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Abstract

Background: Small molecule Nutlin-3 reactivates p53 in cancer cells by interacting with the complex between p53
and its repressor Mdm-2 and causing an increase in cancer cell apoptosis. Therefore, Nutlin-3 has potent anticancer
properties. Clinical and experimental studies of Nutlin-3 showed that some cancer cells may lose sensitivity to this
compound. Here we analyze possible mechanisms for insensitivity of cancer cells to Nutlin-3.

Methods: We applied upstream analysis approach implemented in geneXplain platform (genexplain.com) using
TRANSFAC® database of transcription factors and their binding sites in genome and using TRANSPATH® database of
signal transduction network with associated software such as Match™ and Composite Module Analyst (CMA).

Results: Using genome-wide gene expression profiling we compared several lung cancer cell lines and showed that
expression programs executed in Nutlin-3 insensitive cell lines significantly differ from that of Nutlin-3 sensitive cell lines.
Using artificial intelligence approach embed in CMA software, we identified a set of transcription factors cooperatively
binding to the promoters of genes up-regulated in the Nutlin-3 insensitive cell lines. Graph analysis of signal transduction
network upstream of these transcription factors allowed us to identify potential master-regulators responsible for
maintaining such low sensitivity to Nutlin-3 with the most promising candidate mTOR, which acts in the context of
activated PI3K pathway. These finding were validated experimentally using an array of chemical inhibitors.

Conclusions: We showed that the Nutlin-3 insensitive cell lines are actually highly sensitive to the dual PI3K/mTOR
inhibitor NVP-BEZ235, while no responding to either PI3K –specific LY294002 nor Bcl-XL specific 2,3-DCPE compounds.
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Background
One of the important targets in cancer cells is well known
tumor suppressor protein p53. Among known candidate
small molecules interacting with p53 and, therefore, coun-
teracting proliferation of cancer cells is the cis-imidazoline
analog compound called Nutlin-3 [1, 2]. Through inter-
action with the complex between p53 and its repressor
Mdm2 the compound Nutlin-3 increases activity of p53,
which, in turn, leads to an increase in the apoptosis of the
cancer cells. Clinical and experimental studies of Nutlin-3
and other Mdm2/p53 binding inhibitors showed that
some cancer cells are not sensitive to these compounds.
The dominant mechanism of resistance to such inhibitors
is the mutant status of TP53 (gene encoding p53 proteins)
(https://www.ncbi.nlm.nih.gov/pubmed/25730903). There
is nevertheless a wide range of sensitivity to the Mdm2/
p53 binding inhibitors among TP53 wild-type cancer cell
lines, which vary widely for different inhibitors (which in
turn clearly emphasizes differences of the particular mo-
lecular mechanisms of action of different Mdm2-p53 in-
hibitors) [3]. One of the possible mechanisms of the
relative insensitivity to these inhibitors (including Nutlin-
3) of such cell lines is a high activity of one or more pro-
survival pathways precluding insensitive cells from enter-
ing apoptosis even in presence of the cytotoxic compound.
Such highly active pro-survival pathways can be either
present in the cancer cells ab-initio (due to some “favorite”
expression pattern of respective components of the signal-
ing pathways), or such pro-survival pathways are activated
in the cancer cells during and sometime as a result of the
treatment using various chromatin reprogramming mech-
anisms [3]. In this work we focus our attention on the
pro-survival pathways that are present and active ab-initio
in some of lung cancer cell lines that are relatively insensi-
tive to the p53 re-activating compound Nutlin-3. Detec-
tion of such pre-existing pathways in the populations of
cancer cells can help in selecting appropriate drug treat-
ment that either kill the cancer cells along or potentiate
the response to Mdm2/p53 binding inhibitors as it is dem-
onstrated previously for various cancer cell lines [4].
Experimental identification of activated pathways and

corresponding potential drug targets in cancer cells is time
consuming and very expensive. Computational analysis of
gene expression data can help to identify few candidate
pathways that can be validated experimentally in focused
experiments. Many of such gene expression data are depos-
ited in databases such as ArrayExpress [5] or Gene Expres-
sion Omnibus (GEO) [6], and can be used in combination
with own gene expression data to identify expression signa-
tures specific for particular cell types and cellular condi-
tions. Such signatures can be used directly for selection of
potential drug targets using the mere statistical significance
of the expression changes. For a more refined analysis of
the molecular mechanisms a conventional approach of

mapping the differentially expressed gene (DEG) sets to
Gene Ontology (GO) categories or to KEGG pathways, for
instance by GSEA (gene set enrichment analysis), is usually
applied [7, 8].
But, such approaches provide only a very limited clue to

the causes of the observed phenomena and therefore not
very useful for selection of potential drug targets. To over-
come such limitations we introduced earlier a novel strat-
egy, the “upstream analysis” approach for causal
interpretation of the gene expression signatures and identi-
fication of potential master regulators [9–13]. This strategy
comprises two major steps: (1) analysis of promoters of
genes in the signatures to identify transcription factors
(TFs) involved in the process under study (done with the
help of the TRANSFAC® database [14] and site identification
algorithms, Match [15] and CMA [16]); (2) reconstruction
of signaling pathways that activate these TFs and identifica-
tion of master-regulators on the top of such pathways
(done with the help of the TRANSPATH® signaling path-
way database [17] and special graph search algorithms im-
plemented in the geneXplain platform [12]). In this paper
we applied our upstream analysis algorithm to identify mas-
ter regulators potentially responsible for dumping down the
sensitivity of particular lung cancer cell lines to the cyto-
toxic activity of p53 reactivating compound Nutlin-3.
Many tumor cells are characterized by a substantial in-

creased expression of p53 inhibitor Mdm2 [18]. In these
cells p53 is rapidly degraded allowing an escape from p53-
dependent apoptosis. The destruction of the Mdm2-p53
complex stabilizes the pool of p53 and the restores its ac-
tivity, which, in turn, leads to inhibition of proliferation
and / or death of tumor cells. To date, three classes of
small molecular inhibitors of Mdm2-p53 interaction are
identified, namely, Nutlins (nutlins) [19], BDAs (benzodia-
zepindiones) [20] and a series of spiro-oxindole derivatives
MI-63, MI-219 and MI-43 [21, 22]. All three series of
compounds bind with high affinity to p53-specific pocket
region of Mdm2, thus, displacing p53 from its complex
with Mdm2.
Among these compounds, Nutlin-3 is the most com-

monly used in the anti-cancer studies. Pre-clinical trial data
of Nutlin-3 for the treatment of acute myeloid leukemia
[23, 24] has confirmed its ability to induce apoptosis of
tumor cells, while sparing normal hematopoietic cells. Dur-
ing last years, the small molecule drug RG7112, a deriva-
tive compound of Nutlin-3, was studied in several Phase I
clinical trials for advanced solid and hematological cancers,
and for liposarcoma [1] (clinical trial: NCT00559533), for
acute myelogenous leukemia (clinical trial: NCT01635296)
and for soft tissue sarcoma (clinical trial NCT01605526),
delivering promising results [2]. In those studies, the cases
of the resistance and low sensitivity of cancer cells to the
treatment by Nutlin-3 were noted. Among most recent
and most promising Mdm2/p53 binding inhibitors that are
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in clinical trials now we can mention AMG-232 (https://
clinicaltrials.gov/ct2/show/NCT03041688) and HDM201
(https://clinicaltrials.gov/ct2/show/NCT02343172). No
gene expression data on these two compounds are avail-
able in GEO yet. We hope that our current study of
Nutlin-3 insensitivity mechanisms will help to prepare the
background for future studies of such more potent com-
pounds as AMG-232 and HDM201.
In order to analyze the effect of Nutlin-3 on lung can-

cer cells and understand the factors rendering these cells
sensitive or insensitive to the treatment we performed a
focused study of its biological activity in various lung
cancer cell lines carrying wild-type TP53 gene as well as
TP53 inactivating mutations. A total of 8 cell lines were
analyzed: A549, NCI-H292, A427, COR-L23, DV-90,
NCI-H1395, NCI-H1944, NCI-H2228. The cytotoxic ac-
tivity of Nutlin-3 on lung cancer cell lines was deter-
mined based on the IC50 (inhibitory concentration)
parameter (concentration of compound leading to 50%
of the cell death in the culture). The IC50 parameter was
determined using a resazurin viability test. We found
that lung cancer cell lines are significantly differing from
each other in respect to the sensitivity to Nutlin-3.
Based on our drug sensitivity measurements, we chose

one of the most Nutlin-3 sensitive cell lines - H1944, and
two less sensitive (we call them as insenistive) cell lines -
A427 and NCI-H292 for further studies. We performed
microarray experiments on these cell lines before and after
treatment by Nutlin-3 in order to reveal different gene ex-
pression profiles in sensitive and insensitive cell lines.
Comparative analysis of microarray data of these three cell
lines was done using a computational pipeline “From gen-
ome to target” (http://my-genome-enhancer.com) imple-
mented using BioUML driven systems biology platform
(www.biouml.org, geneXplain platform: www.genexplain.-
com). We revealed a number of differentially expressed
genes (DEGs) between sensitive and insensitive cell lines.
Promoter and pathway analysis of these DEGs using “up-
stream analysis” approach [13] helped us to identify po-
tential master regulators in these cancer cell lines
responsible for the elevated resistance to Nutlin-3. Among
them, the most promising was mTOR as one of the most
important regulator of pro-survival mechanisms in the
cells. We applied specific chemical inhibitors in order to
test their effect on these cell lines. We found that used
Nutlin-3 insensitive cell lines exhibit the highest sensitivity
to the dual chemical inhibitor of mTOR-PI3K whereas the
Nutlin-3 sensitive cell line appeared to be relatively in-
sensitive to this inhibitor. These results confirmed our
prediction of the master regulators in the mTOR-PI3K
signaling pathway responsible for the elevated resistance
of particular lung cancer cell lines to treatment by the
p53-reactivating compound Nutlin-3. As we predicted,
the Nutlin-3 insensitive cell lines appeared to be highly

sensitive to the inhibitors of mTOR-PI3K pathway. These
findings open a promising possibility for a combinatory
therapy combining Nutlin-3 with mTOR-PI3K inhibitors.
Such drug combinations will have a potential to tackle the
observed heterogeneity between different cancer cell lin-
ages towards p53-reactivators such as Nutlin-3.

Methods
Cell lines
In our study we used the following eight lung cancer cell
lines, seven of them are classical non-small cell lung
cancer (NSCLC) cell lines (A549, A427, COR-L23, DV-
90, NCI-H1395, NCI-H1944, NCI-H2228) and one is
cell line of the mucoepidermal lung carcinoma (NCI-
H292), which is also classified as NSCLC according to
the existing classification (https://radiopaedia.org/arti-
cles/mucoepidermoid-carcinoma-of-lung). The charac-
teristics of these eight cell lines are given in the Table 1.

Conditions of cultivation
The cells were cultured in DMEM / F12 medium contain-
ing 10% FBS, 0.03% glutamine, and kanamycin at a con-
centration of 100 μg / ml at 37 °C and 5% CO2 in the
atmosphere. When the cell culture reached a density of ~
70%, the monolayer cells were seeded with 1: 4 culture di-
lution. The described cultivation conditions allowed main-
taining the cell culture in the exponential growth.

Test of sensitivity of lung cancer cell lines to Nutlin-3
Cells from frozen cultures were seeded in 25 cm2-culture
flasks. Before testing the compound, the cells must be
reseeded at least once. To test the sensitivity to the com-
pound treatment, the lung cancer cells in the exponential
growth phase were seeded in wells of a 24-well plate at
60,000 cells per well. After 24 h, the culture medium was
replaced with a fresh one containing the compound in the
following concentrations: Nutlin-3 (Nutlin3 (±), Cayman
Chemical) at concentrations of 34 μM, 17 μM, 8.5 μM,
4.25 μM, 2.2 μM and 0 μM (control).
Each concentration point was represented in triplicates.

48 h after the addition of the compound the proportion of
viable cells was determined by a viability test with
resazurin.

Test for vitality with resazurin
Resazurin is an oxidation-reduction dye and is used to
analyze the toxicity of compounds in cell culture [25]. The
analysis is based on the ability of metabolically active cells
to restore resazurin (a blue product) to resorufin (a pink
color product, a fluorophore with absorption and emission
maxima at 571 and 586 nm, respectively). The conversion
of resazurin to resorufin is carried out intracellularly and
is provided by mitochondrial, microsomal and cytosolic
oxidoreductases. Thus, the amount of resorufin in the
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culture medium is related to the total number and (or)
survival of the cells in the culture.
The viability test was performed 48 h after the cell cul-

ture was incubated with the test compound. To do this,
the culture medium with the test compound was removed
from the wells of the plate and 500 μl of Dulbecco’s solu-
tion (1 ×) containing rezazurin (resazurin sodium salt,
Diaam) at a concentration of 50 μg / ml was added. A
500 μl Dulbecco solution with resazurin (50 μg / ml)
added to an empty well of a 24-well culture plate was used
as control (background). The time of incubation of cells
with resazurin was 1 h. The incubation was carried out
under sterile conditions, at 99% humidity, at 37 °C and at
a concentration of 5%. Accumulation of resorufin (reduced
form of resazurin) was assessed by fluorescence detection
in the range of 587/607 nm. To assess the results of the
test, a calibration curve was constructed for the change in
fluorescence as a function of the number of cells. Using
this calibration curve we determined the relationship be-
tween the intensity of fluorescence and the number of
viable cells in culture. The proportion of surviving cells
was used to construct the dose-effect curve for each cell
line. The IC50 value was calculated from these curves
obtained using the Probit Analysis 1.0 software [26].

Isolation of cellular RNA and synthesis of cDNA
The cells of the lung cancer lines were lysed with Tri-
sol reagent (Invitrogen). The total RNA was isolated
according to the recommendations of Invitrogen. The
quality of RNA preparations was assessed by electro-
phoretic separation in a 1.3% agarose gel.
The reverse transcription reaction was performed at

42 °C for 45 min in 20 μl of a reaction mixture con-
taining 10 mM Tris-HCl (pH 8.3), 5 mM MgCl2,
10 mM DTT, 50 mM KCl, 0.2 mM dNTP, Stat-9 pri-
mer (10 ng / Μl), 100 unit act., DNA-dependent
RNA polymerase MoMLV (Biosan, ICBPM SORR)
and 500 ng of the total RNA.

Amplification reactions were performed using thermal
cyclers with an optical unit for detecting the fluorescence
of iQ5 iCycler or CFX96 (Bio-Rad). The possibility of re-
cording fluorescence in real time was achieved by adding
to the reaction mixture the intercalating dye SYBRGreen I.

Microarray analysis
Microarray analysis was done using the following micro-
array platform: Human HT-12 v3 Expression BeadChips
(Ilumina). Three cell lines: А427, H292 and H1944 were
treated by Nutlin-3 in a concentration that maximally dis-
criminates the sensitive and moderately insensitive cell
lines (5 μM) and also in the maximal cytotoxic concentra-
tion (30 μM). The cells were incubated with the com-
pound during 24 h. The experiment was done in two
biological replicates for each condition. The raw data files
with measured gene expression are deposited in the GEO
(https://www.ncbi.nlm.nih.gov/geo/). In order to detect
differentially expressed genes the raw microarray data
were normalized and further analyzed using Limma tools
from the R/Bioconductor package integrated into the
BioUML/geneXplain driven pipeline “From genome to
target”. The Limma has calculated LogFC between mean
expression values of the genes in two insensitive cell lines
in comparison with the sensitive cell line (the logarithm
on the basis of 2 of the fold change between different con-
ditions) and the p-value and adjusted p-value (corrected
to the multiple testing). In order to take into account the
correlated nature of technical replicates (duplicates),
which were done for each of the cell lines, we applied the
“block” option in the Limma analysis in order to compute
the p-values with better precision. (see the respective R
script in the Additional file 1: Figure S1). All these param-
eters were used to detect differentially expressed genes.

Analysis of enriched transcription factor binding sites
Transcription factor binding sites in promoters of differen-
tially expressed genes were analyzed using known DNA-
binding motifs described in the TRANSFAC® library [14],
release 2017.2 (geneXplain, Wolfenbüttel, Germany)
(http://genexplain.com/transfac). The motifs are specified
using position weight matrices (PWMs) that assign weights
to each nucleotide in each position of the DNA binding
motif for a transcription factor or a group of them.
The pipeline “From genome to target” provides tools

to identify transcription factor binding sites (TFBS) that
are enriched in the promoter regions under study as
compared to a background sequence set such as pro-
moters of genes that were not differentially regulated
under the condition of the experiment. We denote study
and background sets briefly as Yes and No sets. The al-
gorithm for TFBS enrichment analysis, called F-Match,
has been initially described in [15]. Briefly, as it has been
described in detail previously [13], the procedure finds a

Table 1 NSCLC cell lines used in this work

Cell line Type of cancer P53 status

A427 NSCLC adenocarcinoma wt

A549 NSCLC adenocarcinoma wt

COR-L23 NSCLC large cell
adenocarcinoma

P53 inactivating
alteration

DV-90 NSCLC adenocarcinoma wt

NCI-
H1395

NSCLC adenocarcinoma wt

NCI-
H1944

NSCLC adenocarcinoma wt

NCI-
H2228

NSCLC adenocarcinoma P53 inactivating
alteration

NCI-H292 Mucoepidermal lung carcinoma wt
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critical value (a threshold) for the score of each PWM in
the library that maximizes the Yes/No ratio RYN as
defined in Eq. (1) under the constraint of statistical
significance.

RYN ¼ SitesYes=SitesNo
SeqYes=SeqNo

ð1Þ

In Eq. (1), Sites and Seq are the sites and sequences
counted in Yes and No sets. High Yes/No ratio indicates
strong enrichment of binding sites for a given PWM in
the Yes sequences. The statistical significance is com-
puted as follows:

P X ≥xð Þ ¼
XN

n¼x

N
n

� �
∙pn∙ 1−pð ÞN−n

p ¼ Seq
SeqYes þ SeqNo

n ¼ SitesYes;N ¼ SitesYes þ SitesNo

ð2Þ

This binding site enrichment analysis is carried out in
the Site Analysis module of the pipeline “From genome
to target”. We consider for further analysis only those
TFBSs that achieved a Yes/No ratio > 1 and a P-value <
0.01. The pipeline further maps the matrices to respect-
ive transcription factors, and generates visualizations of
all results.

Finding master regulators in networks
We searched for master regulator molecules in signal
transduction pathways upstream of the identified tran-
scription factors using appropriate tools of the pipeline
“From genome to target”. The master-regulator search
uses the TRANSPATH® database (http://genexplain.com/
transpath) [17]. A comprehensive signal transduction
network of human cells is built by the network analysis
module of the pipeline using reactions annotated in
TRANSPATH®. The main algorithm of the master regula-
tor search has been described earlier [13]. The goal of the
algorithm is to find nodes in the global signal transduction
network that may potentially regulate the activity of the
set of transcription factors found at the previous step of
analysis. Such nodes are considered as most potent drug
targets, since any influence on such a node may switch the
transcriptional programs of hundreds of genes that are
regulated by the respective TFs. In our analysis we have
run the algorithm with a maximum radius of 12 steps
upstream of the TFs.

Computational pipeline «from genome to target»
Comparative analysis of microarray data of these three cell
lines was done using a computational pipeline “From gen-
ome to target” (http://my-genome-enhancer.com) imple-
mented using BioUML driven systems biology platform

(www.biouml.org, www.genexplain.com). The pipeline is
capable of taking various multi-omics data (such as Gen-
omics, Transcriptomics, Epigenomics, Proteomics and
Metabolomics) and automatically performing the “Up-
stream analysis” [13] to detect master regulators as poten-
tial drug targets. It provides a flexible graphical tool for
description of meta-data of the experiment that helps re-
searcher to define data for the automatic analysis. The
pipeline consists of four modules: Statistics, Genome En-
hancer, Drugs, Targets. Depending on the input data,
meta-data and the chosen parameters, the system gener-
ates a tailor-made data analysis workflow going through
all these four modules. At the first step, data are statisti-
cally analyzed, and the lists of differentially expressed
genes (DEGs) (in case of Transcriptomics data), proteins
(Proteomics) and metabolites (Metabolomics) are pre-
pared for the next steps of analysis. In case of Epigenomics
data (ChiP-seq, DNA methylation), a list of statistically
significant peaks and CpG methylation sites is prepared
for the next step. The Genomics data are also analyzed at
this step, and lists of revealed mutations are computed in
the form of VCF files. At Genome Enhancer module the
analysis of gene regulatory regions of differentially
expressed genes is performed using Match™ [15] and
CMA [16] tools (using TRANSFAC® [15], HOCOMOCO
[27] and GTRD [28] databases of position weight matri-
ces) in order to detect transcription factor binding sites
(TFBSs) in the promoters and enhancers of DEGs. When
available, ChIP-seq peaks and CpG methylation sites are
used in this module to help to define the enhancer and si-
lencer regions of the differentially expressed genes. In
addition, mutations found inside enhancers and silencers
were used to extract transcription factor binding sites sig-
nificantly affected by these mutations. As a result, a list of
transcription factors regulating genes through the identi-
fied TFBSs is forwarded to the network analysis in the sig-
nal transduction network (using TRANSPATH®,
REACTOME, HumanCyc databases). If genomic data is
available, then the observed mutations in the coding re-
gions of proteins, which are involved in signal transduc-
tion and which damage the function of these proteins, are
taken into account. The network is then modified by ex-
clusion of corresponding nodes and reactions from it. The
network analysis algorithm reveals master regulators as it
is described above. In pipeline modules “Drugs” and “Tar-
gets” the revealed master-regulators are interrogated and
prioritized in order to select the most promising thera-
peutic targets. Various properties of these mater-regulator
proteins, such as potential “drugability” (possibility to find
known drugs or novel chemical compounds potentially
interacting with these proteins) as well as additional anno-
tation from HumanPSD® (www.genexplain.com/humanpsd)
database about known disease relevance of these proteins,
are taken into account for such prioritization. Finally, the
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pipeline “From genome to target” reports a short list of
most promising targets.

Results
Sensitivity of different lung cancer cell lines to Nutlin-3
To test the sensitivity to Nutlin-3 we treated the se-
lected lung cancer cell lines during 24 h by the com-
pound in the following concentrations: 34 μM,
17 μM, 8.5 μM, 4.25 μM, 2.2 μM and 0 μM (control).
With the help of the viability test with resazurin we

constructed the curves of the percentages of survived
cells under increasing concentration of Nutlin-3 and
identified IC50 values of Nutlin-3 in the eight lung
cancer cell lines (A549, NCI-H292, A427, COR-L23,
DV-90, NCI-H1395, NCI-H1944, NCI-H2228). We
obtained the following results.
The H1944 line was the most sensitive to the action

of Nutlin-3 (IC50 = 4.9 ± 7.6). The other cell lines
showed very different cytotoxic effect of Nutlin-3:
H1395 (IC50 = 11.4 ± 3.8), DV-90 (IC50 = 12.9 ± 7.6),
COR-L23 (IC50 = 15.1 ± 4.6), H292 (IC50 = 15.4 ± 2.6),
A427 (IC50 = 18.8 ± 3.4). The A549 and H2228 cell
lines were quite resistant to Nutlin-3, IC50 values
were 31.2 ± 5.2 and 33.1 ± 6.7, respectively. Interest-
ingly, that the cell line H2228 which carry the p53 in-
activating mutation indeed has demonstrated the
highest resistance to Nutlin-3. For the further analysis
we selected three cell lines: one, which was the most
sensitive to Nutlin-3 – the H1944 cell line, and two,
which were still reacting to Nutlin-3, but only under
relatively high concentrations – H292 and A427
(moderately insensitive). In the Fig. 1 one can see the
clear differences in the cell survival dose-effect curve
between the sensitive cell line and these moderately
resistant once.

Microarray experiments on Nutlin-3 sensitive and insensi-
tive lung cancer cell lines
In order to get a comprehensive gene expression profile of
the studied cell lines before and after treatment by Nutlin-
3 we applied Illumina microarrays (Human HT-12 v3
Expression BeadChips). We treated three cell lines: А427,
H292 and H1944 by Nutlin-3 in a concentration which
maximally discriminates the sensitive and insensitive cell
lines (5 μM) and in the maximally cytotoxic concentration
(30 μM) (so high that it is potentially already off-target)
that gives the end point in the dose-effect curve where no
differences in survival between all cell lines were
observed,. After data normalization we applied Limma
tools (R/Bioconductor package integrated into the pipeline
“From genome to target”) and compared gene expression
in the insensitive cell lines (A427 and H292) with gene
expression in the sensitive cell line (H1944) before treat-
ment and after treatment by two concentration of Nutlin-
3. Limma has calculated LogFC (the logarithm on the
basis of 2 of the fold change between different conditions),
the p-value and the adjusted p-value (corrected to the
multiple testing) of the observed fold change In the
Additional file 2: Table S1 we provide the normalized
expression values of all genes with detected expression in
the studies conditions and mapped to Ensembl.

Dynamic gene expression changes upon treatment by
Nutlin-3 of sensitive and insensitive lung cancer cell lines
In order to study the behavior of genes in the insensitive
and in the sensitive cell lines after treatment of these cells
by 5 μM and 30 μM of Nutlin-3 we computed the LogFC
for the change of gene expression in these cell lines before
and after the treatment. In Table 2 one can see the results
of detection of Up- and Down- regulated genes upon
treatment by Nutlin-3 in two concentrations (p-value<
0.05, LogFC> 0.58 (which corresponds to FC > 1.5) for up-
regulated and LogFC<− 0.58 for down-regulated genes).
GO analysis of these differentially expressed genes

clearly confirms the well known molecular mechanism
of action of Nutlin-3. In the Additional file 3: Table S2
we summarize all results of GO analysis of these 7 sets
of genes. Results of this analysis show high similarity of
the processes triggered by Nutlin-3 treatment in all stud-
ied cell lines. Such processes as “cellular response to
stress”, “cell cycle arrest”, “cell death” and “apoptotic
process” are clearly most up-regulated in these cells

Fig. 1 Viability test of three NSCLC cell lines with increasing concentration
of Nutlin-3. Cell line H1944 shows higher sensitivity to the compound
compared to the cell lines H292 and A427

Table 2 Genes differentially expressed (UP and DOWN) upon
treatment by Nutlin-3 in insensitive and in sensitive cell lines

Nutlin-3
Dosage
(μM)

Sensitive Insensitive

UP DOWN UP DOWN

5 8 0 28 5

30 34 33 147 127
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upon Nutlin-3 treatment, and the processes, such as:
“DNA replication initiation”, “S phase”, “cell cycle”
and “DNA repair” are down-regulated. This reflects
the major effect of Nutlin-3 on cancer cell as an acti-
vator of cell cycle arrest and apoptosis through inhib-
ition of Mdm2-p53 complex.
In the plot bellow (Fig. 2) we compared the LogFC

calculated in the insensitive cell lines and LogFC in
the sensitive cell line. One can see a very good and
highly statistically significant correlation between
these two values (r = 0.69).
We also did the same comparison for the cells

treated by 30 μM of Nutlin-3 (data not shown). We
detected even higher similarity between gene changes
in the sensitive and the insensitive cell lines (r =
0.776).
Still, in order to reveal genes that differently changed

their expression between insensitive and sensitive cell
lines we applied filtering of the genes that statistically
significantly changed their expression in opposite direc-
tion or genes that significantly changed expression in
one type of cell lines but were non-changed in the
other type. In both comparisons, upon treatment by
5 μM and 30 μM of Nutlin-3 no genes were found that
would change their expression in opposite directions.
Upon treatment by 5 μM of Nutlin-3 very few genes
were found to be differentially expressed, and among
them only 26 genes that statistically significantly chan-
ged their expression (21 up and 5 down) in insensitive

cell lines upon treatment by Nutlin-3 and did not
change their expression in the sensitive cell line.
(Figure 3). The most statistically significant GO group
with these up-regulated genes appeared to be “cell
death” (n = 5, p < 2.7*10− 3). Namely the following genes
important for this biological process: CDIP1, DPYSL4,
DRAM1, TNFRSF10B, TP53INP1 found to be upregu-
lated in the insensitive cell lines and not in the sensitive
cell lines. We identified 219 genes that statistically
significantly changed their expression (120 up and 99
down) in the insensitive cell lines upon treatment by
30 μM of Nutlin-3 and did not change their expression
in the sensitive cell line. (Figure 3). It was interesting to
see that for these genes we found enriched the follow-
ing GO terms: for up-regulated genes “cellular amino
acid metabolic process” (n = 9, p < 2.4*10− 4), “response
to endoplasmic reticulum stress” (n = 6, p < 6.4*10− 4)
and for down-regulated genes - “cell cycle process” (n
= 22, p < 6.4*10− 9), “organic cyclic compound binding”
(n = 54, p < 3.5*10− 7) and “nucleic acid metabolic
process” (n = 42, p < 1.7*10− 7). This analysis shows that
several genes that belong to these pathways have got
different dynamics of the change of their expression
upon treatment by Nutlin-3 in sensitive and in-sensitive
cell lines. These differences can be potentially used as
promising “dynamic” biomarkers of the sensitivity of
the cancer cells to the treatment by Nutlin-3. Still, the
causative mechanism of these differences remains ra-
ther unclear.

Fig. 2 Plot comparing LogFC of gene expression changes upon treatment by 5 μM of Nutlin-3 in comparison to Control cells in the insensitive
cell lines (x axes) versus the sensitive cell line (y axes)
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Static gene expression profile differences between
sensitive and insensitive lung cancer cell lines
Here, we performed a direct comparison of gene expres-
sion profile between Nutlin-3 sensitive and insensitive cell
lines ab-initio (before the treatment) and after treatment
by Nutlin-3 (in two concentrations). Such static compari-
son of the gene expression profiles can help us to detect
stably active pro-survival pathways in these cells that pro-
tect these cells from cytotoxic activity of Nutlin-3.
In Table 3 one can see the results of detection of genes

with increased and decreased expression in insensitive cell
lines compared to the sensitive cell line in all three condi-
tions (p-value< 0.05, LogFC> 0.58 for genes with increased
expression and LogFC<− 0.58 for the genes with decreased
expression).
One can see that the number of differently expressed

genes between sensitive and insensitive cell lines is rather
stable in all three conditions.
Comparison between revealed deferentially expressed

genes in these three conditions is shown by Venn dia-
grams (Fig. 2). One can see a significant overlap between
DEG lists in all three conditions showing that the differ-
ences in cell line types determine quite a big portion of
the gene expression profile. These genes show clear differ-
ences in their expression independently of the treatment
conditions. Among the 154 genes with increased expres-
sion in the insensitive cell lines that are common in all
three conditions (Fig. 4) we can see the enrichment of
such GO terms as: “nucleotide-excision repair, DNA dam-
age removal” (n = 4, p < 1.7*10− 5), “metabolic process” (n
= 99, p < 7.9*10− 5) and “cell death” (n = 15, p < 4.6*10− 3).

Among the 272 common genes with decreased expression
some more specific GO terms showed up, such as: “oxida-
tion-reduction process” (n = 38, p < 1.9*10− 8), “lipid meta-
bolic process” (n = 40, p < 4.7*10− 8) and, most
interestingly, “positive regulation of cell death” (n = 26, p
< 1.9*10− 8). In the last category, among the genes with
most decreased expression in the insensitive cell lines, we
can mention such important genes as, S100A9, MLLT11,
OSGIN1, CCL5, DAPK1, TNFRSF1A, SMAD3, LYN.
Most probably, the low expression of these genes that are
able to positively regulate the cell death process promotes
the decreased sensitivity of the respective cell lines to the
cytotoxic activity of Nutlin-3.
We performed gene set enrichment analysis (GSEA) of

the obtained three gene expression profiles of differences
between sensitive and insensitive lung cancer cell lines.
For that we used geneXplain platform and applied the
pathways ontology of TRANSPATH® database. The most
enriched pathways are presented in the Additional file 4:
Table S3.1 and S3.2 as well as in Fig. 5.
In the Fig. 5 we selected several TRANSPATH® path-

ways that demonstrated an interesting behavior of the
GSEA enrichment value (NES) in insensitive cell lines as
compared to the sensitive cell line in different conditions
with increased dosage of treatment by Nutlin-3. One can
see that such pathway as “beta-catenin network” is rela-
tively stable in the gene enrichment, which demonstrates
that genes belonging to this pathway have shown differ-
ent expression in the insensitive and sensitive cell lines
independently on the stimuli. Such pathways as E2F net-
work, p53 pathway, PI3K pathway, Aurora-B cell cycle
regulation and TLR2-mediated signaling showed a de-
crease of enrichment value in the cells under treatment
by Nutlin-3. Interesting to see that such pathways as “in-
sulin - > AKT-1 pathway” and “fatty acid oxidation”
demonstrated an increase in enrichment value under
treatment by Nutlin-3. The observed difference between
insensitive and sensitive cell lines in expression of the
genes that belong to these pathways appeared to be quite
dependent on the treatment by Nutlin-3. Generally we
observed more enriched pathways in the cells before

a b

Fig. 3 Venn diagrams of the differentially expressed genes upon treatment by two different dosages: (a) 5 μM and (b) 30 μM. We compare genes
up- and down-regulated in the insensitive cell lines (yellow) versus sensitive cell line (pink)

Table 3 Table 3. Genes differentially expressed (Increased and
Decreased) in Nutlin-3 insensitive cell lines as compared to the
sensitive cell lines at baseline and under increasing dosage of
Nutlin-3 stimulation.

Nutlin-3 Dosage (μM) Increased Decreased Total

0 (Control) 257 366 623

5 297 377 674

30 258 368 626
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Nutlin-3 treatment then after such treatment (see
Additional file 4: Table S3.1).
In the Additional file 4: Table S3.2 we show the most

representative (with group size higher then 30) and
enriched pathways for the pre-treatment phase sorted
according to the enrichment score NES. It is interesting
to see that the most enriched pathways are represented
by pathways involved in regulation of cell cycle, such as
“Metaphase to Anaphase transition”, “cyclosome regula-
tion”, “Aurora A and B regulation” and in general the
networks of E2F and p53 transcription factors. Next
pathway in the list that attracts our attention was PI3K
sub-pathway (PI3K —Mdm2-−−/ p53), with the genes
that are quite different from the cell cycle related path-
ways (see Additional file 1: Figure S2). In the Fig. 6 bel-
low we show the PI3K sub-pathway with the Nutlin-3
sensitivity related log-fold change values of the

expression of the genes encoding the components of this
pathway.
From the “dynamic” and “static” analysis results we

may conclude that although we can detect a number of
genes that play their definite role in the “dynamic” cre-
ation of cell insensitivity to the drug after the treatment,
still the major differences in gene expression of hun-
dreds of genes in these cell lines is observed in “static”
comparisons of these cell lines. Moreover, in the “static”
analysis the “pre-treatment” comparison of the cell lines
delivers the maximum number of enriched pathway.
Therefore, in the following analysis we pay our main at-
tention to the genes that we found differentially
expressed between insensitive and sensitive cell lines be-
fore their treatment by Nutlin-3. We think, that such
pre-treatment analysis is most promising in terms of
clinical applications, since it can be done on the tumor
samples before any treatment and can be used for fur-
ther definition of the proper anti-cancer therapies.

Enriched transcription factor binding sites in promoters
of Nutlin-3 moderately resistant cell lines
Transcription factor binding sites in promoters of differen-
tially expressed genes were analyzed using known DNA-
binding motifs described by PWMs in the TRANSFAC® li-
brary, release 2017.2 (geneXplain, Wolfenbüttel, Germany)
(http://genexplain.com/transfac). In this study we used
«Genome Enhancer» module of the pipeline «From gen-
ome to target» to identify transcription factor binding sites
(TFBS) that are enriched in the promoter regions under
study as compared to a background sequence set such as
promoters of genes that were not differentially regulated
under the condition of the experiment. We denote the
study and background sets briefly as Yes and No sets. The
«Genome Enhancer» module uses two algorithms for

ba

Fig. 4 Venn diagrams of the differentially expressed genes of Nutlin-3 moderately insensitive cell lines versus sensitive cell lines after treatment
by Nutlin-3 in two different dosages (5 μM and 30 μM) and in control. a Genes with increased expression; b Genes with decreased expression.
Full LogFC computations for all three conditions can be found in Additional file 2: Table S1 (tab Nsen vs Sen)

Fig. 5 Graphic of the change of GSEA enrichment score NES of
some important pathways in the insensitive cell lines as compared
to sensitive cell line in different conditions with increased dosage of
treatment by Nutlin-3
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TFBS enrichment analysis: F-Match [9] and CMA (Com-
posite Module Analyst) [16]. F-Match algorithm finds a
critical value (a threshold) for the score of each PWM in
the library that maximizes the Yes/No ratio under the con-
straint of statistical significance (see Materials and
Methods). The CMA algorithm applies genetic algorithm
approach to find combinations of PWMs for the co-
localized sites in promoters of DEGs. Such combinations
of PWMs define groups of transcription factors that bind
to the promoters of these genes in synergistic manner
(forming enhanceosomes [29]) and regulate expression of
their target genes in very specific conditions.
In this work we applied these algorithms to analyze

promoters of Up-regulated genes in Nutlin-3 insensitive
lung cancer cell lines (А427 and H292) in comparison to
the Nutlin-3 sensitive cell line H1944. We focused our
attention on the up-regulated genes in order to reveal
the potential resistance-specific positive feedback loops
(as it is described in our previous paper [13]) that are
maintained mainly through gene up-regulation. First of
all, we restricted the list of up-regulated genes by FC >

1.5 (which corresponds to LogFC> 0.58). In order to
characterize the up-regulated genes a bit further we
mapped them to the disease ontology from the
HumanPSD® databases and found a very high enrich-
ment of genes related to different types of cancer (Add-
itional file 5: Table S4). The most statistically significant
match is the set of 118 genes to the category “Correla-
tive Colonic Neoplasms” (p-value< 2.53*10− 9). 62 of
these genes belong to the biomarkers of “Causal Lung
Neoplasms” (p-value < 1.88*10− 4). (This gene list is
present in Additional file 6: Table S5). We constructed
the heatmap for these genes summarizing their expres-
sion profiles throughout all obtained microarray data
(Fig. 7). One can clearly see the difference between gene
expression profiles of the Nutlin-3 sensitive cell line
(H1944 in the center of the heatmap) compared to the
two insensitive cell lines (А427 – left side and H292 –
right side of the heatmap).
Promoters were extracted from the human genome (build

hg38) -1000 nucleotide upstream of TSS (start of transcrip-
tion) and + 100 downstream. The result of F-Match analysis
is presented in the Additional file 7: Table S6.
We also have applied the СМА (Composite Module

Analyst) algorithm, which allows predicting the forma-
tion of complexes of transcription factors binding sites
that could jointly regulate groups of genes, such as up-
regulated in our study. As a result of application of the
CMA algorithm we identified the potential complexes of
TFs that may synergistically bind to promoters of these
genes and maintain their elevated expression, which in
turn leads to the observed relatively high resistance of
these cell lines to Nutlun-3.
Results of the CMA analysis are shown in the Fig. 8

below.
We identified a combination of PWMs that discrimi-

nates the promoters of Yes and No sets rather well. This
combination contains PWMs for such important cancer-
related transcription factors as p53, E2F-1, EGR1, AP-1,
OCT1 and others. The full list of 22 transcription factor
genes encoding TFs of selected combination of PWMs is
given in the Additional file 7: Table S6 (tab CMA). Many
of them are associated with various Neoplasms including
Lung Neoplasms.

Finding master regulators in networks upstream of TFs
We searched for master regulator molecules in signal
transduction pathways upstream of the identified tran-
scription factors. The master-regulator search uses the
TRANSPATH® database (http://genexplain.com/trans-
path) [17] and is implemented in the workflow “From gen-
ome to target” as a last step. The main algorithm of the
master regulator search has been described earlier [13].
The goal of the algorithm is to find nodes in the global
signal transduction network that may potentially regulate

Fig. 6 Visualization of canonical PI3K sub-pathway that leads to in-
hibition of p53 (PI3K —Mdm2-−−/ p53). PI3K is represented on the
diagram as the complex “p85:p110”. Yellow shadow around mole-
cules represents the LogFC of the gene expression differences be-
tween Nutlin-3 insensitive and sensitive cell lines
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the activity of the set of transcription factors found at the
previous step of analysis. Such nodes are considered as
most potent drug targets, since any influence on such a
node may switch the transcriptional programs of hun-
dreds of genes that are regulated by the respective TFs. In
our analysis we have ran the algorithm with a maximum ra-
dius of 12 steps upstream of the TFs. In order to identify
the potential positive feedback loops in the system we ap-
plied additional filtering of the obtained master-regulators.
We required that the Composite Score of the genes encod-
ing master-regulators in the system were above the critical
value (8.77) computed by CMA algorithm. This require-
ment gives possibility to find those master-regulators that
regulate elevated expression of their own genes (through
multiple TFBSs found in the promoters of these genes),
thus leading to the feedback mechanism of maintaining its
own elevated expression. In the Table 4 below we give the
final list of obtained master-regulators potentially involved
in maintenance of elevated resistance to Nutlin-3.
Figure 9 bellow shows the diagram of the network

constructed by the algorithm of master-regulator search.
The network connects the identified top master-
regulators (red) with the transcription factors found in
the promoter analysis (blue).
By combining the results of gene set enrichment ana-

lysis (see above) and the master regulator search we
found especially interesting that identified earlier PI3K
sub-pathway (PI3K —Mdm2-−−/ p53) involves the iden-
tified here master-regulator mTOR for inhibition of ac-
tivity of p53, which is the main target of Nutlin-3 (in the
complex with mdm2).

Experimental validation by chemical inhibitors of mTOR
as master-regulator
Taking all computational evidences together we choose
the master-regulator mTOR as the target molecule in the
context of PI3K pathway. We applied specific chemical in-
hibitors in order to test their effect on the survival of the
selected cell lines. We choose the following chemical
inhibitors (Table 5).
To validate the effect of the inhibition of mTOR in the

context of PI3K pathways we chose the dual inhibitor I3
that is known to effectively inhibit both PI3K and mTOR
action. To test the mTOR-specificity of the effect we
used the general inhibitor of PI3K (I1). And as a negative
test we used the inhibitor of Bcl-XL (I2) that is known

Fig. 7 Heatmap of genes that belong to the category of “Causal
Lung Neoplasms” (HumanPSD®) that were up-regulated in Nutlin-3
insensitive lung cancer cell lines (А427 and H292) in comparison to
the Nutlin-3 sensitive cell line H1944. The top colored bar represents
the samples with different sensitivity: red –Nutlin-3 insensitive cell
lines; blue - Nutlin-3 sensitive cell line
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to be involved in cancer but was not predicted here as a
master-regulator.
We use the following treatment conditions for these

three inhibitors.

� I1 in concentrations: 50 μM, 25 μM, 12,5 μM,
6,25 μM, 3,1 μM and 0 μM (Control);

� I2 in concentrations: 80 μM, 40 μM, 20 μM, 10 μM,
5 μM and 0 μM (Control);

� I3 in concentrations: 50 μM, 25 μM, 12,5 μM,
6,25 μM, 3,1 μM and 0 μM (Control).

The concentration of the inhibitors was chosen according
to their maximal solubility in the medium. DMSO was used
to prepare the needed concentration of the inhibitors and
the concentration of DMSO was the same in all tested solu-
tions (including Control) and it was below 0.5%. Each
measurement was done in three replicas. After 48 h from
adding of the inhibitor we measured the percentage of the
survived cells using the test with rezuverin.
We found that inhibitors I1 and I2 do not demon-

strate any cytotoxic activity on all tested cell lines
(data not shown). Under any tested concentrations of
the inhibitors the number of the survived cells were
the same as in the Control and did not differ signifi-
cantly from 100%.

In contrast, the inhibitor I3 demonstrated a moderate
cytotoxic activity with the following IC50 values in tested
cell lines: A427 (IC50 = 11.8 ± 3.4), H292 (IC50 = 6.05 ±
2.1), DV-90 (IC50 = 19.9 ± 4.6), Н1944 (IC50 = 34.9 ± 3.6) и
Н2228 (IC50 = 27.1 ± 6.6). For the three cell lines of our
interest the dose-effect curves are shown in Fig. 10 below.
We found that Nutlin-3 insensitive cell lines (A427 and

H292) exhibit the highest sensitivity to the dual chemical
inhibitor of mTOR-PI3K whereas the Nutlin-3 sensitive
cell line (H1944) appeared to be relatively insensitive to
this inhibitor. These results confirmed our prediction of
the master regulator mTOR in the PI3K signaling path-
way, which, most probably, is responsible for the low sen-
sitivity of particular lung cancer cell lines to treatment by
the p53-reactivating compound Nutlin-3.

Discussion
Resistance and low sensitivity to chemotherapy and
targeted therapy of the cancer cells is one of the biggest
problems of cancer treatment. In this work we studied the
molecular mechanisms of low sensitivity of cancer cells to
the p53-reactivating compound Nutlin-3 using genome-
wide transcriptomics profiling followed by causative com-
putational analysis. In order to analyze the effect of
Nutlin-3 on lung cancer cells and understand the mecha-
nisms of low sensitivity of some of them to the treatment,

c

b

a

Fig. 8 Results of CMA analysis of up-regulated genes in Nutlin-3 insensitive cell lines. a Combination of 14 PWMs with their optimized cut-offs
identified by genetic algorithm. b The discriminative parameters of the composition of the Composite Score (p-value of the Wilcoxon test, AUC,
rates of false positives and false negatives) and two histograms of the distributions of the Composite Score values in Yes and No promoters. C)
An example of the site location in the promoter of MTOR gene. The promoter of MTOR gene contains predicted sites for p53, E2F-1, EGR1 and
several other transcription factors
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Table 4 List of master-regulator molecules (including complexes and modified forms) that have passed all criteria

Master molecule name Gene symbol logFC Composite score Master Regulator Score FDR Z-Score Ranks sum

Cdk1(h) CDK1 0.878 9.758 0.821 0.000 10.264 0

Cdk2(h) CDK2 0.918 11.485 0.821 0.000 10.264 2

c-Fos(h) FOS 0.660 9.973 0.821 0.000 10.264 4

Chk1(h) CHEK1 0.909 9.186 0.821 0.000 10.264 6

cyclinB1(h) CCNB1 1.380 9.670 0.821 0.000 10.264 8

mTOR(h):raptor(h) MTOR 0.773 9.664 0.821 0.000 9.986 11

mTOR(h) MTOR 0.773 9.664 0.821 0.000 9.986 13

Chk1(h){pS345} CHEK1 0.909 9.186 0.821 0.000 9.707 15

GSK3beta(h){p} GSK3B 0.937 9.181 0.821 0.000 4.971 15

E2-C(h) UBE2C 2.270 9.919 0.821 0.000 8.593 17

p70S6K1-alpha2(h) RPS6KB1 0.658 9.644 0.821 0.000 3.857 33

cyclinA:Cdk2{pT160} CDK2 0.918 11.485 0.672 0.008 4.320 34

GSK3beta(h){pS9} GSK3B 0.937 9.181 0.821 0.000 3.857 35

cyclinD:Cdk4{pT172} CCND1 0.910 9.188 0.672 0.008 4.320 37

PKAc(h):GSK3beta(h) GSK3B 0.937 9.181 0.821 0.000 3.578 40

cyclinD1(h):Cdk4(h) CCND1 0.910 9.188 0.672 0.014 3.931 42

securin(h) PTTG1 0.979 9.606 0.821 0.000 3.578 42

cyclinD1:Cdk4:PAK1 CCND1 0.910 9.188 0.672 0.014 3.905 45

Cdk4(h):cyclinD1a(h) CCND1 0.910 9.188 0.672 0.014 3.852 47

cyclinE(h):Cdk2(h) CDK2 0.918 11.485 0.672 0.022 3.510 56

p70S6K1(h){pT389} RPS6KB1 0.658 9.644 0.821 0.000 2.185 89

p70S6K1(h) RPS6KB1 0.658 9.644 0.821 0.000 1.628 146

H-Ras:GTP:Raf-1{p} HRAS 1.381 8.501 0.589 0.041 1.490 194

Fig. 9 Visualization of the part of signal transduction network that connects identified master-regulators (red) with the transcription factors (blue)
found in the promoter analysis of genes upregulated in Nutlin-3 insensitive cell lines. Differential expression of genes encoding the corresponding
proteins on the diagram is shown by the color of the layer around the molecule. Yellow color corresponds to increased expression (up-regulation)
in Nutlin-3 insensitive cell lines compared to the sensitive cell line. The intensity of the color reflects the fold change
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we performed an extensive study of the biological activity
of the compound Nutlin-3 on a number of lung cancer
cell lines. We pay especial attention to the lung cancer cell
lines that although caring wild-type TP53 gene (which, in
the complex with Mdm2, is the primary target of Nutlin-
3) are still very different in their sensitivity to Nutlin-3
treatment. We identified that the cell line H1944 is the
most sensitive to the treatment by Nutlin-3. Even under
the lowest concentration of the compound the cells of this
cell line were rapidly dying. Other cell lines, such as A427
and H292 showed relatively low sensitivity to the treat-
ment by Nutlin-3. The death of cells was triggered only
under relatively high concentration of the compound. It is
interesting to see that both cell lines A427 as well as NCI-
H292 demonstrated rather high sensitivity to another p52-
Mdm2 inhibitor AMGMDS3 (IC50 = 0.49 μM for H292
and 0.55 μM for A427) [30]. So, it seems that these two
inhibitors, although very similar in their main target are
rather different in their overall effect on signaling path-
ways in the cancer cells. We compared the gene expres-
sion profiles of these cell lines before and after treatment
by Nutlin-3 and identified several hundreds of genes
whose expression was significantly different between sen-
sitive and the insensitive cell lines. We identified 623
DEGs before the treatment, 674 DEGs after the treatment
by 5 μM of Nutlin-3 and 626 DEGs after the treatment by

30 μM of Nutlin-3. The GSEA analysis of pathway enrich-
ment by these genes gave us the first clue about the main
processes involved in regulation of insensitivity to Nutlin-
3. Among the most enriched pathways were p53 pathway,
E2F network, Aurora-B and A, cell cycle regulation path-
way and other pathways involved in regulation of different
processes related to regulation of cell cycle. It is known
that the cell line NCI-H292, the one among two of the cell
lines that we identified as relatively insensitive to Nutlin-3,
contains the CRTC1-MSML2 gene fusion [31], which is
quite common in the mucoepidermoid carcinomas (a sub-
type of the lung cancer of the NCI-H292 cell line). We
were interested if the relative insensitivity of H292 cell line
can be explained by presence of this gene fusion. We com-
pared the differentially expressed genes revealed in our
study with the genes identified as regulated by the
CRTC1-MSML2 fusion, that were revealed in an extensive
microarray study upon knockdown of the chimeric tran-
scription regulator that is expressed in in human mucoe-
pidermoid carcinoma cells as the result of the CRTC1-
MSML2 fusion [31]. We found a very small overlap be-
tween these gene lists. Among 623 genes differentially
expressed in Nutlin-3 insensitive cell lines and 641 genes
up- or down-regulated upon CRTC1-MSML2 fusion
knockdown we can see only 18 overlapping genes, which
is statistically insignificant overlap. Out of these 18 genes
11 genes were belong to the rather general GO category
“negative regulation of cellular process” (p-value < 10− 5).
Therefore we found no evidence of the influence of
CRTC1-MSML2 fusion on the resistance mechanism to
Nutlin-3. It seems that the molecular pathways that are
involved in oncogenic program maintained in such cancer
subtypes through the CRTC1-MSML2 fusion are rather
different from the pathways maintaining the resistance of
these cells to the cytotoxic effect of Nutlin-3.
In order to identify such pathways we searched for

potential master regulators applying our upstream
analysis approach. From the perspective of searching
for such master regulators we focus our attention first
of all on the genes that have higher expression values
in the insensitive cell lines compared to the sensitive
(up-regulated genes). Analysis of promoters of these
genes helped us to identify several transcription fac-
tors with enriched binding sites found in co-localized
clusters. We believe that such clusters reflect position
and composition of very specific enhanceosome that
is formed at the promoters of up-regulated genes and
controls their elevated expression in the insensitive
cell line. On the next step of our study we analyzed
signal transduction network upstream of the revealed
transcription factors in order to understand the po-
tential molecular mechanism of activation of these
transcription factors. The goal of such analysis was to
find few master-regulators in this network that might

Table 5 Three chemical inhibitors used in this work for the
validation of molecular targets

# cat № Chemical name (Cayman) Target(s)

I1 Cay70920–5 LY294002 PI3K

I2 Cay10005229–5 2,3-DCPE
(hydrochloride)

Bcl-XL

I3 Cay10565–25 NVP-BEZ235 PI3K and
mTOR

Fig. 10 Graphics of the viability test of the three lung cancer cell lines to
compound NVP-BEZ235 – the dual inhibitor of PI3K and mTOR. The
colored lines represent effects of increasing concentrations of the
inhibitors on the survival of three cell lines: sensitive to Nutlin-3 (H1944)
and insensitive to Nutlin-3 cell lines (А427 and H292)
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exert their control on the transcription factors found
on the first step.
Finally, after performing the search for potential master

regulators, we checked which of them were actually up-
regulated by themselves. So, we require that genes, which
are expressing proteins that were found by the algorithm as
potential master regulators, should have significantly higher
expression in the insensitive cells compared to the sensitive
cells. This reflects the presence of positive feedback loop in
the system. We hypothesized that the observed increase of
resistance might be supported by the presence of positive
feedback loops. We can observe such loops in the network
when the genes, expressing master-regulator proteins, are
working under control of the transcription factors, which
receive activating signals through the signaling cascade,
containing proteins, which are expressed by these genes
(master regulators). Therefore, the up-regulation of the
genes, encoding master regulators in this analysis, indicates
the presence of such feedback loops. We think that such
positive feedback loops can contribute to the stabilization
of the resistance to Nutlin-3 (and potentially to other anti-
cancer compounds with similar mechanisms of action,
such as p53 reactivator molecule RITA, which was studied
in our previous work [32]), since they maintain activation
of a certain set of critically important genes through the
auto-activation loop.
As a result, we revealed the following master regulator

genes: MTOR, CDK1, CDK2, CHK1, cyclin-B1. We no-
ticed that many of the suggested master regulators are
very important proteins that are known to be involved in
regulating such processes as cell cycle and apoptosis.
To answer the question of how commonly the mTOR,

cell cycle and PI3K pathways are involved in regulation of
sensitivity to anti-cancer compounds with similar mechan-
ism of action as Nutlin-3 we intersected the data on sensi-
tivity to the MDM2 inhibitor (AMGMDS3 compound)
described in the paper Saiki et al. [30] with the biggest
resource of gene expression data on various cancer cell
lines – the CCLE (Cancer Cell Line Encyclopedia) [33, 34].
We were interested in the cell lines that are characterized
by wild-type p53. We identified only very few data sets of
lung cancer cell lines that have both AMGMDS3 sensitivity
data and gene expression data in CCLE (namely, cell lines
A427, A549, NCI-H292, NCI-H460, that actually were
characterized by very similar AMGMDS3 IC50 values - all
were quite sensitive to this particular inhibitor). Therefore,
we decided to analyse all available p53wt cell lines of all
types of cancer that have got both gene expression data in
CCLE and sensitivity data to the MDM2 inhibitor. We
identified 52 of such cell lines with sensitivity (IC50) to the
AMGMDS3 compound varying from 0.0074 to 50 μM. We
identified genes whose expression in different cell lines
correlate with IC50 values. We found 168 genes positively
correlated with IC50 (insensitivity to the Mdm2 inhibitor)

and 227 genes negatively correlated (p-value < 0.01)
(Additional file 8: Table S7). Pathway analysis of this gene
expression correlations using GSEA method reveals PI3K
pathway as one of the most important survival mechanism
of these cell lines against AMGMDS3 compound
(Additional file 9: Table S8). This coincides partially with
the results of the analysis of Nutlin-3 sensitivity that is done
in our current study. Here we have shown that the PI3K
pathway provides a context for the mTOR to play as a po-
tential mater regulator. Nevertheless, in the analysis of the
52 cell lines we did not identify mTOR pathway. This dem-
onstrates that there is certain specificity in the mechanism
of decreased sensitivity to Nutlin-3 of two lung cancer cell
lines analysed in our study as compared to the sensitivity to
the AMGMDS3 compound.
Taking all this into account, we performed experimen-

tal validation of the computational predictions. We
found that Nutlin-3 insensitive cell lines (A427 and
H292), in turn, exhibit the highest sensitivity to the dual
chemical inhibitor of mTOR-PI3K, whereas the Nutlin-3
sensitive cell line (H1944) appeared to be relatively in-
sensitive to this inhibitor.

Conclusions
The results of this work confirmed our prediction of the
master regulators in the mTOR-PI3K signaling pathway
responsible for the low sensitivity of these two particular
lung cancer cell lines to treatment by the p53-
reactivating compound Nutlin-3. As we predicted, the
Nutlin-3 insensitive cell lines appeared to be highly sen-
sitive to the inhibitors of mTOR-PI3K pathway. These
findings suggest potential preclinical in vitro study to
evaluate combining MDM2-TP53 interaction inhibitor(s)
with mTOR-PI3K inhibitor(s) across large panel of TP53
WT cell lines using clinically relevant concentrations of
clinically relevant inhibitors.
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Additional file 1: Figure S1. R-script for Limma calculation. It includes
options for blocks of correlated measurements (technical replicates).
Figure S2. Comparison of genes belonging to different TRASPATH®
pathways. Sixteen overlapping genes are the genes encoding
proteasome subunits. PISK pathway is most different from other 3 related
pathways of cell cycle control. Figure S3. A diagram of top 9 gene
promoters (out of 62) with the results of CMA analysis. Exons are shown
as blue boxes. The TF binding sites identified by CMA are shown as
colored arrows. Gray background shows the position of the site cluster in
the promoter. (DOCX 154 kb)

Additional file 2: Table S1. Normalized expression values of all genes
with detected expression in the studies conditions and mapped to
Ensembl. In the tab “Nsen vs Sen” we give the results of Limma analysis
of the LogFC between Nutlin-3 insensitive (Nsen) and sensitive cell lines.
(XLSX 3291 kb)

Additional file 3: Table S2. GO analysis of all 7 sets of genes - Up- and
Down- regulated genes upon treatment by Nutlin-3 in two concentrations
5 μM and 30 μM of Nutlin-3 (p-value< 0.05, LogFC> 0.58 (which corresponds
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to FC > 1.5) for up-regulated and LogFC<− 0.58 for down-regulated genes).
Parameter Sum_Logpval sums up logarithms of p-values for one GO term in
different conditions of treatment. It allows to sort GO terms according to
their total significance in all conditions. (XLSX 334 kb)

Additional file 4: Table S3. Results of gene set enrichment analysis
(GSEA) of the obtained three gene expression profiles of differences
between sensitive and insensitive lung cancer cell lines. For that we used
geneXplain platform and applied the pathways ontology of TRANSPATH®
database. (XLSX 147 kb)

Additional file 5: Table S4. Results of mapping of upregulated genes
on the HumanPSD® disease ontology for all three conditions of Nutlin-3
treatment. The results contain the number of matched genes with the
respective disease the calculated p-value and adjusted p-value of such
match. (XLSX 78 kb)

Additional file 6: Table S5. List of 62 genes up-regulated in Nutlin-3
insensitive cell lines and matching the disease category “Causal Lung
Neoplasms”. This list is used for the promoter analysis. (XLSX 61 kb)

Additional file 7: Table S6. Result of F-Match analysis of the promoters
of 62 genes up-regulated in Nutlin-3 insensitive cell lines. We show the
list of transcription factors whose sites were detected as overrepresented
in the promoters. We also show the respective PWMs linked to these
transcription factors, the Yes/No ration of the site frequency and the
LogFC for the expression of the transcription factor gene. In Tab CMA we
give results of CMA analysis. 22 TF were revealed. (XLSX 59 kb)

Additional file 8: Table S7. Results of correlation analysis of gene
expression in 52 cancer cell lines and their sensitivity (IC50) value towards
Mdm2 inhibitor AMGMDS3. We found 168 genes positively correlated
with IC50 (insensitivity to the Mdm2 inhibitor) and 227 genes negatively
correlated (p-value < 0.01). (XLSX 2438 kb)

Additional file 9: Table S8. Pathway analysis of the gene expression
correlations using GSEA method and TRANSPATH pathway ontology.
(XLSX 103 kb)
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