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African ancestry is associated with cluster-
based childhood asthma subphenotypes
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Abstract

Background: Childhood asthma is a syndrome composed of heterogeneous phenotypes; furthermore, intrinsic
biologic variation among racial/ethnic populations suggests possible genetic ancestry variation in childhood asthma.
The objective of the study is to identify clinically homogeneous asthma subphenotypes in a diverse sample of
asthmatic children and to assess subphenotype-specific genetic ancestry in African-American asthmatic children.

Methods: A total of 1211 asthmatic children including 813 in the Childhood Asthma Management Program and
398 in the Childhood Asthma Research and Education program were studied. Unsupervised cluster analysis on
clinical phenotypes was conducted to identify homogeneous subphenotypes. Subphenotype-specific genetic
ancestry was estimated for 167 African-American asthmatic children. Genetic ancestry association with subphenotypes/
clinical phenotypes were determined.

Results: Three distinct subphenotypes were identified: a moderate atopic dermatitis (AD) group with negative skin
prick test (SPT) and preserved lung function; a high AD group with positive SPT and airway hyperresponsiveness; and a
low AD group with positive SPT and lower lung function. African ancestry at asthma genome-wide association study
(GWAS) SNPs differed between subphenotypes (64, 89, and 94% for the three subphenotypes, respectively) and was
inversely correlated with AD; each additional 10% increase in African ancestry was associated with 1.5 fold higher in IgE
and 6.3 higher odds of positive SPT (all p-values < 0.0001).

Conclusions: By conducting phenotype-based cluster analysis and assessing subphenotype-specific genetic ancestry,
we were able to identify homogeneous subphenotypes for childhood asthma that showed significant variation in
genetic ancestry of African-American asthmatic children. This finding demonstrates the utility of these complementary
approaches to understand and refine childhood asthma subphenotypes and enable more targeted therapy.
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Background
Childhood asthma is a heterogeneous chronic airway
disease with various clinical phenotypes [1, 2]. Its pheno-
typic and biologic heterogeneity contributes to the chal-
lenges clinicians face in its diagnosis and effective
management [3]. It is therefore crucial to clearly define
subphenotypes of asthma with homogeneous clinical
characteristics in order to search for better asthma man-
agement and to develop novel therapeutic strategies. Al-
though a large number of clinical phenotypes are often
collected in childhood asthma studies, asthma genetic

study has been mostly focused on case-control disease
status. Such an endpoint-based analysis ignores the com-
plexity of asthma phenotype [4–6]. In addition, although
there is ample evidence for an intrinsic genetic variation
among racial/ethnic populations [7, 8] suggesting pos-
sible genetic ancestry variation in childhood asthma,
most genetic analyses rely on self-reported race thus do
not account for the potential contribution of genetic an-
cestry to disease variation in diverse populations.
An approach to overcome the phenotypic heterogen-

eity of childhood asthma is to identify homogeneous
subgroups by establishing either classical “endotype”,
based on experts’ criteria, or statistical phenotype clus-
tering on asthma clinical phenotypes. The latter has
been successfully applied to identify clinically relevant
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subgroups of asthmatics and other airway diseases [9–17].
However, these studies differ in some key elements: vari-
ation in phenotyping, analytical approaches used and the
patient population under study. These differences limit
the comparability of the identified subphenotypes and
pose difficulty in applying clustering results to individual
patients. Furthermore, little is understood regarding the
genetic ancestry of the identified subphenotypes.
The objective of the study is to investigate childhood

asthma phenotypic heterogeneity and genetic ancestry
variations and their relationships. Specifically, we used
childhood asthma data from the NIH controlled data-
base of Genotype and Phenotype (dbGaP) to identify
homogeneous subphenotypes, determine clinical pheno-
types, estimate subphenotype-specific genetic ancestry, and
analyze the relationship between ancestry and subpheno-
types using a stepwise approach incorporating cluster ana-
lysis, classification tree analysis, and genetic ancestry
analyses [9–16, 18, 19]. Our goal is to combine both clus-
ter and genetic ancestry to identify biologically-relevant
subphenotypes in childhood asthma.

Methods
Data
The database of Genotypes and Phenotypes (dbGaP) is
the repository for both genotype and phenotype data from
most NIH-funded GWAS and other whole-genome or ex-
ome sequence data. We used baseline data from the SNP
Health Association Resource (SHARe) Asthma Resource
Project (SHARP) (phs000166.v2.p1), the National Heart,
Lung, and Blood Institute’s clinical research trials on
asthma, specifically, the Childhood Asthma Management
Program (CAMP) and the Childhood Asthma Research
and Education (CARE) network. The CAMP is a multi-
center, randomized, double-masked clinical trial designed
to determine the long-term effects of three inhaled treat-
ments for mild to moderate childhood asthma [20]. The
CARE data evaluates current and novel therapies and
management strategies for children with asthma. Individ-
ual level data with asthma diagnosis is available for 1211
subjects through Authorized Access, including 813 in
CAMP and 398 in CARE.
An array of phenotypic variables have been harmo-

nized across the CAMP and CARE datasets, including
demographics and participant characteristics; intermedi-
ate asthma phenotypes such as lung function, skin prick
test (SPT), serum total immunoglobulin (IgE), and
atopic dermatitis (AD), as well as environmental expos-
ure. See Table 1 for a complete list of variables.
We downloaded CAMP and CARE genotype data

which were performed using 1 million single nucleotide
polymorphisms (SNPs) in the Affymetrix 6.0 chip and
stored in the database of dbGaP (accession number

phs000166.v2.p1). Quality control criteria included
minor allele frequency ≥ 0.05, Hardy-Weinberg equi-
librium (p ≥ 10− 5), ≤ 5% missing rate per person, ≤ 5%
missing rate per SNP, families with less than 5% Men-
del errors and SNPs with less than 10% Mendel error
rate [21].

Hierarchical cluster analysis (HCA)
HCA is a hypothesis free statistical method to group
subjects into relatively homogeneous sub-clusters ac-
cording to similarity quantification based on a set of
critical characteristic variables. The grouping is con-
structed such that the similarity is strong between mem-
bers of the same cluster and weak between members of
different clusters. The baseline phenotypic measures
listed in Table 1 were included in the cluster analysis. To
reduce collinearity, we examined the variables for abso-
lute correlation (> 0.80). We also assessed missing pat-
tern of the phenotypes and planned to exclude measures
with ≥10% missingness from the analysis. Blood eosino-
phils (EOS) and IgE were log transformed.
Since we have mixed types of variables, i.e., continuous

and categorical, Gower’s distance [22] was used as a
similarity index. To avoid inconsistent cluster solutions
due to changes in scale of the variables and heavy impact
of variables with larger standard deviations, Gower’s
standardization, based on the range, was applied. HCA
was then carried out with Ward’s minimum-variance
method [23]. Consensus between a pseudo F and a
pseudo t2 statistics [24, 25] was used to select the num-
ber of clusters. The number of clusters was also guided
by clinical characteristics in addition to statistical
considerations.
Descriptive statistics of all variables were obtained and

compared across clusters using analysis of variance,
Kruskal-Wallis, or Chi-square tests as appropriate. Con-
ditional inference trees [26], a non-parametric class of
regression trees that embeds tree structured regression
models into a well-defined theory of conditional infer-
ence procedures, was used to identify intermediate phe-
notypes that distinguish the subphenotypes. The cluster
analysis was first carried out on the CAMP data and re-
peated on the CARE data. Replication of the clustering
results was examined between the two studies as well as
with previously published studies.
Additional analyses were run to investigate if the sub-

phenotypes were associated with clinical outcomes. Two
clinical outcomes were examined, number of prednisone
bursts (an anti-inflammatory oral steroid medication)
since last visit, and number of ER visit or hospitaliza-
tions since last visit. Number of prednisone bursts since
last visit was modeled as a count variable using Poisson
regression with a random subject effect. Number of ER
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visit or hospitalizations since last visit was dichotomized
(given over 95% of the subjects did not had an ER visit
or hospitalization), and modeled using a logistic regression
with a random subject effect. Potential covariates included
age, sex, race, visit month, time since last visit, treatment,
and subphenotypes that were significantly associated with
the outcome (adjusted p-value < 0.05). All analyses were
run for CAMP and CARE data separately. All the above
analyses were conducted in SAS version 9.3 (SAS Institute
Inc., Cary, NC, USA) and R [27].

Genetic ancestry analysis
Genetic ancestry was estimated using both
genome-wide SNPs and asthma-specific GWAS SNPs
for African-American asthmatic individuals in CAMP
and CARE. Supervised approach in the ADMIXTURE
software program [28] was use to estimated global gen-
etic ancestry, where SNP data of 108 YRI (Yoruba in
Ibadan, Nigeria) and 99 CEU (Utah Residents (CEPH)
with Northern and Western Ancestry) individuals from
the 1000 Genomes Project were included as surrogates for

Table 1 Demographic, clinical phenotypes and environmental exposures of CAMP and CARE study participants

CAMP (N = 813) CARE(N = 398) p-value

Age, Mean (SD), years 8.9 (2.1) 10.6 (2.8) < 0.0001

Gender, No. (%) 0.8152

Male 500 (61.5) 242 (60.8)

Female 313 (38.5) 156 (39.2)

Race, No. (%) < 0.0001

Caucasian 557 (68.5) 215 (54)

African American 107 (13.2) 70 (17.6)

Hispanic 77 (9.5) 78 (19.6)

Other 72 (8.9) 35 (8.8)

BMIZ at baseline, Mean (SD) 0.5 (1.0) 0.8 (1.0) < 0.0001

Age of onseta, Mean (SD), years 3.0 (2.4) 3.7 (3.3) < 0.0001

FEV1 PC20 methb, Mean (SD), mg/ml 2.0 (2.4) 2.2 (3.1) 0.3602

FEV1 percent predictedc, Mean (SD) 93.4 (14.1) 97.1 (12.8) < 0.0001

FVC percent predictedd, Mean (SD) 103.7 (13.1) 106.7 (12.2) 0.0002

FEV1/FVC ratioe, Mean (SD) 79.6 (8.3) 80.1 (8.0) 0.2937

Bronchodilator percent changef, Mean (SD) 10.7 (9.9) 9.4 (8.4) 0.0236

Blood eosinophils, Mean (SD), mm3 485.7 (409.2) 408.8 (319.5) 0.0011

IgE, Mean (SD), ng/ml 1129.8 (2081.9) 330.6 (445.4) < 0.0001

Average AM peak flowg, Mean (SD), L/min 250.9 (64.4) 271.1 (92.4) < 0.0001

Average AM symptomsh, Mean (SD) 0.61 (0.45) 0.51 (0.40) < 0.0001

Environmental smokei, No. (%) 339 (41.7) 166 (41.7) 0.0256

In utero smokej, No. (%) 107 (13.2) 54 (13.6) 0.8060

Atopic dermatitisk, No. (%) 199 (24.4) 155 (38.9) < 0.0001

One or more positive SPTl, No. (%) 716 (88.1) 312 (78.4) 0.0002
aAge at first asthma symptoms
bThe dose of methacholine that is required to decrease FEV1 by 20%
cForced expiratory volume, the maximal amount of air one can forcefully exhale in one second converted to a percentage of normal based on one’s height,
weight, body composition, and race
dForced vital capacity, the amount of air a person can expire after a maximum inspiration second converted to a percentage of normal based on one’s height,
weight, body composition, and race
eAlso called Tiffeneau-Pinelli index, is a calculated ratio used in the diagnosis of obstructive and restrictive lung disease. It represents the proportion of a person’s
vital capacity that they are able to expire in the first second of expiration
fPost bronchodilator percent change from baseline: 100*(POSFEV - PREFEV)/PREFEV
gThe maximum flow rate generated during a forceful exhalation, starting from full lung inflation; average of daily measurements up to 4 weeks prior to visit with
a minimum of 7 days, recorded in daily diary card
hMaximum of daily wheezing and coughing then average of daily measurements up to 4 weeks prior to visit with a minimum of 7 days, recorded in daily
diary card
iEither parent smoked during trial or home exposure to smoke prior to trial enrollment
jMother smoked when pregnant with participant
kChild had atopic dermatitis for 2 years and was seen by a doctor for it
lOne or more skin prick test positive
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European and African ancestry. The reference populations
and the CAMP/CARE subjects shared 857,127 genetic
markers across all autosomes, which reduced to 225,374
SNPs after linkage disequilibrium (LD) pruning with win-
dow of 50 (kb), 10 kb window shift and a r2 value of 0.2.
Asthma GWAS SNPs, 157 in total, were retrieved from

the GWAS catalog [29] and STRUCTURE software [30]
was used to estimate African ancestry proportion at
asthma GWAS SNPs. CEU and YRI individuals from the
1000 Genomes Project were used as parental populations.
Correlations between genetic ancestry and the sub-

phenotypes derived by clustering and the discriminate
factors of the subphenotypes were examined using the
Kruskal-Wallis test, Wilcoxon rank-sum test, Spearman
correlation coefficient, or linear regression as appropriate.

Results
Participants from CAMP and CARE were different ex-
cept in sex, exposure to in utero smoking, PC20, and
FEV1/FVC ratio (Table 1). All pairwise Spearman correl-
ation coefficients were less than 0.60, except between

FEV1 percent predicted and FVC percent predicted
(0.71) and between FEV1/FVC and maximum broncho-
dilator percent change (− 0.65). No variables had more
than 10% of missing values.

HCA identified distinct subphenotypes
Clustering on CAMP cohort identified distinct
subphenotypes
Three clusters were identified from CAMP data
(Table 2). Members of cluster 1 had a moderate AD rate
(15.3%) and all but one had negative SPT (99%). This
group also had the lowest age at baseline, age at onset of
asthma, bronchodilator percent change, EOS, IgE level,
AM peak flow, and AM symptoms, and highest body
mass index z-sore (BMIZ), PC20, FEV1 percent pre-
dicted, and FEV1/FVC ratio. All these characteristics,
but BMIZ and AM symptoms, were statistically different
across the clusters at a significant level of 0.05. This is
the moderate AD group with negative SPT and pre-
served lung function.
Members of cluster 2 had a high rate of AD (97.7%)

and all had one or more positive SPT. This group also

Table 2 CAMP hierarchical clustering results

Cluster 1 (N = 98) Cluster 2 (N = 171) Cluster 3 (N = 544) p-value

Age (years) 7.8 (1.9) 8.7 (2.1) 9.2 (2.1) < 0.0001

Gender No. (%) 0.0675

Male 50 (51.0) 105 (61.4) 345 (63.4)

Female 48 (49.0) 66 (38.6) 199 (36.6)

Race No. (%) 0.0153

Caucasian 82 (83.7) 116 (67.8) 359 (66.0)

African American 9 (9.2) 25 (14.6) 73 (13.4)

Hispanic 5 (5.1) 12 (7.0) 60 (11.0)

Other 2 (2.0) 18 (10.5) 52 (9.6)

BMIZ 0.7 (1.0) 0.6 (1.1) 0.5 (1.0) 0.0929

Age of onset (years) 2.4 (2.2) 2.8 (2.2) 3.2 (2.5) 0.0017

FEV1 PC20 meth (mg/ml) 2.9 (2.8) 1.8 (2.2) 2.0 (2.4) 0.0005

FEV1 percent predicted 96.3 (14.5) 95.0 (14.5) 92.4 (13.9) 0.0117

FVC percent predicted 103.5 (14.3) 104.1 (13.6) 103.6 (12.7) 0.895

FEV1/FVC ratio 82.9 (7.0) 80.6 (8.2) 78.7 (8.3) < 0.0001

Bronchodilator percent change 7.3 (6.9) 11.4 (10.1) 11.1 (10.1) 0.0012

Blood eosinophils (mm3) 228.9 (197.9) 579.7 (442.4) 504 (408.8) < 0.0001

IgE (ng/ml) 200.5 (449.1) 1579 (2624.2) 1161 (2022.7) < 0.0001

Average AM peak flow (L/min) 230.9 (55) 249.8 (67.5) 254.8 (64.4) 0.0040

Average AM symptoms 0.52 (0.40) 0.61 (0.46) 0.63 (0.45) 0.100

Environmental smoke No. (%) 42 (42.9) 60 (35.1) 237 (44.1) 0.1291

In utero smoke No. (%) 19 (19.4) 11 (6.4) 77 (14.2) 0.0046

Atopic dermatitis No. (%) 15 (15.3) 167 (97.7) 17 (3.1) < 0.0001

Positive SPT No. (%) 1 (1) 171 (100) 544 (100) < 0.0001

Mean and SD for continuous variables and No. (%) for categorical variables
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had the highest EOS and IgE level, and lowest bron-
chodilator percent change among the 3 clusters. This
is the high AD group with positive SPT and airway
hyperresponsiveness.
Members of cluster 3 had the highest age at baseline

and age onset of asthma and lowest BMIZ. This group
had also the lowest FEV1 percent predicted and FEV1/
FVC ratio, and highest AM symptoms. Furthermore,
members of cluster 3 were mostly AD free and all had
one or more positive SPT, moderate EOS and IgE levels,
but lower lung function measures and higher AM symp-
toms compared to the other clusters. This is the low AD
group with positive SPT and lower lung function.

Clustering on CARE cohort replicated the subphenotypes
identified in CAMP
Three clusters were identified in CARE (Table 3). Mem-
bers of cluster 1 had a moderate rate of AD (35%) and
none of them had a positive SPT. This group also had
the lowest bronchodilator percent change, EOS, IgE,
AM peak flow, and lowest AM symptoms. All these
characteristics, but the last, were statistically different

across the clusters at a significant level of 0.05. This is
the moderate AD group with negative SPT and pre-
served lung function similarity identified in CAMP.
Members of cluster 2 had a high rate of AD (98.4%)

and one or more positive SPT (95.3%). This group also
had the highest EOS and IgE level among the 3 clusters.
This is the high AD asthma group with positive SPT and
airway hyperresponsiveness similarly identified in CAMP.
Members of cluster 3 had the highest age at baseline

and age onset of asthma, were mostly AD free (3.3%)
and all had one or more positive SPT (92.2%), had mod-
erate EOS and IgE levels, but higher AM symptoms
compared to the other clusters. This is the low AD
group with positive SPT and lower lung function simi-
larly identified in CAMP.

Atopic dermatitis status and SPT distinguished the
subphenotypes
Conditional inference trees analysis revealed that, in
both CAMP and CARE data, AD and one or more posi-
tive SPT were the top two variables that best discrimi-
nated the individuals into the subphenotypes (Fig. 1,

Table 3 CARE hierarchical clustering results

Cluster 1 (N = 60) Cluster 2 (N = 129) Cluster 3 (N = 209) p-value

Age (years) 10.1 (2.4) 10.1 (2.5) 11.0 (3.1) 0.0124

Gender No. (%) 0.1185

Male 30 (50) 77 (59.7) 135 (64.6)

Female 30 (50) 52 (40.3) 74 (35.4)

Race No. (%) 0.4519

Caucasian 40 (66.7) 67 (51.9) 108 (51.7)

African American 8 (13.3) 24 (18.6) 38 (18.2)

Hispanic 8 (13.3) 24 (18.6) 46 (22.0)

Other 4 (6.7) 14 (10.9) 17 (8.1)

BMIZ 0.9 (0.9) 0.8 (1.0) 0.8 (1.0) 0.5920

Age of onset (years) 3.6 (3.5) 3.1 (2.6) 4.1 (3.5) 0.0215

FEV1 PC20 meth (mg/ml) 3.3 (3.3) 1.6 (2.4) 2.3 (3.4) 0.0031

FEV1 percent predicted 97.2 (13.4) 96.3 (13.1) 97.6 (12.5) 0.655

FVC percent predicted 104.7 (10.7) 107.2 (12.5) 106.9 (12.3) 0.378

FEV1/FVC ratio 81.6 (8.5) 79.0 (8.0) 80.4 (7.9) 0.101

Bronchodilator percent change 6.7 (7.4) 9.9 (7.4) 9.8 (9.0) 0.0271

Blood eosinophils (mm3) 245.7 (211.5) 444.4 (322.1) 435.0 (330.2) < 0.0001

IgE (ng/ml) 63.5 (133.9) 424.5 (537.1) 347.4 (430.1) < 0.0001

Average AM peak flow (L/min) 255.4 (68.7) 258.6 (81.0) 283.3 (102.3) 0.0209

Average AM symptoms 0.43 (0.32) 0.50 (0.40) 0.53 (0.42) 0.202

Environmental smoke No. (%) 28 (46.7) 62 (48.1) 104 (49.8) 0.8985

In utero smoke No. (%) 1 (1.7) 18 (14.0) 35 (16.9) 0.0121

Atopic dermatitis No. (%) 21 (35) 127 (98.4) 7 (3.3) < 0.0001

Positive SPT No. (%) 0 (0) 123 (95.3) 189 (92.2) < 0.0001

Mean and SD for continuous variables and No. (%) for categorical variables
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prediction accuracy 95.8%). Given the consistent find-
ings across CAMP and CARE data, we combined the
two datasets and grouped the three clusters individually
identified in CAMP and CARE into three subpheno-
types. One subphenotype was the moderate AD group
with negative SPT and preserved lung function (subphe-
notype 1, n = 158), one was the high AD group with po-
sitive SPT and airway hyperresponsiveness (subphenotype
2, n = 300), and one was the low AD group with positive
SPT and lower lung function (subphenotype 3, n = 753).

Subphenotypes were associated clinical outcomes
Table 4 shows the association between the subpheno-
types and clinical outcomes. In CAMP data, the incident
rate of prednisone bursts since last visit for subpheno-
type 2 is 2.63 (1.45, 2.70) times the incident rate for sub-
phenotype 1, and the incident rate of prednisone bursts
since last visit for subphenotype 3 is 2.04 (1.56, 2.70)
times the incident rate for subphenotype 1. Also in
CAMP data, the odds of any ER visit or hospitalizations
since last visit for subphenotype 3 is 1.54 (1.01, 2.23)
times the odds for subphenotype 1. For CARE data, the
odds of any ER visit or hospitalizations since last visit
for subphenotype 2 is 0.32 (0.13, 0.98) times the odds
for subphenotype 1, and the odds of any ER visit or hos-
pitalizations since last visit for subphenotype 3 is 3.45
(1.47, 7.69) times the odds for subphenotype 2.

Genetic ancestry proportion varied at asthma GWAS SNPs
among asthma subphenotypes
The three subphenotypes had 15, 49, and 103 African
American individuals, respectively. Global African ances-
try proportion varies from 71.2 to 100% with mean
96.6% and standard deviation (SD) 7.2%. Higher global
African ancestry was associated with AD (mean ± SD of
African origin is 0.96 ± 0.08 for AD free vs. 0.98 ± 0.06
for AD subjects, p-value = 0.0294), but not with other
clinical phenotypes. Proportion of African ancestry at
asthma GWAS SNPs was correlated with the subpheno-
types (mean 64.9, 89.4 and 94.4% for subphenotypes 1,
2, and 3, respectively, p-value < 0.0001, Figs. 2 and 3(a)).
The subphenotypes were associated with lung function:
FEV1 percent predicted is 96.8 ± 14.1, 95.3 ± 13.9, and
93.9 ± 13.7 (p-value = 0.0083); and FEV1/FVC ratio is
81.9 ± 7.6, 80.5 ± 8.1, and 79.0 ± 8.2 (p-value < 0.0001)
for subphenotypes 1, 2, and 3, respectively. Furthermore,
African ancestry at asthma GWAS SNPs was inversely
associated with AD (median 0.95 with IQR (0.93, 0.95)
for AD free vs. 0.92 (0.89, 0.94) for AD subjects, p-value
< 0.0001, Fig. 3(b)). Additionally, genetic ancestry at
asthma GWAS SNPs was associated with positive SPT
with median and interquartile range (IQR) 0.94 (0.92,
0.95) for positive SPT individuals vs. 0.74 with IQR
(0.59, 0.78) for negative SPT individuals (p-value <
0.0001, Fig. 3(c)). The odds of one or more positive SPT

Fig. 1 Conditional inference tree analysis of the three subphenotypes. SPT and atopic dermatitis are the top two factors distinguishing
the subphenotypes. The prediction accuracy is 95.8%
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Table 4 Association between subphenotypes and number of prednisone bursts and any ER visit or hospitalizations since last visit

Number of prednisone bursts since last visit

CAMP

Predicted number of event Incident rate ratios

Subphenotype Estimate (95% CI) p-value Subphenotypes IRR (95% CI) p-value

1 0.10 (0.08, 0.13) < 0.0001 2 vs. 1 2.63 (1.45, 2.70) < 0.0001

2 0.20 (0.16, 0.24) 3 vs. 1 2.04 (1.56, 2.70) < 0.0001

3 0.20 (0.18, 0.22) 3 vs. 2 1.02 (0.83, 1.27) 0.8153

CARE

Predicted number of event Incident rate ratios

Subphenotype Estimate (95% CI) p-value Subphenotypes IRR (95% CI) p-value

1 0.08 (0.05, 0.14) 0.3534 2 vs. 1 0.93 (0.57, 1.54) 0.7880

2 0.08 (0.05, 0.12) 3 vs. 1 1.19 (0.76, 1.89) 0.4420

3 0.10 (0.07, 0.14) 3 vs. 2 1.28 (0.90, 1.82) 0.1666

Any ER visit or hospitalizations since last visit

CAMP

Predicted probability Odds ratios

Subphenotype Estimate (95% CI) p-value Subphenotypes OR (95% CI) p-value

1 0.03 (0.02, 0.04) 0.1232 2 vs. 1 1.52 (0.95, 2.44) 0.0776

2 0.04 (0.03, 0.05) 3 vs. 1 1.54 (1.01, 2.33) 0.0434

3 0.04 (0.03, 0.04) 3 vs. 2 1.01 (0.75, 1.37) 0.9474

CARE

Predicted probability Odds ratios

Subphenotype Estimate (95% CI) p-value Subphenotypes OR (95% CI) p-value

1 0.02 (0.01, 0.05) 0.0155 2 vs. 1 0.35 (0.13, 0.98) 0.0458

2 0.01 (0.004, 0.02) 3 vs. 1 1.20 (0.56, 2.63) 0.6296

3 0.03 (0.02, 0.04) 3 vs. 2 3.45 (1.47, 7.69) 0.0039

Fig. 2 Population ancestry estimates of African American asthmatic individuals in CAMP and CARE at asthma GWAS SNPs by subphenotypes.
Dashed lines indicate average proportions of African ancestry proportion at the asthma GWAS SNPs. Ibadan, Nigeria (YRI) and northern and
western European (CEU) from the 1000 Genomes project were used as parental populations
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was 6.3 higher (95% confidence interval: (3.4, 13.8),
p-value < 0.0001) with each additional 10% of African
origin at asthma GWAS SNPs. African origin at asthma
GWAS SNPs was also associated with IgE levels (Spear-
man correlation coefficient = 0.27, p-value = 0.0004) and
IgE was 1.5 fold higher with each additional 10% of Afri-
can origin (Fig. 3(d)).

Discussion
Current clinical practice in childhood asthma treatment
tends to use average patient care strategies. Such a “one
size fits all” treatment approach faces major challenges
when it is becoming clearer that childhood asthma is
heterogeneous in pathogenesis. Our unbiased cluster
and genetic ancestry analyses pointed toward three dis-
tinct phenotypic clusters with differences in clinical
characteristics, genetic ancestry, and clinical outcomes,
underscoring the clinical and genetic heterogeneity of
asthma [10, 13, 17, 31]. Previous studies have also identi-
fied clusters with atopic or non-atopic asthma, clusters
with preserved or lower lung function, and clusters with
mild asthma [13, 14, 32]. It is reassuring that the two in-
dependent studies replicated the clustering results and
there are similarities with previous clustering-based
childhood asthma subphenotypes.
We determined genetic ancestry [33] using genome-wide

SNPs and asthma GWAS SNPs for African-American
asthmatic individuals in CAMP and CARE data. Our esti-
mate of African global ancestry in asthmatic children is
higher than what has been reported in different general
populations confirming the higher prevalence of asthma in
individuals with higher African ancestry than others. Our
results showed that genetic ancestry at asthma GWAS
SNPs differed between the childhood asthma subpheno-
types and was associated with lung function, SPT, IgE
levels, and AD. Previous studies have also showed associ-
ation between genetic ancestry and asthma prevalence and
related clinical phenotypes [34–42]. To our best

knowledge, our study is the first to show the association
between genetic ancestry at asthma GWAS SNPs and
cluster-based subphenotypes in childhood asthma. Lever-
aging ancestry and cluster analyses to derive genetic and
phenotypic homogeneity subgroups in childhood asthma
demonstrates the utility of these approaches to
characterize and understand the complexity of asthma to-
wards individual based precision medicine strategies.
This study demonstrates that genetic ancestry at

asthma GWAS SNPs is more strongly associated with
asthma subgroups sharing similar clinical characteristics
compared to broadly defined asthma. The results suggest
that validation of genetic studies are more likely to be
successful for replication studies carried-out in more
homogeneous asthma cohorts (sharing similar clinical char-
acteristics) compared to the multifactorial case-control sta-
tus. In addition, the results indicate that ancestry-specific
genetic loci of asthma are likely to be found by focusing on
better defined asthma patients. Furthermore, genetic ances-
try analysis in homogeneous asthma subgroups is suitable
to refine the biological role of asthma susceptibility variants
from GWAS studies in a given phenotype. For example,
SNPs at STARD3/PGAP3 are strongly associated with the
high atopic dermatitis subgroup suggesting that STARD3/
PGAP3 may act on the allergic component of asthma [43].
Another example is that ORMDL3/17q locus is associated
with asthma in multiple studies in the European ancestry
but not in African ancestry asthmatic individuals [44]. We
also investigated associations between asthma GWAS SNPs
with the identified subphenotypes in CAMP and CARE
data (methods and results in Additional file 1: Table S1).
Several significant associations were identified at p = 0.05,
but none after multiplicity adjustment, possibly due to
small sample size and limited statistical power.
Our study had several limitations. First, participants in

CAMP and CARE represent studies of childhood
asthma, thus the results herein may not be applicable to
adulthood asthma. Second, although we identified

Fig. 3 Boxplots and scatterplot of proportions of African ancestry at the asthma GWAS SNPs by: a subphenotypes, b Atopic dermatitis status,
c SPT, and d IgE levels
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clinically relevant subphenotypes of childhood asthma
using clinical phenotypes [45], the integration of this re-
sult with molecular and physiologic phenotyping may help
to better understand childhood asthma pathogenesis for
possibly more personalized therapeutic strategies. Further-
more, subgroup analyses of asthma may limit sample sizes
and impair statistical power. However, given asthma is a
highly heterogeneous phenotype, studying homogeneous
subgroups of asthma patients not only recovers power
limitation, but achieves more statistically significant re-
sults. Classifying asthma patients in more homogenous
groups may help us to identify new susceptibility or modi-
fying subphenotype-specific genes. Our ability to better
define subtypes might help to predict who may respond to
treatment vs subjects who may not. Future studies need to
elucidate the mechanisms that distinguish each ancestral
and clinical clusters to facilitate the development of tar-
geted therapies and providing personalized treatments.
The present study has notable strengths. First, we were

able to dissect childhood asthma heterogeneity into sub-
phenotypes using cluster analysis of clinical phenotypes
in one study and replicate the findings in an independ-
ent study. Second, we were able to show associations be-
tween the identified subphenotypes with asthma clinical
outcomes. Third, analysis of genetic ancestry at asthma
GWAS SNPs in childhood asthma clinical phenotypes
provide biologically relevant subphenotype-specific re-
sults. Lastly, our study used a more accurate and direct
assessment of genetic ancestry instead of self-reported
race to determine the relationship between ancestry and
childhood asthma subphenotypes and relevant clinical
phenotypes. Studies have shown that people with the
same self-reported race could have drastically different
levels of genetic ancestry, and self-reported race may not
be as accurate as direct assessment of genetic ancestry
in predicting treatment outcomes [33]. Future studies to
identify genetic ancestry-specific variants associated with
a specific subphenotype are important as we move to-
wards applying precision medicine paradigm. The find-
ing indicates that African genetic ancestry at asthma
GWAS SNPs are differentially associated with the
asthma clinical subphenotypes. Unraveling the reasons
why individuals with higher African origin at asthma
GWAS SNPs had higher IgE level or rate of positive
SPT is necessary to determine the potential clinical ap-
plications of our findings. In addition, genetic analysis
based on more refined phenotypes may increase the stat-
istical power and allow for the detection of population
structure-specific phenotype-genotype associations that
are undetectable otherwise.

Conclusions
In conclusion, through our systematic clinical phenotype
analysis, we identified distinct subphenotypes for

childhood asthma using cluster analysis. Further genetic
ancestry analysis showed correlations between African
ancestry at asthma GWAS SNPs and childhood asthma
subphenotypes and related clinical outcomes. Our re-
sults demonstrated that cluster analyses on clinical phe-
notypes followed by ancestry analysis can enhance the
understanding of the phenotypic and genetic heterogen-
eity of childhood asthma. Our approach is distinct from
previous efforts in that we developed cluster-based sub-
phenotype and applied genetic ancestry analysis to de-
fine subphenotype-ancestry relationships which can be
subsequently used as the basis of genetic ancestry based
clinical risk prediction. Our findings suggest that defin-
ing asthma heterogeneous subgroups on the basis of
clinical phenotypes and genetic ancestry proportion is
an essential step to understand and refine patient sub-
sets and enable more targeted therapy.

Additional file

Additional file 1: Table S1. Association between asthma GWAS SNPs
and subphenotypes. This file contains association results between asthma
GWAS SNPs with the identified subphenotypes in CAMP and CARE data.
(DOCX 24 kb)
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