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Abstract

Background: Lipid storage myopathy (LSM) is a diverse group of lipid metabolic disorders with great variations in
the clinical phenotype and age of onset. Classical multiple acyl-CoA dehydrogenase deficiency (MADD) is known to
occur secondary to mutations in electron transfer flavoprotein dehydrogenase (ETFDH) gene. Whole exome sequencing
(WES) with clinical correlations can be useful in identifying genomic alterations for targeted therapy.

Case presentation: We report a patient presented with severe muscle weakness and exercise intolerance, suggestive
of LSM. Diagnostic testing demonstrated lipid accumulation in muscle fibres and elevated plasma acyl carnitine levels.
Exome sequencing of the proband and two of his unaffected siblings revealed compound heterozygous mutations, c.
250G > A (p.Ala84Thr) and c.770A > G (p.Tyr257Cys) in the ETFDH gene as the probable causative mutations. In addition, a
previously unreported variant c.1042C > T (p.Arg348Trp) in ACOT11 gene was found. This missense variant was predicted
to be deleterious but its association with lipid storage in muscle is unclear. The diagnosis of MADD was established and
the patient was treated with riboflavin which resulted in rapid clinical and biochemical improvement.

Conclusions: Our findings support the role of WES as an effective tool in the diagnosis of highly heterogeneous disease
and this has important implications in the therapeutic strategy of LSM treatment.
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Background
Lipid storage myopathy (LSM) is a diverse group of lipid
metabolic disorders characterized by impaired fatty acids
oxidation [1]. Multiple acyl-coenzyme A dehydrogenase
deficiency (MADD) is an autosomal recessive disorder
characterized by mitochondrial electron transfer system
defects and impaired fatty acids metabolism [2]. MADD
is associated with a highly diverse clinical phenotype,
ranging from the lethal neonatal onset type with con-
genital anomalies, to the adult onset type with milder
and variable clinical presentation [3]. The clinical het-
erogeneity of adult-onset forms pose a challenge for

diagnosis with the vast majority displaying mild or atyp-
ical biochemical abnormalities [4]. Diagnosis of MADD
is aided by urinary organic acid analysis and blood acyl-
carnitine profile.
Classical MADD has been known to occur secondary

to deficiency in electron transfer flavoprotein (ETF) or
ETF:ubiquinone oxidoreductase (ETF:QO). The severity
of the disease is dependent on the location and nature of
mutations in the genes encoding ETF or ETF:QO. Null
mutations result in a complete loss of protein expression
or function leading to lethal disease. Missense mutations
result in only a partial loss of enzyme activity, with pres-
ervation of some residual enzyme activity thus leading to
a milder clinical phenotype [5–7].
Some MADD patients have an improvement in the clin-

ical symptoms and metabolic profile with riboflavin treat-
ment. These patients, referred to as riboflavin-responsive
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MADD (RR-MADD) patients, have been seen to harbour
variations in the ETFDH gene encoding ETF:QO. To date,
more than 50 different ETFDH variations have been re-
ported in RR-MADD [8–12]. The ETF:QO protein con-
sists of a flavin adenine dinucleotide (FAD) binding
domain and a [4Fe-4S] cluster. This protein is responsible
for ATP production by mediating the transfer of reducing
equivalents to the respiratory ubiquinone pool [13, 14]. In
RR-MADD, the missense mutations lead to a misfolding
of protein leading to decreased protein stability [15–17].
Riboflavin is the substrate that is converted to FAD. In-
creasing the availability of riboflavin, is thus speculated to
promote folding and/or stabilizes the native conformation
of certain types of ETF:QO variant proteins.
Here, we report a 65 year old male individual with dia-

betes presenting severe muscle weakness and exercise
intolerance as major symptoms. Whole exome sequen-
cing (WES) revealed that he is a compound heterozy-
gous for two variants in the ETFDH gene, establishing
the final diagnosis and responded to riboflavin supple-
mentation. The study also identified a previously unre-
ported variant in ACOT11 with highly-predicted
functional impact.

Case presentation
The proband was a 65 year old patient with a relapsing
and remitting course of lipid storage myopathy. His
symptoms started at 17 years old when he was enlisted
into the military. He noted muscle fatigue and exercise
intolerance affecting only his lower limbs after intense
exercise. These symptoms recurred with greater severity
at 36 years old. His upper and lower limbs, as well as his

neck muscles were affected. He also experienced
difficulty in swallowing. Possible aggravating factors
were irregular meals and heavy alcohol consumption. He
was evaluated in another centre at that time and we
were able to access part of his results. Creatinine kinase
levels were elevated 20 times. Muscle biopsy histopath-
ology showed the presence of fat globules within vacuo-
lated muscle fibres and increased oxidative enzyme
activates, suggesting a ‘lipid storage disease’. He had
received oral steroids intermittently, but no specific
treatment was given as his symptoms resolved spontan-
eously. Recently, his symptoms recurred, and he was re-
ferred to our centre. In the past 2 years, he had picked
up jogging and begun to experience similar episodes of
muscle fatigue affecting only his lower limbs after exer-
cise. Exercise intolerance had deteriorated and he can
only manage 100 m of walking each time by the time he
consulted our centre. No other muscles were affected.
There were no accompanying cardiac or respiratory
symptoms such as chest pain or breathlessness. His
other medical problems included type 2 diabetes melli-
tus and hyperlipidemia. We noted he has a strong family
history of type 2 diabetes mellitus, with 3 out of 5 sib-
lings being inflicted with the disease. His elder son has
multiple medical problems associated with obesity –
hypertension, aortic aneurysm, obstructive sleep apnea
and stroke. His younger son has bicuspid aortic valve.
There is no family history of consanguineous marriage
or muscle disorders. To the best of our knowledge, his
siblings and children do not suffer from any of the
symptoms experienced by the proband (Fig. 1). Specific-
ally, his siblings (RD-WES-002, RD-WES-003, RD-WES-

Fig. 1 Pedigree showing co-segregation of the heterozygous changes within ETFDH, ETFB and ACOT11 in the family. Open symbol represents
unaffected subject. Patient (proband) is indicated with a black arrow
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004, RD-WES-005, and RD-WES-008) were determined
as healthy based on their clinical phenotypes and normal
creatinine kinase values.
On examination, he weighed 86.6 kg and his body mass

index was 28.2 kg/m2. There were no dysmorphic
features. Cushingoid features were absent. Facial muscle
weakness and ptosis were absent. Neck muscles were
normal. There was no winging of both scapulae. Wasting
of both quadriceps were noted. Muscle strength was
reduced at the shoulders and the hips with manual muscle
testing 4 out of 5 for both flexors and extensors. Distal
muscle strength was normal for both upper and lower
limbs (Table 1). Fatigability of the muscles was not
demonstrated in the clinic. Muscle tone and reflexes were
normal. He displayed normal gait. Examination of the
cardiorespiratory and abdominal systems were normal.
Basic investigations revealed elevated values of creatin-

ine kinase and myoglobin. Liver function tests, renal
function tests and thyroid function tests were normal
(Table 2). Tests specific to lipid storage disease that were
performed included plasma acylcarnitines, serum carni-
tine level, serum riboflavin, urine acylglycines and urine
organic acids. The results from the plasma acylcarnitines
were abnormal, showing elevated concentrations of
several acylcarnitine species (C5-C18) compared to
reference range (Table 3).

Clinical assessment and blood collection
Clinical diagnosis was based on physical examination,
muscle biopsy, biochemical tests. Peripheral blood sam-
ples were taken from the patient and his family mem-
bers, including his 5 siblings and 2 children, aged 32 to
70. The study was according to the Declaration of
Helsinki Principles and the ethical guidelines of our in-
stitution. Written informed consent was obtained prior
to sample collection.

Genetic testing
Genomic DNA was extracted from peripheral blood
using QIAamp DNA kit (Qiagen). Whole exome library
preparation was performed for patient (RD-WES-001)
and two siblings (RD-WES-005 and RD-WES-008) using
Nimblegen SeqCap EZ Library SR kit (Roche) according
to manufacturer instruction and enriched samples
underwent paired-end sequencing on Illumina HiSeq
4000 device (Macrogen, Korea). Candidate variants were
validated and followed up in the proband and his

relatives with Sanger-based sequencing. Primers used
were shown in Additional file 1: Table S1.
The mapping of sequencing reads to NCBI GRCh37

human reference genome and variant detection were per-
formed using the Burrows-Wheeler read aligner (BWA)
and Genome Analysis Tool Kit (GATK), respectively. The
detected single nucleotide polymorphisms (SNPs), dele-
tion and insertion variants in coding regions and splice
sites sequences were filtered by quality/depth, minimum
total read depth (coverage). Variants passing these quality
filters were annotated with information from public anno-
tation databases using ANNOVAR. We exclude common
variants with allele frequency greater than 0.05 in the
1000 Genomes and ExAC Browser. Choice of variants for
further analysis were limited to genes implicated in

Table 1 Manual muscle testing (MMT) scale of upper limbs and lower limbs of the proband on examination

Neck Shoulders Elbows Fingers Hips Knees Ankles

Flexion Extension Abduction Adduction Flexion Extension Finger
grip

Flexion Extension Flexion Extension Flexion Extension

Power
(out of 5)

5 5 4 5 5 5 5 4 4 5 5 5 5

Table 2 Laboratory results of the patient

Tests Results Reference index Units

Albumin 38 35–48 g/L

Alanine transferase 37 17–63 U/L

Alkaline phosphatase 46 38–126 U/L

Bilirubin 12 7–31 umol/L

Calcium 2.28 2.15–2.58 mmol/L

Carnitine, serum

Carnitine, total 47 34–78 nmol/ml

Carnitine, free (FC) 28 25–54 nmol/ml

Acylcarnitine (AC) 19 5–30 nmol/ml

AC/FC Ratio 0.7 0.1–0.8

Creatinine 66 60–105 umol/L

Creatinine kinase 492 50–250 U/L

Glucose, fasting 6.0 3.0–6.0 mmol/L

Glycated Hemoglobin 6.4 – %

Lipid Panel

Cholesterol 5.2 mmol/L

HDL-C 1.4 mmol/L

LDL-C 3.4 mmol/L

Triglycerides 0.9 mmol/L

Myoglobin 294 16–96 ug/L

Riboflavin, serum 6 1–19 ug/L

Thyroxine, free 13 8–21 pmol/L

TSH 2.69 0.34–5.60 mIU/L

25-OH vitamin D 24 > 20 ug/L

Numbers out of reference index are in bold
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glutaric academia, carnitine metabolism and acyl coen-
zyme metabolism; and supported by in silico analysis by
different bioinformatics tools (PolyPhen2 and SIFT).

Molecular findings
The sequencing generated 67,408,294 reads in the pro-
band, 65, 560,602 in his older brother (RD-WES-005),
and 18, 657, 150 in his younger brother (RD-WES-008).
More than 99.9% of these reads were mapped and more
than 74.7% were on-targets reads. Percentage of targets
with more than 10X coverage in RD-WES-001,
RD-WES-005 and RD-WES-008 were 95.5, 95.3 and 62.
4% respectively; and their corresponding mean depth
were 57.9X, 56.0X and 16.4X. The number of variants
identified per sample ranged from 81,341 to 105, 643
(Additional file 1: Table S2). There was a total of 29,793
variants common across all 3 samples which may repre-
sent the genotypes shared among all the family

members. These common variants were excluded from
subsequent analysis, rendering a total of 3504 variants
unique to the proband, 5986 variants common between
proband and RD-WES-005, and 1500 variants common
between proband and RD-WES-008. Although the
specific mutations causing the myopathy syndrome are
more likely to be found in set of patient specific muta-
tions, there is a chance that causative mutations belong
to the common variants shared with his siblings, if the
patient is the only family member with the respective
homozygous genotype. Among these, data annotation
predicted 515 sample specific missense mutations in the
proband, 314 missense variants common between
proband and RD-WES-005, and 247 missense variants
common between proband and RD-WES-008. No
frameshift, insertion or deletion mutations were found.
We further filtered these variants based on targeted
pathways, minor allele frequency (MAF≤0.05 in 1000

Table 3 Acylcarnitine profile of the patient before and after riboflavin treatment

Analytes Results Reference
range

Units

Before After

C0- Free carnitine 36 42 17–64 umol/L

C2- Acetylcarnitine 10 3 2-17 umol/L

C3-Propionylcarnitine 0.42 0.31 0.14–0.95 umol/L

C3DC-Malonylcarnitine 0.03 0.03 0.01–0.08 umol/L

C4-n-butyryl−/isobutyrylcarnitine 0.33 0.16 0.08–0.46 umol/L

C4OH-3-Hydroxy-Butyrylcarnitine 0.12 0.06 0.01–0.24 umol/L

C5-Isovaleryl−/2-Methylbutyrylcarnitine 0.39 0.10 0.03–0.32 umol/L

C5:1-Tiglylcarnitine 0.02 0.01 0.01–0.04 umol/L

C5OH-3-Hydroxy-Isovaerylcarnitine 0.03 0.03 0.01–0.09 umol/L

C5DC-Glutaryl/3-Hydroxydecanoylcarnitine 0.28 0.06 0.010.08 umol/L

C6-Hexanoylcarnitine 0.43 0.25 0.02–0.12 umol/L

C8-Octanoylcarnitine 1.50 1.69 0.03–0.22 umol/L

C10-Decanoylcarnitine 3.07 1.82 0.05–0.42 umol/L

C10:1-Decenoylcarnitine 0.40 0.61 0.03–0.26 umol/L

C10:2-Decadienoylcarnitine 0.05 0.05 0.01–0.05 umol/L

C12-Dodecanoylcarnitine 0.87 0.15 0.02–0.13 umol/L

C12:1-Dodecenoylcarnitine 0.13 0.09 0.01–0.10 umol/L

C14-Tetradecanoylcarnitine 0.51 0.05 0.01–0.07 umol/L

C14:1-Tetradecenoylcarnitine 0.72 0.15 0.01–0.17 umol/L

C14:2-Tetradecadienoylcarnitine 0.20 0.07 0.01–0.05 umol/L

C16-Hexadecanoylcarnitine 0.81 0.13 0.06–0.24 umol/L

C16:1-Hexadecenoylcarnitine 0.53 0.05 0.01–0.07 umol/L

C18-Octadecanoylcarnitine 0.34 0.04 0.02–0.10 umol/L

C18:1-Octadecenoylcarnitine 0.95 0.12 0.05–0.28 umol/L

C18:2-Linoleylcarnitine 0.33 0.05 0.02–0.10 umol/L

C16OH-3-Hydroxy-Hexadecanoylcarnitine 0.02 0.01 0.00–0.02 umol/L

Numbers out of reference range are in bold
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Genome and ExAC databases) and predicted as dam-
aging by two different computer algorithms, SIFT and
PolyPhen2. As a result, we obtained a final list of 3 vari-
ants in the coding region of ETFDH and ACOT11 genes
(Table 4). Among these, ETFDH c.250G > A (Ala84Thr)
was characterized in the ClinVar database, as pathogenic.
ETFDH c.770A > G (Tyr257Cys) was not reported in
1000 Genome or ExAC databases but has been reported
with ETFDH c.250G > A in riboflavin-responsive lipid
storage myopathy [8]. Hence, ETFDH Ala84Thr and
Tyr257Cys represent excellent candidates as causative
event underlying the trait. ACOT11 c.1042C > T
(Arg348Trp) represents a missense variant that has not
been reported in the literature in individuals with a LSM
related disease. In silico analyses predict that this variant
is probably damaging to protein structure and function.
All available members in the pedigree were screened

for these three mutations. Sanger sequencing analysis
validated the mutations in the proband (Fig. 2) and re-
vealed that ACOT11 c.1042C > T variant was unique to
him. In addition, one of his healthy sister (RD-WES-
003) harboured the same combination of ETFDH muta-
tions. The other family members had only one of the
heterozygous ETFDH mutations (data not shown).

Structural analysis
The 3-dimensional structure of the human ETF:QO pro-
tein was predicted using the SWISS-MODEL protein
structure homology modelling server to evaluate the
possible consequences of the missense mutation [18].
The porcine ETF:QO (PDB entry: 2GMH) shared a high
amino acid sequence similarity with the human homolog
and was as the model template [13]. The program
DeepView (Swiss Pdb viewer) was used for visualization
and analysis of the modelled protein structure.
Structural analysis of ETF:QO suggests that the wild-

type Ala84 located within the FAD binding domain and
the replacement with threonine disrupted the stability of
FAD binding, which is essential for the activation of ETF:
QO [19]. To explore the impact of Ala84Thr and
Tyr257Cys on protein function, human ETF:QO model
was constructed using the published porcine ETF:QO
crystal structure (PDB Id:2GMH) as the template (Fig. 3).
Both Ala84 and Tyr257 are hydrophobic residues located
in helices within the FAD binding domain. The newly

introduced mutant residues differ in size and hydrophobi-
city values from the wild-type residues. These differences
are predicted to disturb the protein conformation and
hence binding properties of the FAD binding domain.

Treatment
The patient was given riboflavin 100 mg thrice daily with
significant improvement in symptoms. He also received
dietary counseling for a low fat diet with advice against
prolonged fasting. Clinical improvement was supported
by normalization of serum creatinine kinase and myo-
globin levels, as well as improvement in plasma long
chain acyl carnitine results (Table 3).

Discussion and conclusions
In this report, we describe WES analysis of a patient
with clinical features correspond to lipid storage myop-
athy and his healthy family members. Two compound
heterozygous mutations in ETFDH gene were identified
as the causative mutations. Within the ETFDH gene, the
known pathogenic c.250G > A mutation was observed in
homozygous and compound heterozygous state in sev-
eral patients with MADD [8–10]. This variant
(rs121964954) is more prevalent in Asians and reported
in ExAC database with an allele frequency of 0.17% in
East Asians. It has been reported in late-onset MADD
patients from Asian countries including Taiwan, Hong
Kong, Japan, Thailand and southern China [10–12, 20,
21]. To date, this mutation has never been reported in
Western countries [9]. The other variant ETFDH c.
770A > G was not present in ExAC database but re-
ported in Chinese patients with MADD [22]. The study
reported that the c.250G > A was more prevalent in
Southern China, whereas c.770A > G had a higher fre-
quency in Mainland China. Of note, ETFDH c.250G > A
and c.770A > G mutations were also present in his
healthy sister (RD-WES-003) who was 64 year old.
Hence, RD-WES-003 may develop the symptoms associ-
ated with MADD in the future although the likelihoods
are not high given her advance age. It is also possible
that the compound heterozygous mutations in ETFDH
can be tolerated or other genetic factors are required to
cause disease.
Consistent with previous reports, supplementation of

riboflavin, the precursor of FAD has strikingly improved
the symptoms in this patient [4, 8, 23, 24]. FAD is a

Table 4 Number of candidate variants

Gene SNP ID Base
change

1000 Genome ExAC Protein
change

SIFT POLYPhen Class

AFR AMR EAS EUR SAS

ETFDH rs121964954 250G > A 0 0 0.001 0 0 0.00173 Ala84Thr Deleterious Damaging Pathogenic

ETFDH – 770A > G – – – – – – Tyr257Cys Deleterious Damaging VUS

ACOT11 rs139751558 1042C > T 0 0 0.0198 0 0 0.04853 Arg384Trp Deleterious Damaging VUS
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cofactor for ETF:QO which is important for the enzyme
catalytic activity, correct folding, assembly and protein
stability [25]. The ETF:QO Ala84Thr and Tyr257Cys
mutations are located in the FAD binding domain.
According to the predicted ETF:QO 3D structure, these
residues are buried within the core of the protein.
Alteration at these positions represent replacement of
hydrophobic residues (alanine and tyrosine) with polar
residues (threonine and cysteine). These drastic changes
are likely to alter the conformation proximate to the
FAD-binding site and disrupt the stability of FAD bind-
ing, which is essential for enzyme activation. Although
the mechanism of riboflavin efficacy in MADD patients
is not yet completely clear, a likely explanation is that of
riboflavin increases the intra-mitochondrial FAD con-
centration and enhances the conformational stabilization
of the mutant ETF:QO protein. In turn, this could
ameliorate the effect of the mutations that reduce the af-
finity of ETF:QO for FAD [9, 26].
ACOT11 has been implicated in regulating the oxida-

tion of fatty acids [27]. The ACOT11 c.1042C > T variant
(rs139751558) is ethnic-specific according to ExAC data-
base, with an allele frequency of 4.85% in East Asians. The
Arg348Trp variant resides in the START domain, which is

a

b

Fig. 2 Electropherograms and locations of missense mutations in ETFDH (a) and ACOT11 (b) sequences. Protein domains are schematized with
numbers indicating the amino acid

Fig. 3 Structure prediction of ETF:QO. The predicted wild-type model
of human ETF:QO with Ala84 and Tyr257 in the hydrophobic
FAD-binding domain shown in ball-and-stick representations
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involved in lipid binding and is essential for optimum en-
zyme activity [28]. The substitution represents a drastic
change from a hydrophilic and positively charged residue
to a hydrophobic and uncharged residue, which might im-
pact lipid binding and impair oxidation of fatty acids.
Intriguingly, this is the only patient specific variant that is
predicted to be deleterious. However, without additional
functional and/or genetic data, the significance of the al-
teration for disease is uncertain.
Due to its wide variety of clinical symptoms, LSM is dif-

ficult to diagnose. For cases highly suggestive of MADD,
genetic analysis of ETFDH gene is highly recommended as
vast majority of patients carry mutations in this gene [29].
For LSM, a large number of genes are implicated and tar-
geted screening using Sanger sequencing will be an expen-
sive and tedious option. In this study, we employed WES
for comprehensive genetic diagnosis and have successfully
revealed the mutations in ETFDH gene as the causal vari-
ants, leading to the personalized therapeutic strategy of
riboflavin supplementation.

Additional file

Additional file 1: Table S1. Primers sequences used to amplify and
sequence candidate genes. Table S2. Number of candidate variants
filtered against dbSNP and 1000 Genome public databases. (DOCX 45 kb)
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