of the well-studied clock genes, and
while the identity and function of most of the oscillating
genes is known, the significance of the timing of their os-
cillation has not been fully dissected. However, one study
has produced an interesting observation of gene expres-
sion in connection with sleep cycles [5]. The report shows
a succession of molecular functions among genes
expressed at different times. The authors did not connect
these observations with circadian molecular clock, but
used the same diurnal time scale in their experiments.
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They point out that, in nervous tissue, sleep is an im-
portant adaptation to the cyclic nature of macromol-
ecule biosynthesis. We may ask the next question:
what happens in the other tissues? Does the diurnal
rhythm of biosynthesis impose temporal limitations
on the functioning of the other tissues in a way simi-
lar to sleep requirements for neurons?
In each of the tissues studied, researchers identified

the molecular pathways and functions associated with
the circadian genes and interpreted the results in the
context of tissue type. For example, circadian genes
in cardiomyocytes were found to be involved in trans-
port, transcription, signal transduction, protein turn-
over, and metabolism [6]. In the liver, targets of the
core clock genes were found to be involved in meta-
bolic pathways in cancer and insulin signaling [7].
Zhang et al. tried to follow the peak times of certain
pathways in different tissue and reported on some of
them [4]. However, a global picture of the sequence
of molecular functions oscillating through the diurnal
cycle has not yet been outlined.
Based on the previous observations and these ques-

tions we can formulate the central hypothesis for this
small study: if other tissues require certain stretches of
time in their diurnal cycle to recharge and replenish like
the nervous tissue does in a sleep cycle, then some GO
terms and pathways must show significant association
with certain times. Alternatively, the pathways and func-
tional annotation terms may be distributed uniformly in
time (i.e. spare genes peaking at different time, but the
pathway they form is active at all times).
To resolve this dilemma we re-analyzed several data-

sets of time-course gene expression in different tissue in
mice: liver tissue and white and brown adipose tissue
data set previously described in Zvonic et al. [8]. We
used a confidence interval to assess their periodicity
within predefined time slots, and came up with sets of
genes oscillating in sequential phases. We then interro-
gated the functions of the genes by doing a gene ontol-
ogy enrichment analysis. We concluded that some
molecular functions and cellular processes are indeed
triggered at certain times of the day in a tissue-specific
manner.

Methods
The overview of the analysis is given in Fig. 1. We used
the same data as in a number of previous in method-
ology studies [9–12].

Data processing
The data were normalized using a quantile algorithm
similar to the one described by Bolstad et al. [13]: xnorm
¼ F−1

2 ðGðxÞÞ where F is the distribution function of the

actual sample, and G is the reference distribution func-
tion. In this case the reference distribution is estimated
by an average of sample distribution for the entire data
set. We used a seven-point Savitzky-Golay algorithm
[14] for additional smoothing of the reference distribu-
tion. Each expression profile is scaled to its own stand-
ard deviation (i.e. z-scored) to achieve a uniform range
for further testing and selection.

Selection of oscillating expression profiles
In this study we did not try to assess how many genes
are expressed in oscillating pattern. Low sampling rate
renders all periodicity tests underpowered and the num-
bers of truly oscillating genes underestimated [1]. Earlier
analysis of the same data reported numbers from
roughly 20% [8] to over 90% [11] of genes with detect-
able baseline oscillation, depending on the algorithm ap-
plied. It is reasonable to assume that genes for which the
time of peak expression can be identified with more cer-
tainty are also likely to be rhythmically expressions. The
test for a certain peak time is applied to each profile in-
dependently. However, independence of oscillation pat-
tern in gene expression could not be assumed. Living
cells are known to have more than one oscillator [15],
but these oscillators are normally synchronized to the
rhythm of the circadian molecular clock, active in per-
ipheral tissues. Testing individual expression profiles for
periodicity in only one circadian frequency we are look-
ing for manifestation of the same factor, hence not test-
ing independent hypotheses. For these reasons FDR
correction has not been applied to reduce the number of
selected genes.

Determining oscillatory phase and phase confidence
estimation
We chose the phases of oscillation such that the peak of
each phase coincides with sample harvest time, and for
each phase we set a confidence interval around the peak
time. The Bray data was assayed every 3 h so we have a
total of 8 phases with a 6 h confidence interval for each
phase. For example, phase 1 has a confidence interval
between zeitgeber 21 and 3 h; phase 2 has an interval
between 0 and 6 h, and so on. The Zvonic et al. data was
assayed every 4 h, so we have a total of 6 phases with

Fig. 1 Overview of the analysis workflow

Fadda et al. BMC Medical Genomics 2018, 11(Suppl 1):14 Page 84 of 95



confidence intervals spanning 8 h. We estimated correl-
ation to ideal cosine function (discrete, generated with
the same number of time points as corresponding ex-
pression data) and classified all expression profiles to the
nearest match. For the next step, we applied Maximum
Entropy Bootstrap algorithm to estimate confidence
level in our phase assignment. The algorithm description
and R code are available in the supplemental materials
(Additional file 1).

Functional annotation
We used DAVID [16] for functional annotation of
microarray probe sets as well as statistical enrichment of
phase group by GO terms and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways. The complete
annotated list is provided in the supplemental materials
(Additional file 2). The data does not allow for the as-
sumption of independent testing for highly dependent
and overlapping set of pathways. Nevertheless, the
standard set Bonferroni, Benjamini and FDR corrections
of DAVID are provided for reference. Functional annota-
tion clusters are presented in Additional file 2. Affyme-
trix probe sets were submitted as gene lists while the
entire microarray was used as a background. Thomson-
Reuters Metacore software was used in the early stages
to perform first pilot analysis and to generate Tables 1,
2, and 3.

Results
Prevalence of circadian rhythm in baseline gene
expression
Previous analysis of the same data [8] first reported over
18% of microarray probe sets oscillating in circadian
rhythm [9] and then over 90% with development of new
methods based on digital signal processing [11]. This
previous observation led to conclusion that the non-
oscillating fraction of transcripts is either small or non-
existing [1]. Each probe set loosely corresponds to one
transcript, thus one gene can be represented by one or a
few probe sets. The oscillating probe sets include the en-
tire range of expression. Some of the oscillating tran-
scripts show high fidelity and synchronization with their
known co-expressed genes, even though their abundance

is too low to call present by conventional methods [17].
For this reason, we did not pre-select transcripts or
probe sets by the level of expression. We used the entire
data regardless of the level of expression so long as the
signal to noise ratio was high enough for Pt-test as de-
scribed in Ptitsyn et al. [10].

Succession of prevailing GO terms in circadian cycle
The subset of pronouncedly oscillating genes selected
for further analysis in this study was the same as
reported in the original analysis [8]. Application of phase
confidence filter has significantly reduced the numbers
of genes for further investigation. In IWAT, we selected
252, 47, 223, 128, 117 and 103 microarray probe sets
peaking at zt0, zt4, zt8, zt12, zt16 and zt20 with high
confidence (p < 0.05) correspondingly. These numbers
are much less than the total numbers of oscillating genes
and account only for the genes with peak activity at the
time the sample is taken and not anywhere between
sample collection time points. Functional annotation of
the lists of genes with GO terms, PIR keywords and
other features (available through DAVID [16]) reveals
differences between phase groups. The overview of
expression landscape is presented in Fig. 2. The
complete list of genes and GO terms prevalent in tran-
scriptome at different times of the day is given in the
supplemental materials (Additional files 2, 3, and 4). The
difference concerns both cellular localizations and mo-
lecular functions. Early phases are dominated by GO
terms associated with the nucleus. Later, terms associ-
ated with cytoplasm, cellular membrane, and Golgi ap-
paratus become more prevalent.
The patterns on Fig. 2 are formed by an abundance of

annotation terms in fractions of genes peaking at a par-
ticular time (from zeitgeber+ 0 h at 4-h intervals). The
color area is proportional to the number of genes anno-
tated with corresponding terms. Annotation terms
returned by DAVID are manually curated to remove re-
dundancy. Some terms, like “phosphoprotein” are abun-
dant throughout all phases. Others like “coiled coil” at
zt + 4 h appear only once. Notably common is appear-
ance of the same terms in a few adjacent phases, for ex-
ample “regulation of transcription”, which is abundant

Table 1 Phase enrichment of iWAT data for molecular functions

Molecular functions iWAT Zt0 iWAT Zt4 iWAT Zt8 iWAT Zt12 iWAT Zt16 iWAT Zt20

binding 0.15 0.09 0.00 0.00 0.00 0.00

enzyme regulator activity 0.74 0.88 0.74 0.25 0.17 0.02

protein binding transcription factor activity 0.53 0.70 0.25 0.02 0.03 0.95

structural molecule activity 0.60 0.05 0.00 0.05 0.98 0.28

Number of genes 26 42 214 125 111 98

Each table cell shows estimated p-value for significance of over-representation of a particular GO category (row) among genes peaking at certain time (column).
Cells with p-values 0.05 and below are highlighted. The last line shows the absolute number of annotated genes peaking at particular time
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among genes peaking at zt + 8 and zt + 12 h and subside
after that. This observation is likely to reflect the pro-
cesses that take more than one 4-h interval in time.

Different tissues exhibit varying patterns of molecular
processes synchronization
The pattern in Fig. 2 is characteristic of gene expression
in white adipose tissue. As it was noted earlier [9],
synchronization patterns are highly variable in different
tissues. A more recent study of Zhang et al. [4] com-
pared more different tissues and came to the same con-
clusion. The difference between tissues remains clear
when we shift the focus from separate genes to large cat-
egories of annotation terms. Tables 1, 2, and 3 trace the
occurrence of the same Molecular Functions in iWAT,
BAT, and liver (the overview generated using Thomson-
Reuters Metacore software). The statistical significance
of enrichment of each synchronous group of genes is es-
timated by a p-value with p = 0.05 cutoff (highlighted
cells). The total number of annotated genes peaking at
certain times in these table is lower than the numbers of
selected peaking probe sets due to probe redundancy
and insufficient annotation of some probes. Neverthe-
less, the numbers are sufficient to see that different
function dictates different synchronization pattern for
each organ and tissue. Even though the same genes
representing the same molecular functions might be ac-
tive, two samples from different tissues are different at
any given point of time. The overall pattern of gene
synchronization is also different between tissues, even

between white and brown fat. This difference is apparent
even when very general GO categories are used, like
those in Tables 1, 2, 3.

Discussion
The facts that a larger part of the transcriptome experi-
ences diurnal variations in baseline level of expression
and groups of genes can be identified as peaking at the
same time still leave at least two possibilities. First, genes
peaking at the same time may represent different path-
ways and molecular processes; the functions on cellular
level may not follow the same rhythm as separate genes.
Second, genes peaking at the same time may reflect cer-
tain molecular and cellular processes; in this case
synchronization of peak expression is functional and
regulated. To test these alternative hypotheses, we have
to identify the peak time of gene expression. This ques-
tion is far from trivial when the data is sampled at ex-
tremely low rate, most typically once every four hours
which provides only six time points per period. Genes
that peak at a time between observation points may still
appear periodic and pass the periodicity test. However,
when characterizing commonalities among genes peak-
ing at one time we need more than an assumption that
this group of genes is synchronous. For this purpose, we
employ a bootstrapping algorithm that allows selection
of genes peaking at or near the time of observation (i.e.
at one of the sample collection points spaced by four-
our intervals) with 90% confidence (p < 0.1). This add-
itional filtering leaves much fewer numbers of genes to

Table 2 Phase enrichment of BAT data for molecular functions

Molecular functions BAT Zt0 BAT Zt4 BAT Zt8 BAT Zt12 BAT Zt16 BAT Zt20

binding 0.00 0.00 0.02 0.07 0.00 0.01

catalytic activity 0.42 0.32 0.00 0.00 0.05 0.41

structural molecule activity 0.48 0.06 0.23 0.96 0.01 0.05

transporter activity 0.81 0.90 0.05 0.56 0.02 0.75

Number of genes 53 107 154 142 142 60

Each table cell shows estimated p-value for significance of over-representation of a particular GO category (row) among genes peaking at certain time (column).
Cells with p-values 0.05 and below are highlighted. The last line shows the absolute number of annotated genes peaking at particular time

Table 3 Phase enrichment of liver data for molecular functions

Molecular functions Liver Zt0 Liver Zt4 Liver Zt8 Liver Zt12 Liver Zt16 Liver Zt20

binding 0.02 0.01 0.00 0.00 0.12 0.00

catalytic activity 0.19 0.19 0.02 0.00 0.44 0.03

enzyme regulator activity 0.57 0.11 0.03 0.04 0.29 0.33

protein binding transcription factor activity 0.50 0.88 0.16 0.06 0.47 0.02

structural molecule activity 0.32 0.64 0.62 0.88 0.01 0.13

transporter activity 0.90 0.12 0.02 0.85 0.10 0.16

Number of genes 65 131 158 171 130 63

Each table cell shows estimated p-value for significance of over-representation of a particular GO category (row) among genes peaking at certain time (column).
Cells with p-values 0.05 and below are highlighted. The last line shows the absolute number of annotated genes peaking at particular time
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characterize, but still sufficient for the pathways analysis.
Confidence in selection of genes peaking within a certain
time interval is an essential novelty in our methodology.
It allows focusing on smaller groups of genes for which
the true peak time can be estimated and produces a
clearer pattern of molecular functions and pathways
active at the stretch of time in vicinity of a specific sam-
pling point.
In this study we intentionally keep only a course-

grained view on molecular pathways. Functional annota-
tion of genes peaking at a certain time in circadian cycle
has been performed in multiple studies. The recent
example of Zhang et al. attempts this kind of analysis on
a larger scale scale [4]. However, the interpretation de-
pends on the definitions of gene sets, pathways and
other unions. Many pathways are found by tracing gene
regulation and protein interaction around known
disease-related genes and include multiple cellular pro-
cesses with no regard of the time. On the other hand,
most general annotation terms like subcellular
localization or metabolic reactions can be found as parts
of multiple pathways. Following the example of Mackie-
vicz et al., we try to identify most general annotation
terms associated with genes peaking at a certain time,
similar to macromolecule synthesis genes associated
with sleep function in nervous tissue.
In the Mackievicz et al. experiment, the researchers

compare expression patterns between undisturbed con-
trol and a sleep-deprived cohort in the same timeline.
One possible interpretation of these results can be based
on assumption that sleep deprivation artificially halts the
natural succession of molecular processes. Sleep-
deprived animals have a large portion of cellular pro-
cesses in their brain cells halted while the same

processes in control group follow the normal diurnal
cycle. Then, we can hypothesize that comparing gene
expression between halted by sleep-deprivation and un-
restricted groups has similarities to the comparison of
expression patterns in the same group, but across the
phases of sleep-awakening cycle. In the Mackievicz et al.
experiment, the authors did not investigate differential
expression between time points in the unrestricted con-
trol cohort. The data we analyze in this study was
acquired through the normal diurnal cycle. Mice were
awakened before sacrificed, but sample collection was
finished in minutes and it is highly unlikely that the pat-
tern of relative mRNA abundance has been significantly
disturbed. Therefore, in the Zvonic et al. experiment,
examining the lists of genes peaking at different time
points should produce results similar to the lists of dif-
ferentially expressed genes in the Mackievicz et al.
experiment. Indeed, in both experiments we can clearly
observe clusters of GO and other annotation terms in
succession over time.
In Mackievicz et al., the authors argue that sleep is a

special adaptation that allows animals with highly devel-
oped nervous system perform the essential macromol-
ecule synthesis and complete the diurnal succession of
cellular functions. Some of those functions cannot sus-
tain normal brain activity, which manifests in a radical
change of behavior. If these conclusions are correct,
other tissues also go through the same cycle of cellular
housekeeping. However, the tissues observed in our
study do not modulate the animal behavior as much as
the central nervous system does. Nevertheless, our
observations give a reason to believe that the principal
function of all tissues (or at least those we looked at) is
also disrupted or reduced at certain times of the day.

Fig. 2 Succession of prevailing GO terms in circadian cycle. Only first ten most prevalent GO terms are shown for each phase group (column).
The vertical axis shows relative abundance of a particular GO term. The complete table of GO annotation for each phase is available in
supplemental materials
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Fig. 3 shows selected examples of functional categories
peaking that can be attributed to a certain time only or
cover more than one period in succession. Each curve is
a line plot of the average values for the genes peaking at
certain four-hour intervals (marked on the horizontal
axis). Overall the pattern is consistent with canonical
succession of processes in cell biology. The wave of
RNA-binding genes is succeeded by a wave of DNA-
binding and chromatin assembly genes. Actin-binding
genes peak twice, which probably reflects the peaks of
transporting activity for different macromolecule com-
ponents of cellular machinery. Peak of expression for
gene involved in unfolded-protein utilization coincides
with the peak of redox genes and follows the chromatin
assembly. Remarkably, lipid synthesis in white fat is
marked by gene activity in a late phase (zt + 20 h) right
after the peak of redox genes.
The patterns we observe reflect only gene expression

activity and not the entire tissue physiology. A pool of
already synthesized and deployed protein may function
throughout the times when genes responsible for par-
ticular function are inactive. However, the capacity to
accommodate higher activity or respond to a signal is
limited to the pool of available proteins while activation
of transcription takes time and energy.

Conclusions
Based on our computational observation, we can
theorize that irregularities in life (such as an unusually
large or untimely meal) may shift the balance from
redox to lipid synthesis or from lipid synthesis to cell
growth based on the state of preparedness of a cell to a
particular function at specific time in a diurnal cycle.
However, this and other theoretical concepts will benefit
from experimental corroboration.
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