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Abstract

Background: Birt-Hogg-Dubé syndrome (BHD) is an autosomal dominant disorder caused by germline mutations
in the folliculin gene (FLCN). Nearly 150 pathogenic mutations have been identified in FLCN. The most frequent
pattern is a frameshift mutation within a coding exon. In addition, splice-site mutations have been reported, and

previous studies have confirmed exon skipping in several cases. However, it is poorly understood whether there are
any splice-site mutations that cause translation of intron regions in FLCN.

Case presentation: A 59-year-old Japanese patient with multiple pulmonary cysts and pneumothorax was hospitalized
due to dyspnea. BHD was suspected and genetic testing was performed. The patient exhibited the splice-site mutation of
FLCN in the 5" end of intron 9 (c.1062 + 1G > A). Total mRNA was extracted from pulmonary cysts, and RT-PCR assessment
and sequence analyses were done. Two distinct bands were generated; one was wild-type and the other was a larger-

beginning of the splice-site between exons 9 and 10.

sized mutant. Sequence analysis of the latter transcript revealed the insertion of 130 base pairs of intron 9 from the

Conclusion: To our knowledge, this is the first report of distinct intron insertion using a BHD patient’s diseased tissue-
derived mRNA. The present case suggests that a splice-site mutation can lead to exon skipping as well as intron reading
mMRNA. The splicing process may be dependent in part on whether the donor or acceptor site is affected.
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Background

Birt-Hogg-Dubé syndrome (BHD), also called Hornstein-
Knickenberg syndrome, is an inherited disorder character-
ized by skin fibrofolliculomas, multiple pulmonary cysts
and kidney cancers [1, 2]. The gene responsible for
BHD, folliculin (FLCN), is located at 17p11.2. [3], and
its protein product, FLCN, cooperatively interacts with
its partners folliculin-interacting proteins 1 (FNIP1)
and FNIP2, playing important roles in organogenesis
and tissue homeostasis [4—8]. The FLCN complex binds
with AMPK and regulates mammalian target of rapa-
mycin (mTOR) [4-8]. The principal role of FLCN in
human diseases is tumor suppression. Around 20-30%
of affected family members are reported to develop
renal cell carcinomas (RCCs) [2]. Rats carrying a
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mutant Flcn and heterozygous knockout mice devel-
oped renal tumors [9-12]. Further studies using organ-
specific Flen knockout mice demonstrated characteris-
tic disorders such as polycystic kidney disease, cardiac
hypertrophy and alveolar enlargement, indicating that
FLCN function is involved in a wide variety of human
disorders [13-16].

There are nearly 150 known mutation patterns of
FLCN [17, 18]. The most frequent type is a frameshift
within an exon region. Less frequent types include
nonsense, in-frame deletion, missense, and splice-site
mutations. There are also intragenic deletions and
duplications [19, 20]. According to the literature,
splice-site mutations have been reported between
introns 4-13, and there are at least 19 different
splice-site mutation patterns [17, 20]. Some of these
splice-site mutations are predicted to cause exon skip-
ping [21, 22]. Several cases possess truncated FLCN
mRNAs with exon skipping as determined by RT-PCR
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[23-25]. Recently, a study of splice-site mutation
cases involving the 5'-end of intron 9 (c.1062 +2 T >
G) demonstrated 2 mutants; composed of a short
band lacking exon 9 and a large band reading an add-
itional 130 base pairs (bp) of intron 9 [26]. The large
band was much fainter than the short one, and inter-
preted as a cryptic splice-site [26]. It is not com-
pletely understood whether some splice-site mutations
aberrantly translate intron regions, forming unconven-
tional transcriptional products in the affected organs
of BHD patients. In the current study, we described a
case of BHD in which FLCN mRNAs had splicing ab-
errations due to translating a part of an intron.

Case presentation

Clinical course

A 59-year-old Japanese man was admitted to Kumamoto
Saishunso National Hospital for treatment of spontaneous
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pneumothorax. Now an ex-smoker, he had previously
smoked 10-12 cigarettes per day for 25 years. He had not
previously experienced a pneumothorax. He did not have
fibrous papules on his face or neck. His medical history
was unremarkable except for a benign colon polyp at the
age of 58. His two daughters and an uncle on the maternal
side had episodes of pneumothoraces (Fig. 1a). His mother
had died of cervical cancer, and had had no episode of
pneumothorax. Computed tomography showed multiple
pulmonary cysts (Fig. 1b). Renal tumors were not detect-
able. He underwent pulmonary wedge resection via video
assisted thoracoscopic surgery (VATS). Intrathoracic ob-
servation revealed transparent cysts 3—30 mm in diameter
distributed in the pleura (Fig. 2a, left). After VATS, the pa-
tient has recovered without complication, and has been
receiving periodic medical check-ups. From the family his-
tory and radiological and clinical findings, the patient was
suspected of BHD.
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Fig. 1 Family tree and radiological findings. (@) The patient is indicated by an arrow. Four members including the patient had episodes of pneumothorax,
indicated by black. (b) Computed tomography shows multiple pulmonary cysts (indicated by arrows)
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Fig. 2 Lung histology and FLCN analysis. (a) Left: The thoracoscopy revealed multiple subpleural cysts (arrows). Right: Histology of the resected
lung. Pulmonary cysts preferentially develop along an interlobular septum, and they are partially incorporated within alveoli. Neither fibrosis nor
active inflammation was observed. Stars indicate cyst lumens. (b) Direct sequencing of the FLCN gene. The 5-end of intron 9 was heterozygously
mutated to adenine (arrow; c.1062 + 1G > A). A homozygous SNP was also detected (arrowhead; c.1062 + 6C > T). (c) RT-PCR of FLCN mRNA
between exons 8-11. Two products were detected; a wild type (WT) and a mutant (Mut). (d) Western blotting of FLCN in the patient’s lung.
Normal lung was used for comparison. The FLCN bands of 64 kDa were detected in both lanes. No additional band was observed in the BHD
patient’s lung. (e) Sequence analysis of mutant RT-PCR product. Intron 9 (130 bp) retention was detected between exons 9-10

Pathological finding inflammation, which was distinctively different from the
The resected lung tissue contained several cystic lesions.  histology of emphysematous bullae. Other cystic lung dis-
Microscopically, these cysts were incorporated into orders such as lymphangioleiomyomatosis and chronic
peripheral alveolar tissue in one region and interstitial  obstructive pulmonary disease were also ruled out. The
tissue or visceral pleura in another area (Fig. 2a, right). characteristic histological features were consistent with
Most of the cysts developed in contact with bronchovas- ~ BHD-associated pulmonary cysts [27, 28].

cular bundles and/or interlobular septa. Flattened pneu-

mocytes lined the inner surface of the cysts, and the Mutation and expression analysis

lining cells were frequently exfoliated from the wall. The = Genetic counseling was performed, and informed con-
cyst walls showed neither fibrous reaction nor active sent was obtained from the patient for FLCN genetic
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testing and related molecular studies after approval of
the Institutional Review Board (IRB) of Yokohama City
University. Genetic analysis of FLCN identified a single
nucleotide mutation at the 5 -end of intron 9 (c.1062 +
1G> A) (Fig. 2b). The mutation had been reported as
pathogenic in a previous study [21]. In addition, a single
nucleotide polymorphism (SNP) was detected in the
vicinity of the splice-site mutation (c.1062 + 6C > T). The
patient was finally diagnosed with BHD.

Previous studies have identified several sites of exon
skipping in FLCN mRNAs in patients with BHD [23-25].
The mutation in intron 9 (c.1062 + 1G > A) was predicted
to cause aberrant FLCN mRNA, but had not been investi-
gated. We therefore analyzed the patient's FLCN at mRNA
and protein levels. Using primers covering exons 8-11
with RT-PCR, two products were clearly detected, i.e., a
wild-type band (413 bp) and a larger-sized band between
500 and 600 bp (Fig. 2c). No candidate band for exon
skipping was observed. In Western blotting, predicted size
FLCN bands were detected in the BHD lung as well as in
a normal lung. No other specific band was detected in the
patient’s lung (Fig. 2d). We further performed sequence
analysis of the RT-PCR products. A wild-type band was
confirmed to be composed of exons 9-10. On the other
hand, the larger-sized band of the mutant allele was found
between exons 9-10, extending from the beginning of in-
tron 9 for 130 bp (Fig. 2e). The size of the mutant mRNA
was determined to be 543 bp. The complete size of intron
9 is 1836 bp; however, no larger band was detectable.
Moreover, we did not observe other candidates predicting
exon skipping. Reanalysis with RT-PCR using different
primers designed between exons 8-13 showed again an
identical 130 bp intron inserting between exons 9-10
(data not shown). The amino acid sequence predicted by
the mutant mRNA caused a frameshift of exon 10, result-
ing in premature termination after reading 77 amino acids
from the 5'-end of intron 9 (Additional file 1 Figure S1).

Discussion and conclusions

Splice-site mutations are expected to affect mRNA trans-
lation by either skipping the adjacent exon or misreading
the affected intron. Splice-sites are composed of acceptor
sites (the 3'-end of the intron) and donor sites (the 5'-end
of the intron). In BHD families, there are more acceptor
site than donor site mutations [17]. All of the cases in
which exon skipping was confirmed were acceptor site
mutations, such as ¢.397-1G>C, ¢.1063-2A>G and c.
1177-2A > G [23-25]. With regard to donor site muta-
tions, only one study has been reported thus far [26]. Ros-
sing et al. used a mini-gene splicing assay to demonstrate
the presence of 2 simultaneous bands in the case of c.
1062 +2 T>G; i.e., an additional 130 bp and an exon
skipping [26]. The former sequence was interpreted as a
misreading of intron 9 using a cryptic splice-site. Although
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the mutation of the present case was located in the other
nucleotide (c.1062 + 1G > A), both mutations identically
read the first 130 bp of intron 9 and connected with exon
10. At the break point of intron 9, retention stopped be-
fore a guanine-thymine (GT) sequence (data not shown).
It is plausible that the GT sequence just after the break
point could have been misunderstood as a donor site. We
could not detect exon skipping in the present study, which
might owe in part to experimental design. We investigated
mRNA expression using the patient’s lung that contained
cystic lesions, whereas Rossing et al. used mRNA from
transfected COS-7 cells.

A partial intron retention (130 bp) and the following
104 bp of exon 10, which ended at a stop codon, pre-
dicted the translation of an additional 77 amino acids
between intron 9 (43 amino acids) and exon 10 (34
amino acids). In the latter amino acids involving exon
10, a frameshift occurred due to a guanine left behind
the 43 amino acids. We could not detect candidate
bands for the mutant protein in Western blotting ana-
lysis. Similar results were obtained in our previous study
of another patient’s lung with a splice-site mutation in
the acceptor site [24]. Although the possible presence of
FLCN variants that are undetectable by currently avail-
able antibodies cannot be excluded, these pathogenic
mRNAs might be degraded through the nonsense-
mediated mRNA decay system. Significant expression of
normal-sized FLCN in patients’ lungs indicates that the
majority of normal-looking pneumocytes preserve FLCN
at the protein level in human BHD lungs. On the other
hand, FLCN protein is reduced or severely suppressed in
BHD-associated RCCs [29]. Since the mice with Flcn-de-
pleted type II pneumocytes resulted in alveolar enlarge-
ment [15], undetectable levels of FLCN suppression in a
limited number of pneumocytes might also contribute to
cyst growth. The characteristic localization of cysts in
the vicinity of interlobular septa/bronchovascular bun-
dles and visceral pleura, as well as development of elon-
gated vascular network in subpleural cysts [28], suggest
that the cysts may originate from specific areas that
would slowly lead to cystic growth of the alveolar epithe-
lium with partial incorporation into stroma. A recent
in vitro study of pulmonary fibroblasts from BHD pa-
tients demonstrated impaired migration and matrix pro-
duction abilities, suggesting the roles of stroma at shear
stress-prone regions of the lung [30]. In this respect, we
observed a histopathological analogy between BHD-
associated pulmonary cysts and fibrofolliculomas of the
skin, the latter also showing cord-like growth of follicu-
lar epithelium in association with the surrounding spe-
cialized mesenchyme.

The results of the present case and previous studies that
demonstrate intron retention and exon skipping are sum-
marized in Fig. 3. We hypothesize that mutations in donor/
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Fig. 3 mRNA processing of FLCN with splice-site mutations Green boxes

end mutation (refs. [23-25]) demonstrated exon skipping

a
FLCN gene Intron X-1 Intron X Intron X+1
- rc| Exon | g7 . g | Exon %_ 2 | Exon gt — g | Exon | g7 -
X-1 X X+1 X+2
mRNA Exon | Exon Exon | Exon
X-1 X X+1 X+2
Intron X c.1062+1G>A (present case)
retention ¢.1062+2T>G (ref. 26, cryptic)
b
FLCN gene Intron X-1 Intron X Intron X+1
- AG Exon GT = AG Exon GT _% Exon GT — AG Exon GT =
X-1 X X+1 X+2
mMRNA Exon | Exon | Exon
X-1 X X+2 ¢.397-10_397-1del (ref. 23)
€.397-7_399del (ref. 23)
¢.397-1G>C (ref. 24)
Exon X+1 ¢.1063-10_1065del (ref. 23)
skipping ¢.1063-2A>G (ref. 23)

c.1177-5_1177-3del (ref. 23)
c.1177-2A>G (ref. 25)
.1433-1G>T (ref. 23)

are exons and white boxes are introns. Each intron has guanine and

thymidine (GT) at the 5~end and adenine and guanine (AG) at the 3-end. A yellow notch indicates a mutated region of intron X. (@) Two patterns
of 5-end mutation, i.e, the present case and ref. [26], demonstrated intron retention. The latter noted the mutant cryptic. (b) Eight patterns of 3"-

acceptor sites may play critical roles for determining
mRNA processing. The possibilities of aberrant splicing
should be considered including condition-dependent pro-
cessing and cryptic splicing. Further study is needed to de-
termine whether splice-site mutations in other donor sites
also cause partial/complete intron retention or produce
exon-skipped mRNA in a condition-dependent manner.
Better understanding of mRNA processing from mutant
FLCN will contribute to medical care of BHD patients.

Additional file

Additional file 1: Figure S1. Amino acid sequence predicted by intron
retention. Colored nucleotides are exons 9 and 10, and gray nucleotides
starting from the mutated adenine (A, indicated by an arrow) are intron
insertions. The predicted amino acid sequence is noted below codons in
bold. A 130 bp intron retention leads to a frameshift from the beginning of
exon 10, which results in premature termination (indicated by a rectangle).
(PPTX 43 kb)
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