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Abstract

Background: It is well recognized that accumulation of somatic mutations in cancer genomes plays a role in
carcinogenesis; however, the temporal sequence and evolutionary relationship of somatic mutations remain largely
unknown.

Methods: In this study, we built a population-based statistical framework to infer the temporal sequence of
acquisition of somatic mutations. Using the model, we analyzed the mutation profiles of 1954 tumor specimens
across eight tumor types.

Results: As a result, we identified tumor type-specific directed networks composed of 2-15 cancer-related genes
(nodes) and their mutational orders (edges). The most common ancestors identified in pairwise comparison of
somatic mutations were TP53 mutations in breast, head/neck, and lung cancers. The known relationship of KRAS to
TP53 mutations in colorectal cancers was identified, as well as potential ancestors of TP53 mutation such as NOTCH1,
EGFR, and PTEN mutations in head/neck, lung and endometrial cancers, respectively. We also identified
apoptosis-related genes enriched with ancestor mutations in lung cancers and a relationship between APC hotspot
mutations and TP53 mutations in colorectal cancers.

Conclusion: While evolutionary analysis of cancers has focused on clonal versus subclonal mutations identified in
individual genomes, our analysis aims to further discriminate ancestor versus descendant mutations in
population-scale mutation profiles that may help select cancer drivers with clinical relevance.
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Background
Various types of genomic aberrations accumulate in can-
cer genomes and play roles in the development and pro-
gression of the disease [1]. It has long been recognized
that cancer genomes undergo a stepwise progression in
which they acquire somatic mutations in a sequential
order during their evolution. This model is relatively well
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established in colorectal cancer genomes [2], and may
be true for other types of cancer. Recent advances in
high-throughput sequencing technologies have enabled
screening of cancer genomes for well-known cancer-
related genomic aberrations such as somatic mutations,
DNA copy number alterations, and chromosomal translo-
cations [3]. Genomic snapshots of human solid tumors
can only be obtained by surgical intervention and such
procedures have limitations for a full understanding of
the temporal or longitudinal evolution of individual can-
cer genomes. While current cancer genome studies are
mainly focused on the identification of significant recur-
rent genomic aberrations as potential cancer drivers, the
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inference of acquisition order of somatic mutations may
provide mechanistic insights into the evolution of the
cancer genome and have potential clinical relevance.

Several studies have been proposed to investigate the
order of acquisition of genomic alterations. For exam-
ple, Attolini et al. proposed a mathematical approach to
determine the sequential order of APC, KRAS, and TP53
mutations in 70 colorectal cancer samples [4]. They esti-
mated the mutation rate per allele and predicted the
temporal sequences for mutations acquired in these genes.
Hu et al. tried to identify tumor driver genes using associ-
ation rule mining [5]. In addition, some researchers tried
to estimate the tumor initiation time. Tomasetti et al.
modeled the process of mutation accumulation and veri-
fied that a substantial number of somatic mutations may
have appeared before the onset of neoplasia [6]. Also, Foo
et al. investigated driver mutations in the evolutionary
processes of mutation accumulation using healthy and
tumor tissues [7]. However, most of these previous reports
used binary genomic data (e.g., calls for presence or
absence of mutations or copy number alterations) and
did not exploit information regarding the clonality of
mutations (e.g., clonal vs. subclonal mutations).

Here, we inferred the acquisition order of somatic muta-
tions (hereafter in this study, we define somatic mutations
as non-silent single nucleotide variations [SNVs] includ-
ing missense, nonsense, and splice site mutations) based
on information of the cancer cell fraction (CCF) mea-
sured for each mutation, using 1954 tumor specimens
from eight major tumor types of the Cancer Genome Atlas
(TCGA) consortium: 90 samples from bladder urothe-
lial carcinoma (BLCA); 733 from breast invasive car-
cinoma (BRCA); 246 from colorectal adenocarcinoma
(COADREAD); 265 from head and neck squamous cell
carcinoma (HNSC); 42 from kidney renal clear cell car-
cinoma (KIRC); 290 from lung adenocarcinoma (KIRC);
118 from lung squamous cell carcinoma (LUSC); and 170
from uterine corpus endometrial carcinoma (UCEC). The
CCFs, as variant allele frequencies (VAFs) adjusted for
the tumor purity and global/local ploidy, are a measure
of the clonality of given somatic mutations. CCFs have
been used to distinguish clonal or subclonal mutations
in individual cancer genomes [8]. In theory, clonal muta-
tions represent early genomic events that have occurred
in a founder cell and are maintained during the clonal
proliferation whereas subclonal mutations represent late
genomic events that are not yet fixed by clonal amplifi-
cation or clonal sweeps. Under the infinite sites model
of genome evolution with no homoplasy, somatic muta-
tions with lower CCFs cannot occur earlier than those
with higher CCFs [9]. Although a recent study showed
that the mutation acquisition order affects cancer and
cancer therapy [10], it is still largely unclear how to
aggregate the information on individual genomes such

as the CCFs to facilitate population-scale inference of
temporal ordering of somatic mutations. In this study,
we established a statistical model to infer the temporal
order of somatic mutations observed across multiple can-
cer genomes and applied the method to a pan-cancer
landscape of somatic mutations of eight major tumor
types.

Methods
Study dataset
All experiments were carried out using publicly avail-
able TCGA pan-cancer data for eight tumor types, BLCA,
BRCA, COADREAD, HNSC, KIRC, LUAD, LUSC, and
UCEC. All mutation data were obtained from mutation
annotation format (MAF) files with available sequenc-
ing read abundance of mutant and wildtype alleles to
calculate VAFs. Among these somatic mutations, only
the non-silent mutations (nonsense, mutation, and splice
site SNVs) were extracted. We further selected muta-
tions with minimum number of variant alleles ≥ 5 and
minimum number of total alleles ≥ 30. The integer-
level copy number, tumor ploidy and purity values esti-
mated by ABSOLUTE [11] were downloaded from the
Synapse website for TCGA pancancer analysis (https://
www.synapse.org/#!Synapse:syn1703335) and used for the
estimation of CCFs.

Estimating cancer cell fraction
The CCF is defined as the proportion of cancer cells
harboring the mutations for each variant, and can be
estimated using a method outlined by Landau et al.
[12]. Briefly, for a single point mutation mi at a sample
n, P

(
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i
)
, the posterior distribution for the CCF Cn

i is
obtained from binomial distribution of the observed VAF
over the expected VAFs calculated using a uniform grid of
100 CCF values (Cn

i ∈ [0.01, 1]), and subsequently normal-
ized. Then, the probability mass function of the P
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is
represented as:
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Statistical inference of mutational temporal order of
somatic mutations
The mutational order for a pair of somatic mutation, mi
and mj, was determined using a generalized likelihood
ratio test (GLRT). This examines whether the occurrence
of somatic mutation mi precedes that of another somatic
mutation mj. Then, a null hypothesis H0 and an alternative
hypothesis H1 follow:

H0 : mi is an ancestor of mj(mi → mj)

H1 : mi is not an ancestor of mj

https://www.synapse.org/#!Synapse:syn1703335
https://www.synapse.org/#!Synapse:syn1703335
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Suppose that there are a total of N samples, which have
somatic mutations both in mi and mj. The CCF for mi and
mj is represented as a set of independent and identically
distributed (i.i.d.) variables, as Ci = (

C1
i , C2

i , . . . , CN
i

)

and Cj =
(

C1
j , C2

j , . . . , CN
j

)
, respectively. In the n-th

sample among the total N, the evolutionary precedence of
the two mutations, mi and mj, was approximated from the
comparison of their CCFs, Cn

i and Cn
j , respectively. That

is, Cn
i ≥ Cn

j implies that mutation mi is an ancestor of the
mutation mj in the sample n. Suppose that a random vari-
able Dn

ij represents the difference of two variables, Cn
i and

Cn
j , and Ĉn

i = P
(
Cn

i
)

and Ĉn
j = P

(
Cn

j

)
are the estimated

distribution of the CCFs at a mutation mi and mj, respec-
tively, in the sample n. Then the two hypotheses can be
re-written as follows:

H0 : D̂n
ij ≥ 0

H1 : D̂n
ij < 0 ,

where D̂n
ij is the estimated distribution of Dij at the sam-

ple n. By the definition of GLRT under i.i.d. condition, the
statistics are represented as:
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maxH0 L

(
D̂1

ij, D̂2
ij, ..., D̂N

ij

)

maxH0∪H1 L
(

D̂1
ij, D̂2

ij, ..., D̂N
ij

)

=
N∏

n=1

maxH0 L
(

D̂n
ij|Dn

ij ∈[ 0, +∞]
)

maxH0∪H1 L
(

D̂n
ij|Dn

ij ∈[ −∞, +∞]
) , (2)

where L(·) is a likelihood function. Using the charac-
teristics of the convolution of two independent random
variables, the probability mass function of the variable Dn

ij(
Dn

ij = Cn
i − Cn
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)
is expressed as
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Then, Eq. 2 is rewritten with the property of Eq. 3 as
follows:
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Equation 4 with k ∈ [0.01, 1] is rewritten as
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For the convenience of the calculation, the statistics of
Eq. 5 are changed to a logarithmic value:

log(�)IDmax<0 =
N∑

n=1
log

⎛

⎝
maxH0

∑1
z=0 P

(
D̂n

ij = 1
)

maxH0∪H1
∑1

z=−1 P
(

D̂n
ij = 1

)

⎞

⎠ I ˆDn
ijmax

<0

=
N∑

n=1

(

log
(

maxH0

1∑

z=0
P

(
D̂n

ij = 1
))

−log
(

maxH0∪H1

1∑

z=−1
P

(
D̂n

ij =1
)))

I ˆDn
ijmax

<0 (6)

ID̂n
ijmax

<0 is an indicator function for whether the maxi-

mum value of the likelihood function for D̂n
ij is observed at

z < 0. ID̂n
ijmax

<0 = 0 means that the numerator and denom-
inator values are identical. The null hypothesis (H0) is not
rejected if the log(�) is significantly large.

The statistical tests were carried out using mutant gene
pairs with number of cases > 10. The statistical cutoff
for the log(�) was obtained by random re-arrangement
of the original data to generate a background distribution
of the GLRT statistics. The cutoff was determined as a 5th
percentile value from the background distribution of the
100,000 randomized experiments.

Results
Co-occurring pairs of somatic mutations
We first examined genes with frequent mutations and
their co-occurrence patterns using mutation profiles of
1954 patients across eight TCGA tumor types (BLCA,
BRCA, COADREAD, HNSC, KIRC, LUAD, LUSC, and
UCEC). A mean number of 120 somatic mutations (non-
silent SNVs; missense, nonsense and splice site mutations)
were observed (1 to 1597 mutations per case; median of
59 mutations; Table 1). Figure 1(a) shows the distribu-
tion of somatic mutations for 10 genes with the most
frequent somatic mutations across all cases examined. To
investigate gene pairs, we employed a scoring system of
mutation co-occurrence. The score of the co-occurrence,
SCORE-CO is calculated by summing the outputs of the

Table 1 Number of non-silent mutations in each tumor type

Nonsense Missense Splice site
mutation mutation mutation

BLCA 1430 14,685 560

BRCA 2512 30,499 815

COADREAD 2348 37,702 765

HNSC 2110 26,040 1179

KIRC 185 2592 513

LUAD 4310 53,898 3090

LUSC 2004 23,485 640

UCEC 1790 21,327 538
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Fig. 1 Frequent somatic mutations and co-occurring mutation pairs. a Distribution of somatic mutations observed in all cases examined. The plot is
shown for the top 10 frequently mutated genes across all cases. A tumor patient with a somatic mutation is marked as gray in each column.
b Frequently observed gene pairs of somatic mutations are shown for each tumor type. The heatmaps of SCORE-CO are shown for the top 7 genes
among CGC in a given tumor type. The color indicator of SCORE-CO is shown separately (right)

logical conjunction (’AND’ gate) for the binary input data
as the presence or absence of the somatic mutations in
the given pair of two genes and by dividing the value
by the number of total cases in the dataset. Table S1 shows
the co-occurring pairs of somatic mutations observed
in no fewer than 10 cases per tumor type (Additional
file 1: Table S1). The gene pairs with high SCORE-CO
include TTN and MUC16 whose frequent mutations are
largely due to their large gene size (36,800 and 14,500
amino acids, respectively) rather than their functional
significance. Thus, we focused on mutations in known
cancer-related genes or the Cancer Gene Census (CGC)
[13] (Fig. 1(b)). The co-occurring mutation gene pairs
with high SCORE-CO were tumor type-specific, e.g., gene
pairs of TP53 and PIK3CA were highly ranked in BLCA,
BRCA, COADREAD, HNSC, LUSC, UCEC (SCORE-CO
= 0.089 for 8 cases with the co-occurrence / total 90
patients, 0.055 for 40 cases, 0.085 for 21 cases, 0.083 for 22
cases, 0.085 for 10 cases, 0.106 for 18 cases, respectively)

and to a lesser extent in LUAD (SCORE-CO = 0.024
for 7 cases). However, the pair of TP53 and PIK3CA
was not identified in KIRC. LRP1B mutants frequently
co-occurred with TP53 mutants in HNSC, LUAD and
LUSC. APC mutants were frequently observed with TP53
or KRAS mutations in COADREAD. In addition, some
of the mutation occurrences were tumor type-specific,
e.g., PIK3CA mutations showed co-occurrence with FAT4
mutations with a high frequency in BLCA, but mainly
co-occurred with PTEN mutations in UCEC.

Temporal sequence of mutations in cancer-related genes
To infer the temporal sequence of the somatic mutations
in cancer-related genes, we first distinguished two types
of mutations, clonal and subclonal mutations, based on
CCF. The distinction was made by a criterion proposed by
Landau et al. [12], and the measure of CCF was clearly
higher for the clonal mutations than for subclonal muta-
tions (P value < 1.0 ∗ 10−20).
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Based on the CCF, we established a statistical frame-
work for the population-based inference of temporal
order between somatic mutations in a gene pair and
applied the method for the mutation profiles from indi-
vidual tumor types. Using the results from permutation
tests to determine the minimum case number to identify
the statistically significant mutation pairs with sequen-
tial orders (i.e., log(�) ≈ 0 at the 5th percentile of
the 100,000 re-sampling experiments at the small num-
ber of cases), we performed the test for all pairs of
somatic mutations observed in no fewer than 10 cases
(Additional file 2: Figure S1 (a)). Additional file 2:
Figure S1 (b) shows the distribution of the number of
the mutation pairs in each tumor type. The ancestor-
descendant relationship in a mutation pair was then
inferred by GLRT statistics and the significance was esti-
mated for each direction. Figure 2 shows the mutation
orders of cancer-related genes for six tumor types except
for BLCA and KIRC, which did not have any significant
mutant pairs within cancer-related genes (P value cutoff
was 0.05).

The mutation order of gene pairs was largely distinct
across tumor types, suggesting that the accumulation
patterns or hierarchy of somatic mutations are lineage-
dependent. However, some of the mutation pairs and their
orders were consistently observed across tumor types. For
example, a frequently co-occurred mutation pair of TP53
and LRP1B (Fig. 1(b)) was observed as ancestor (TP53)

- descendant (LRP1B) pairs (TP53 → LRP1B) in COAD-
READ, HNSC, LUAD, and LUSC, with statistical signifi-
cance (P value = 3.0∗10−5, 0.00044, 0.00029 and 0.00058,
respectively). In addition, KMT2C mutation was consis-
tently observed as a descendant of TP53 mutations (TP53
→ KMT2C) in HNSC and LUAD (P value = 3.0 ∗ 10−5

and 5.0 ∗ 10−5, respectively).
When we investigated mutation pairs in each tumor

type, three ordered pairs were identified with statistical
significance in BRCA (P value < 0.05) (Fig. 2). The hier-
archy of the three genes (TP53 → PIK3CA → CDH1)
in BRCA suggests that TP53 mutations represent early
events that are followed by subsequent PIK3CA muta-
tions (P value = 0.034), then CDH1 mutations (P value
= 3.0 ∗ 10−5). This mutation sequence can be function-
ally interpreted as follows: genomic integrity is disrupted
with TP53 mutations followed by cancer cell proliferation
stimulated by PIK3CA mutations and the acquisition of
later invasive/metastatic potential with CDH1 mutations.
This mutation order between TP53 and PIK3CA was also
found in HNSC (P value = 3.0 ∗ 10−5), suggesting that
the TP53 → PIK3CA axis may play important roles in
the development of epithelial tumors. NCOR1 mutation
was also observed as an ancestor for PIK3CA mutation
(P value = 0.00036) and it has been reported that func-
tional inactivation of NCOR1 as a HDAC3 cofactor may
produce genomic instability, which is functionally equiva-
lent to the loss of TP53 [14].

Fig. 2 Tumor type-specific networks representing the mutation order among cancer-related genes. The thickness of the edges is proportional to
the −logP value and the size of the nodes corresponds to the proportion of the genes with somatic mutations
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For LUAD, 16 ordered pairs were identified with statisti-
cal significance. The elevated mutation abundance (mean
of 211 mutations per LUAD case vs. mean of 120 muta-
tions for total cases) and the relatively large size of the
cohort (290 cases) may explain this number, but only one
mutation pair was observed in LUSC with similar muta-
tion abundance (average 221 mutations per cases) and a
smaller number of cohorts (118 cases). TP53 mutation
appeared as a hub in the 16 edge-based network of LUAD
and was identified as ancestor in most mutation pairs.
TP53 mutations have been implicated in tumor devel-
opment and progression across many tumor types [15–
17]. Our analysis also suggests that EGFR mutations may
be earlier genomic events among the mutations in the
LUAD pathogenesis [18]. A substantial fraction of EGFR
mutations in LUAD are considered to be early addicted
targets of targeted therapy [19, 20], suggesting that they
represent early genomic aberrations together with TP53
mutations. In the case of LUSC, the TP53 → LRP1B
ordered mutation pair was solely observed.

In HNSC, NOTCH1 mutations may be earlier events
than TP53 mutations. Although it is mutated at a lower
frequency than TP53 in HNSC, NOTCH1 has been high-
lighted as a potential cancer driver and tumor suppressor
in HNSC [21].

For COADREAD, ordered pairs of somatic mutations
involving APC, KRAS and TP53 are observed and have
been recognized to have pivotal roles associated with col-
orectal carcinogenesis [2]. Colorectal carcinogenesis is
one of the well-established stepwise cancer progression
models and involves sequential acquisition of APC, KRAS,
and TP53 mutations at colorectal dysplasia, adenoma, and
carcinoma stages, respectively [22, 23]. Our inferred hier-
archy from somatic mutations suggested that KRAS muta-
tions were the earliest events in colorectal carcinogenesis.
Given that our statistical model only considered the SNV,
tumor suppressors that can be inactivated by chromo-
somal deletions, such as APC, may not be adequately
assessed for order of mutation.

Accumulation of somatic mutations including non-CGC
gene
We next performed analysis beyond the known cancer-
related genes (Additional file 3: Table S2). For individual
genes, we calculated SCORE-AN by subtracting the num-
ber of genes marked as a descendant from the number
of genes marked as an ancestor in a given tumor type.
SCORE-AN for the genes is provided in Additional file 4:
Table S3 and Fig. 3. A large positive value of the SCORE-
AN means that the corresponding gene is more likely to
be an ancestor or early clonal event and can be regarded
as a potential driver of the corresponding tumor type. In
contrast, the genes with a large negative value would be
passengers or late mutation events.

Consistent with our assumption, many of the genes
with high SCORE-AN values or genes with more calls
for ancestors were cancer-related genes listed in CGC
(Fig. 3). For example, the genes with a positive SCORE-AN
were TP53 and KMT2D in BLCA and TP53, PIK3CA and
NCOR1 in BRCA. However, the two longest genes in the
human genome, TTN and MUC16, which are likely to be
passengers without putative roles generally showed neg-
ative values of SCORE-AN even though these two genes
showed frequent mutations as shown in Fig. 1(a). In the
case of UCEC, TTN and TP53 showed a positive and
negative value, respectively. For this tumor type, TP53
mutation was marked as a descendant for PIK3CA and
PTEN mutations. It was also noted that TP53 mutations
were also observed as descendants of KRAS mutations in
COADREAD. For theses tumor types (UCEC and COAD-
READ), an unusual tendency for elevated mutation rates
was observed and this might be responsible for the unique
evolutionary position of TP53 [24].

To further evaluate the potential functional significance
of the SCORE-AN, we carried out Gene Set Enrich-
ment Analysis (GSEA) [25] to identify the functional gene
sets significantly enriched for genes with high or low
SCORE-AN. Additional file 5: Table S4, Additional file
6: Table S5, Additional file 7: Table S6, and Additional
file 8: Table S7 show the GSEA results only for LUAD,
in which there was a high enough number of the ranked
genes (427 genes) for analysis. The results for positively
ranked genes on C5bp predefined gene sets (gene ontol-
ogy, biological process in MSigDB), showed that most of
the enriched gene sets were related to cell cycle and cel-
lular transport (Additional file 5: Table S4). For gene sets
enriched with low SCORE-AN, the significantly enriched
genes were related to epidermal or epithelial development
(Additional file 6: Table S5). On C2cp gene sets (canon-
ical pathway in MSigDB), the results for the positively
ranked genes or functions enriched with high SCORE-AN
were also obviously enriched for cancer-related function-
alities (Additional file 7: Table S6) but no gene sets with
statistical significance were observed for genes with low
SCORE-AN (Additional file 8: Table S7).

Mutational hotspots and accumulation order
We next investigated somatic mutations occurring on
known mutation hotspots and their temporal mutation
order. Chang et al. previously defined 470 mutational
hotspots in 275 genes and we investigated all of the pairs
of hotspot mutations to detect the temporal sequence of
mutations on known hotspots [26]. However, the number
of mutation pairs harboring the hotspot mutations was
too small for our GLRT-based statistical models (number
of cases ≤ 5).

It has been previously reported that APC mutations
may initiate the process of colon cancer development
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Fig. 3 Ancestral scores of genes in each tumor type. The figure shows SCORE-AN (y-axis), calculated as the number of the ancestors minus the
number of descendants for each gene. Genes are sorted in descending order of the SCORE-AN for each tumor type (x-axis). For LUAD, genes with
absolute number of SCORE-AN > 10 are plotted, and for LUSC genes with absolute number of SCORE-AN > 2 are shown

as one of the earliest genomic aberrations [27], but we
did not obtain clear results for the early occurrence of
APC mutations in the gene-level experiments shown in
the previous section. We divided the APC mutations
into hotspot mutations and non-hotspot mutations and
then investigated the CCF distribution. The APC non-
hotspot mutations showed relatively low CCF values
compared with the APC hotspot mutations (Additional
file 9: Figure S2(a)). When we further examined four cases
harboring both APC:Q1387 hotspot mutations and TP53
mutations, the APC:Q1387 hotspot mutations had higher
CCF values compared with TP53 mutation, and it is rea-
sonable to assume that the APC:Q1387 mutations would
be an ancestor of the TP53 mutations in these cases
(Additional file 9: Figure S2(b)).

Discussion
The identification of known and novel cancer drivers with
moderate-to-high population-level frequency of somatic

mutations has been one of the major goals in can-
cer genome analyses [28, 29]. However, the tempo-
ral sequence of somatic mutations, i.e., which somatic
mutations occurred earlier in the evolution of cancer
genomes than others, is still largely unknown. Early- and
late-occurring somatic mutations have different biologi-
cal and clinical implications-the early addicted somatic
mutations may serve as appropriate targets for thera-
peutic intervention while late-occurring cancer drivers
have been associated with therapeutic resistance or dis-
ease progression. The distinction of such early and late
genomic events, especially for somatic mutations, has
been previously investigated using VAF or CCF. How-
ever, VAF- or CCF-based discrimination of early/clonal
and late/subclonal mutations is limited to an individual
genome and may miss information inferring the temporal
relationship between mutations. To solve this problem,
we built a GLRT-based statistical framework to deter-
mine the temporal sequence of somatic mutations from
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mutation profiles of multiple individuals (population-level
genomics data). This population-scale analysis may cap-
ture the temporal sequence of somatic mutations and
identify the temporal sequence or hierarchy of somatic
mutations of a given tumor type. Similar approaches have
been previously proposed in which genomic data of mul-
tiple tumors (i.e., binary calls of chromosomal amplifica-
tions or deletions) at their fully transformed stages may
be used to deduce the temporal sequence of genomic
events (RESIC [4]); however, we extended this idea by
exploiting the distinction of clonal versus subclonal muta-
tions based on CCF estimates of individual mutations.
We applied our method to publicly available mutation
profiles of eight major human tumor types. For this, we
carried out pairwise comparisons between somatic muta-
tions based on a statistical test to infer the temporal
order among them. Thus, it would be impossible to detect
the effects of multiple factors on mutation acquisition.
Although technical innovations have been proposed to
solve this issue, e.g. single cell sequencing from a bulk
tumor genome or longitudinal biopsies, these methods are
largely limited in terms of cost or patient safety issues.
Given that sequencing-based large-scale mutation pro-
files are currently available to the research community,
such as those from the TCGA consortium used in our
study, our method can be further applied to other datasets
or tumor types. In addition, we assumed that Ci and
Cj were under i.i.d. condition, and applied GLRT. Bio-
logically, this assumption of independency between two
mutations may not be valid given the crosstalk or interplay
between genomic alterations in cancer cells. Other statis-
tics for inference of mutational orders, such as an order
statistic, can be considered as an alternative to GLRT.

Among the tumor types examined, we identified TP53
mutations as a recurrently observed hub connected with
other cancer-related genes, consistent with its prevalent
and known roles in tumorigenesis across multiple can-
cer types [30]. Among the mutation pairs involving TP53,
we observed the mutation pair of KRAS → TP53 as a
well-recognized mutation sequence in the stepwise col-
orectal carcinogenesis [2]. In addition, we recurrently
observed the mutation pairs of TP53 → LRP1B and TP53
→ KMT2C across multiple tumor types. Inactivation of
LRP1B increased the invasive potential in an in vitro set-
ting, implicating a role of LRP1B mutations in the later
stages of carcinogenesis [31]. Whether the mutations in
epigenetic modifiers are early or late events drivers is a
subject of debate, with lines of evidence supporting early
events for TET2 mutations [32] or late events for SETD2
mutations [33]. Our results suggest that KMT2C muta-
tions are descendant genomic events relative to TP53
mutations in LUAD and HNSC, but further experimen-
tal validation in terms of multiregion sequencing or other
method is required. Moreover, as we expected, non-CGC

genes were commonly observed as descendants of a CGC
gene in multiple tumor types (Fig. 3 and Additional File 10:
Table S8). For example, USH2A mutation was frequently
observed in several tumor types as shown in Fig. 1a, but it
was a late event occurring after TP53 or KRAS mutation.

In the case of COADREAD, the mutation pair of KRAS
→ APC was observed even though it is generally rec-
ognized that APC mutations occur early, before KRAS
and TP53 mutations. One limitation of our methodol-
ogy is that only SNVs available for CCF can be used
as input of the algorithm. In the case of APC, chro-
mosomal deletions or frameshifting indels may be also
responsible for APC inactivation and our methods may
not adequately evaluate the genetic hierarchy of tumor
suppressors such as APC. When we limit the APC muta-
tions to those on a known mutation hotspot (APC:Q1387)
accompanying TP53 mutations (four COADREAD cases),
the CCF values of APC mutations were higher than
those of TP53 mutations suggesting that APC mutation
may have occurred earlier than TP53 mutation in those
cases.

The population scale inference of mutational orders
assumes that the mutation processes are uniform across
the cases, or at least for the majority of cases. This
assumption, and the related results, should be interpreted
with caution since the sequence of mutation accumula-
tion can be specific in individual cancer genomes and
distinctive to patient subgroups, according to their tumor
subtype or other clinical features. By collecting many
more samples with information, the specific accumulation
patterns (e.g., candidate sets of mutation orders) may be
further investigated and might help elucidate individual
features such as the treatment response.

Conclusions
In spite of several limitations, our results inferred a
genetic hierarchy between somatic mutations as part of
the cancer genome evolution. We found some ordered
pairs of genes within cancer-related genes in each tumor
and this information will provide mechanistic insights
into the tumor initiation process. We also demonstrated
that the scores of mutation co-occurrence (SCORE-
CO) or ancestor/descendant ratio (SCORE-AN) may
help identify or prioritize new candidates of driver
mutations in each tumor. Furthermore, the study on
mutation hotspot information may be more robust in
that the hotspot mutations represent functionally rele-
vant cancer drivers as shown in the example of APC
mutations in COADREAD. In summary, our proposed
statistical framework can be used to infer the tem-
poral sequence of somatic mutations in population-
scale cancer genomics data, providing information
regarding the timing of mutation occurrence in given
tumor types.
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Additional file 1: Table S1. SCORE-CO for the pair of genes in each
tumor type. (XLSX 696 kb)

Additional file 2: Figure S1. Determination of the minimum sample size
for the experiments (a) 5 percentile of the 100,000 random re-sampling
experiments with the number of cases (b) Distribution of the frequency for
the mutant gene pairs. (PDF 23 kb)

Additional file 3: Table S2. Ordered pairs with statistical significance in
each tumor type. (XLSX 61 kb)

Additional file 4: Table S3. SCORE-AN for genes observed in each tumor
type. (XLSX 22 kb)

Additional file 5: Table S4. Enrichment genesets on C5bp for genes with
positive SCORE-AN. The results were obtained by GSEApreranked on C5bp
(Gene Ontology, biological process). BLCA, BRCA and KIRC were no results
with nominal P value < 0.05. (XLSX 16 kb)

Additional file 6: Table S5. Enrichment genesets on C5bp for genes with
negative SCORE-AN. The results were obtained by GSEApreranked on C5bp
(Gene Ontology, biological process). BLCA, BRCA, COADREAD, HNSC, KIRC
and LUSC were no results with nominal P value < 0.05. (XLSX 10 kb)

Additional file 7: Table S6. Enrichment genesets on C2cp for genes with
positive SCORE-AN. The results were obtained by GSEApreranked on C2cp
(canonical pathway). BLCA, BRCA, COADREAD, HNSC and KIRC did not did
not detect any genesets. (XLSX 12 kb)

Additional file 8: Table S7. Enrichment genesets on C2cp for genes with
negative SCORE-AN. The results were obtained by GSEApreranked on C2cp
(canonical pathway). BLCA, BRCA, COADREAD, KIRC and UCEC did not
detect any genesets. (XLSX 11 kb)

Additional file 9: Figure S2. Hotspot mutation and CCF. (a) Maximum
value of CCF in COADREAD. Each dot means a tumor patient with a
somatic mutation in APC hotspots. (b) Distribution of CCFs for APC and
TP53 mutations in COADREAD. The figure is plotted for the patients with
APC:Q1387 hotspot mutation. Red is CCF distribution for APC and blue is
for TP53. (PDF 35 kb)

Additional file 10: Table S8. Common temporal orders in multiple tumor
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