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Abstract

Background: With the expanding use of next-gen sequencing (NGS) to diagnose the thousands of rare Mendelian
genetic diseases, it is critical to be able to interpret individual DNA variation. To calculate the significance of finding
a rare protein-altering variant in a given gene, one must know the frequency of seeing a variant in the general
population that is at least as damaging as the variant in question.

Methods: We developed a general method to better interpret the likelihood that a rare variant is disease causing if
observed in a given gene or genic region mapping to a described protein domain, using genome-wide
information from a large control sample. Based on data from 2504 individuals in the 1000 Genomes Project dataset,
we calculated the number of individuals who have a rare variant in a given gene for numerous filtering threshold
scenarios, which may be used for calculating the significance of an observed rare variant being causal for disease.
Additionally, we calculated mutational burden data on the number of individuals with rare variants in genic regions
mapping to protein domains.

Results: We describe methods to use the mutational burden data for calculating the significance of observing rare
variants in a given proportion of sequenced individuals. We present SORVA, an implementation of these methods
as a web tool, and we demonstrate application to 20 relevant but diverse next-gen sequencing studies. Specifically,
we calculate the statistical significance of findings involving multi-family studies with rare Mendelian disease and a
large-scale study of a complex disorder, autism spectrum disorder. If we use the frequency counts to rank genes
based on intolerance for variation, the ranking correlates well with pLI scores derived from the Exome Aggregation
Consortium (ExAC) dataset (ρ = 0.515), with the benefit that the scores are directly interpretable.

Conclusions: We have presented a strategy that is useful for vetting candidate genes from NGS studies and allows
researchers to calculate the significance of seeing a variant in a given gene or protein domain. This approach is an
important step towards developing a quantitative, statistics-based approach for presenting clinical findings.
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Background
Whole-exome sequencing has enabled the identification of
causal genes responsible for causing hundreds of rare, Men-
delian disorders in just a few years; however, there remain
hundreds, if not thousands, more to be uncovered. The
genetic basis has been determined for 4803 of the rare dis-
eases [1], whereas the number of disease phenotypes with a

known or suspected Mendelian basis lies close to 6419
based on data in Online Mendelian Inheritance in Man
(OMIM) [1]. Next-gen sequencing (NGS) studies are cer-
tain to uncover many disease-phenotype relationships in
the near future, but for cases involving rare diseases with
limited sample sizes, determining causality between pheno-
types and novel genes, and distinguishing true pathogenic
variants from rare benign variants remains a challenge.
Often disease causality of a given rare variant is only clear
when additional affected individuals with similar rare vari-
ants in the same gene are identified, which can take years
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to occur due to the rarity of these disorders. Thus, im-
provements in determining disease causality or likely
pathogenicity would greatly enhance efforts to prioritize
genes and gene variants for further molecular analysis, even
if only a single affected individual was identified.
Variants identified through broad based NGS technolo-

gies are typically classified as pathogenic, likely patho-
genic, variant of uncertain significance (VUS) or likely
benign according to multiple criteria, largely based on
prior knowledge about the specific variant. Novel variants
are evaluated individually and placed into discrete categor-
ies if they meet complex combinations of criteria, which
include thresholds for allele frequency, segregation, num-
ber of affected unrelated individuals, and known func-
tional relevance [2, 3]. For example, a variant would be
deemed pathogenic if the allele frequency threshold falls
below a given threshold and the variant segregates with a
disorder in at least two unrelated affected families, or if
other criteria are met. In brief, variants are evaluated indi-
vidually based on variant-specific annotations.
An additional source of information that would aid in

variant prioritization would be a gene-specific annotation
describing mutational burden in the overall population.
To illustrate, consider a gene that has very few functional
variants in the general population, and several unrelated
patients were found to carry distinct protein-altering, rare
missense or potential loss-of-function (LOF) variants in
the given gene and within a highly conserved protein do-
main. Under a model for a rare Mendelian disorder
caused by highly penetrant variants, we assume that com-
mon variants cannot be considered causal, and rare vari-
ants in genes intolerant of mutations are deemed highly
suspicious of being causal for disease even if no other in-
formation is known about the variants. Therefore, know-
ing the population-wide mutational burden of a given
gene for rare variants would be informative.
While there are gene-ranking methods based on other

parameters [4], recently several gene-level ranking sys-
tems have emerged based on measures for intolerance to
mutations in the general population. The Residual Vari-
ation Intolerance Score (RVIS) generates a score based
on the frequencies of observed common functional cod-
ing variants compared to the total number of observed
variants in the same gene or protein domain [5, 6]. A
second ranking system, in addition to these parameters,
also incorporates the frequency at which genes are found
to be affected by rare, likely functional variants, and
their findings suggest that disease associations to genes
which frequently contain variants, termed as FLAGS,
should be evaluated with extra caution [7]. Next, the Ex-
ome Aggregation Consortium (ExAC) dataset provides
missense Z scores that describe the degree to which a
gene is depleted of missense and LOF variants compared
to expected values. They base expected values on the

frequency of synonymous variants, and provides pLI
scores that describe probabilities of a gene being LOF
intolerant [8, 9]. Of these two metrics, pLI is less corre-
lated with coding sequence length and outperforms the
Z score as an intolerance metric [8]. Another method,
EvoTol, combines genic intolerance with evolutionary
conservation of whole protein sequences or their con-
stituent protein domains to prioritize disease-causing
genes, and extends the RVIS method by leveraging the
information on protein sequence evolution to identify
genes where the number of mutations that are likely to
be damaging based on evolutionary protein information
is higher than expected [10]. Although these methods
may be useful in ranking genes and prioritizing variants
in order to highlight those in genes that frequently con-
tain variants, neither results in a score that is directly in-
terpretable in order to calculate statistics about NGS
findings and determine the significance of seeing a vari-
ant in a given number of affected individuals.
One tool that calculates a P-value of finding a true as-

sociation through clinical exome sequencing, RD-Match
[11], allows researchers to calculate the probability of
finding phenotypically similar individuals who share var-
iants in a gene through systems such as Matchmaker Ex-
change. The tool incorporates the probability of an
individual having a rare, nonsynonymous variant in a
gene by taking the sum of the allele frequencies of all
rare (MAF < 0.1%) nonsynonymous variants annotated
in ExAC [8]. With higher MAF thresholds and large
population sizes, this is problematic because an individ-
ual may have multiple variants in a gene that frequently
contains rare variation, causing one to overestimate the
fraction of the population carrying rare variants in the
gene, hence the fixed, low MAF threshold. Furthermore,
this tool is applicable to studies in which the affected in-
dividuals are selected based on phenotype as well as the
prior knowledge that they share rare variants in a given
gene. Finally, RD-Match does not allow researchers to
customize variant filtering thresholds according to the
disease model with regards to minor allele frequency or
predicted consequence such as LOF or missense variant.
Another method that calculates the significance of NGS

findings, the Transmission And De novo Association test
(TADA), is a Bayesian model that combines data from de
novo mutations, inherited variants in families, and vari-
ants in cases and controls in a population [12]. This
method has been used to identify risk-conferring genes in
whole-exome sequencing studies of autism spectrum dis-
orders and neurodevelopmental delay [13–15]. While
TADA analysis has proven to be a critical first step in the
development of quantitative methods to assess risk genes,
it is restricted to integrating trio and case-control data
and is unable to leverage information from larger pedi-
grees, and whether siblings or distantly related individuals
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share the variants observed in the proband. Also, it does
not incorporate any information from large reference
datasets, and therefore, it cannot be used for calculating
the P-value of findings in smaller studies.
Here we describe a method, named SORVA for Signifi-

cance Of Rare VAriants, for ranking genes based on muta-
tional burden. In addition to incorporating information
from variant allele frequencies, we use population-derived
data to precompute an unbiased, easily interpretable
score, which allows one to calculate the significance of ob-
served and novel rare variants and their potential for be-
ing causal of disease. One may then answer the question:
what is the probability of observing missense variants in
three out of ten unrelated affected individuals, for ex-
ample, given that only one in a thousand individuals in
the general population carry a missense variant in the
gene? Essentially, a model can be constructed to estimate
the probability of drawing n unrelated families with simi-
lar biallelic genotypes by chance from the general popula-
tion [16]. Conversely, if one has a large list of variants of
unknown significance, the significance level may be useful
in prioritizing variants within the same category of patho-
genicity, and in improving the interpretation of variants in
studies of Mendelian genetic disorders.

Results
For calculating the significance of seeing variants within a
gene when sequencing multiple individuals affected for a
rare, presumably Mendelian disorder, we first calculated the
frequency of observing a variant in each gene in an individ-
ual within the population by using a large control dataset
and collapsing variants in each gene. Calculations are based
on data from 2504 individuals in the 1000 Genomes Project
phase 3 dataset, which includes targeted exome sequencing
data (mean depth = 65.7×) from individuals from five
“superpopulations” (European, African, East Asian, South
Asian, and ad-mixed American) [17]. We repeated the ana-
lysis for variants filtered according to various minor allele
frequency and protein consequence thresholds that re-
searchers may use when filtering variants. First, we filtered
out common variants that met various minor allele fre-
quency (MAF) thresholds used in the literature and others:
5, 1, 0.5, 0.1 and 0.05%. We then filtered rare variants ac-
cording to two scenarios before collapsing variants across
genes: 1) we included all protein-altering variants, i.e. those
that cause a nonsynonymous change in the protein tran-
script or have a potential loss-of-function (LOF) conse-
quence, and 2) we filtered for LOF variants only, i.e. splice
site, stop codon gain and frameshift variants.
Below, we present general findings in population

and molecular genetics that can be gleaned from the
dataset, and illustrate how the dataset can be used in
multiple studies, as a control group to vet candidate
genes and variants.

Population differences
Of 18,877 genes that are in the union of the Ensembl
and RefSeq gene sets, most genes contained heterozy-
gous or homozygous missense variants in individuals in
all populations; only 2.3% contain no rare variants
(MAF < 5%), and 1.0% of genes have an identified variant
in only a single population. Lowering our MAF thresh-
old does not decrease the number of genes much. Al-
though, filtering variants to include only LOF variants
reduces the number of genes containing variants in the
dataset to 9641, or 51.1% of genes in the dataset. (Fig. 1)
These results demonstrate that choosing the correct
MAF threshold is not nearly as important as identifying
the correct protein consequence threshold to use when
filtering variants. For instance, including all missense
variants when LOF variants are generally causal for a
given disease would reduce power to detect the gene as-
sociated with the disease.
The number of individuals who carried a heterozygous

or homozygous variant in a given gene was generally
higher in the African population compared to other pop-
ulations (Fig. 2a), which is expected given that African
individuals are observed to have up to three times as
many low-frequency variants as those of European or
East Asian origin [17], which reflects ancestral bottle-
necks in non-African populations [18]. Conversely, re-
garding genes for which the number of individuals with
a rare variant in the gene differed between populations,
the genes having the greatest difference between popula-
tions tended to diverge most in the African population.
(Fig. 2b) Genes whose mutational burden diverges most
between populations are significantly enriched for a
large number of biological functional terms, including
glycoprotein, olfactory transduction and sensory percep-
tion, cell adhesion, various repeats, basement membrane
and extracellular matrix part, cadherin, microtubule
motor activity, immunoglobulin and EGF-like domain. It
is important to note differences between populations,
because, in many cases, researchers would be advised to
use control populations similar to their study popula-
tion. However, if a gene is associated with a severe,
childhood-onset disorder in one population, it is likely
to be associated with disease in other populations, as
well, and knowledge that a gene frequently contains vari-
ation in African populations would be useful in prioritiz-
ing candidate genes even if one is studying variation in
another population. In this case, such information would
point towards reduced likelihood for disease association.

Properties of known disease genes
To determine whether calculating the frequency of indi-
viduals who have a rare variant in a given gene in the
general population may be helpful in determining which
genes are more likely to cause disease, we compared the
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counts between multiple categories of genes: a) “essen-
tial” genes, defined as genes essential for cell survival in
human cell lines, b) genes in which variants are known
to cause autosomal dominant disorders, c) genes in
which variants are known to cause autosomal recessive
disorders, d) genes in which variants are known to cause
X-linked disorders, and e) all other genes. As expected,
fewer individuals carry rare, protein-altering or LOF var-
iants in genes known to cause Mendelian disorders com-
pared to other genes, and genes associated with X-linked
disorders tend to be least tolerant of mutations (Fig. 3;
Additional file 1). Although frequency counts overlapped
between gene categories for every variant filtering

threshold, clusters were most differentiated when plot-
ting the proportion of individuals who are heterozygous
for rare LOF variants in a gene. Furthermore, the differ-
entiation between clusters increased as the MAF thresh-
old became more stringent, as the datasets became
enriched for deleterious variants that can only subsist at
a low allele frequency in a population due to selective
pressure. (Additional file 1).
Previous research suggests that 2.0% of adults of Euro-

pean ancestry and 1.1% of adults of African ancestry can
be expected to have actionable highly penetrant patho-
genic (including novel expected pathogenic) or likely
pathogenic single-nucleotide variants (SNVs) in 112

a b

Fig. 2 Population differences between the number of individuals mutated for a gene between populations. a Each data point in the histogram
represents the proportion of individuals within a population who are heterozygous or homozygous for an uncommon (MAF < 5%) missense
variant in a given gene. b The number of individuals carrying uncommon variants in a gene differs between populations. We plotted the
variance of the count for each gene and colored high-variance genes to denote which population differed most from the mean

a b

Fig. 1 The proportion of genes (n = 18,877) containing rare variation in individuals in various populations. A gene was considered mutated if at
least one individual was heterozygous or homozygous for an uncommon or rare (MAF < 5%) variant anywhere in the gene. Variants were filtered
by predicted consequence for (a) protein-altering (missense or potential loss-of-function) variants, or (b) potential loss-of-function variants only.
Abbreviations: EUR, European. AFR, African. EAS, East Asian. SAS, South Asian. AMR, ad-mixed American
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medically actionable genes [2]. If we look for rare vari-
ants in 1000 Genomes Project individuals—benign as
well as pathogenic variants—, we find that a larger pro-
portion of 1000 Genomes Project individuals—5.8% of
European individuals and 3.3% of African individuals—
are heterozygous or homozygous for extremely rare
(MAF < 0.0005) LOF variants in these 112 genes,
highlighting the large number of benign variants that are
found in the population at low allele frequencies and
should be filtered out by manual curation.

Depletion of variants in regions mapping to specific
protein domains
It has been suggested previously that collapsing variants by
protein domain could lead to improved gene-based intoler-
ance scoring systems, as certain regions of the gene could
be much more constrained than others [5]. We incorpo-
rated data for 322,772 protein domains from Interpro [19]
and calculated the average number of individuals who have
a variant in any given type of protein domain (Add-
itional file 2), after filtering for rare (MAF < 0.5%), heterozy-
gous LOF variants. Protein domains that are highly
constrained, well covered during exome sequencing and
rarely contain variants despite their large size include the
Family A G protein-coupled receptor-like protein domain
(Superfamily: SSF81321), which is found in 660 genes and
has a mean length of 965 base pairs; none of the 2504

individuals carry rare variants in the region mapping to this
protein domain. Other highly constrained protein domains
that occur throughout the human genome include Glu-
tamic acid-rich region profile (PfScan: PS50313),
Proline-rich region profile (PfScan:PS50099), Immuno-
globulin (Superfamily: SSF48726), and Cysteine-rich region
profile (PfScan: PS50311). (Additional file 2) If an NGS
study finds that affected individuals have rare variants in
variation intolerant protein domains such as those listed, the
variants would become highly suspicious of being causal.
We also calculated whether specific genes contain protein

domains that are significantly depleted of variation, given
the frequency of variants in the gene overall. Filtering out
protein domains in genes with no variants and those with
missing information reduced the dataset to 67,138 protein
domains in 7004 genes. 77 protein domains in 26 genes
were significantly depleted of variation compared to the rest
of the gene. Specifically, the number of rare (MAF < 0.5%),
heterozygous LOF variants per individual in a protein do-
main were significantly lower than expected after correcting
for multiple testing by the number of genes. (Fig. 4) Func-
tional enrichment analysis in DAVID revealed that the most
significant biological functions in the gene list were related
to tubulin-tyrosine ligase activity (P = 0.015), and G-protein
coupled receptor, rhodopsin-like superfamily (P = 0.05). De-
pletion values for all protein domains may be found in
Additional file 3. Information about whether a protein do-
main is significantly depleted of variation despite being in a
gene with frequently observed variation may be useful in
distinguishing between pathogenic and benign rare variants
within genes containing regions under different degrees of
evolutionary constraint.

Significance of findings in multi-family studies of rare
genetic disorders
Below, we present methods for multiple study designs to
calculate the significance of observing a given variant in a
given gene. In the simplest case, a study involving a single
family, calculating the P-value is relatively simple. Consider
a case of a severe, pediatric-onset Mendelian disorder, in
which both parents and the affected child are sequenced to
identify the causal variant. If only de novo variants are iden-
tified within a putative gene, one can easily estimate the
probability of at least one de novo mutation occurring in a
gene by random chance; one could multiply the per-base
mutation rate by the length of the gene transcript and make
adjustments to account for CpG content related variation
in mutation rates (Additional file 4).
In studies that identify both de novo and inherited var-

iants in more complex family structures, calculating the
significance of a variant is more complex. First, we
generalize the equation for calculating the significance of
observing a de novo mutation in a gene for studies in-
volving multiple families. If multiple families are

Fig. 3 The number of individuals heterozygous for a rare (MAF <
0.5%) potentially LOF mutation in a gene. Each data point represents
a single gene, mutated in the aggregate population (n = 2504
individuals). Genes are grouped according to whether they are an
essential gene, or are known to cause autosomal dominant,
autosomal recessive or X-linked disease. Colored shapes indicate the
centroids of each group. Abbreviations: nonsyn, nonsynonymous.
LOF, loss-of-function. AD, autosomal dominant. AR, autosomal
recessive. XL, X-linked
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sequenced, the P-value of observing independent de
novo events in the same gene in s out of n individuals is

P ¼ 1−BinomCDF s−1; n; ltxdcð Þ

where ltx is the length of the transcript in nucleotide
bases and d is the mean rate of de novo
single-nucleotide variants (SNVs) arising per nucleotide
per generation, c is the fraction of de novo events that
meet our protein consequence threshold—2.85% if we
consider only splice site altering or nonsense events, and
70.64% if we consider all protein-altering events, i.e.
missense or LOF variants [20]—, and BinomCDF de-
notes the binomial cumulative distribution function.
Consider the following example.
Clinical exome sequencing in four independent families

identified de novo nonsense mutations in the gene KAT6A
in all probands displaying significant developmental delay,
microcephaly, and dysmorphism [21]. De novo nonsense
mutations arising in this gene in all four individuals is
highly unlikely by chance (P = 2.66 × 10− 12), and the stat-
istical findings would support KAT6A as highly suspicious

for causing the disorder. Further experiments and the
identification of multiple other affected individuals by a
separate study [22] confirmed this result.
If inherited variants are also observed in a gene, calcu-

lating the statistical significance of findings requires in-
corporating information about the number of individuals
who carry a variant in the particular gene in the general
population. The frequencies of the number of individuals
who contain rare variants in a given gene or protein do-
main for various filtering thresholds may be queried
through our online database called SORVA (https://sor
va.genome.ucla.edu). (Additional file 5) Researchers can
select the variant filtering thresholds identical to those
used in hard filtering variants in a given study. Minor al-
lele frequency thresholds range from 5%, useful for stud-
ies involving more common, complex disorders where
less stringent filtering criteria are used, to 0.05% for
studies involving extremely rare disorders. For genes that
are rarely mutated, based on the expected number of in-
dividuals who carry a variant in the gene or protein do-
main in question, one can also calculate the significance
of seeing the observed number of singletons (variants

Fig. 4 Depletion of rare, heterozygous LOF variants in regions mapping to protein domains. We plotted scaled protein domain depletion scores
for each domain mapping within a gene; high scaled scores indicate that a protein domain is depleted of rare (MAF < 0.5%) mutations compared
to the rest of the gene. Darkened points above the red dashed line represent protein domains that are significantly depleted of mutations after
correcting for the number of genes remaining after filtering. Larger points indicate protein domains with a greater length in proportion to the
transcript length. Points are colored if the protein domain is within a gene that is an essential human gene or is causal for a Mendelian disorder.
Abbreviations: AD, autosomal dominant. AR, autosomal recessive. XL, X-linked
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observed in a single independent individual), doubletons
(variants observed in two individuals within a single
family) or more complex cases as follows.
Let fhom be the fraction of individuals in the general

population with a homozygous variant in a gene or pro-
tein domain. Then, the P-value of seeing k individuals
with a homozygous variant, out of n total unrelated af-
fecteds is

Pk;n ¼ 1−BinomCDF k−1; n; f homð Þ
where BinomCDF denotes the binomial cumulative

distribution function.
If we sequence multiple individuals within a family, we

can calculate the P-value of observing a given number of
individuals with a variant in a gene under the following
assumptions: 1) the gene rarely contains variants in the
population, i.e. fhom and fhet are small, and in this case,
fhom ≈ fhet; and 2) the shared alleles within a family are
shared identical-by-descent (IBD).
If we sequence full siblings, the P-value of seeing k sib

pairs who share homozygous variants in a given gene,
out of n total sib pairs is

Pk;n ¼ 1−BinomCDF k−1; n; ¥ f homð Þ
Another common scenario when sequencing individ-

uals to determine the cause of an autosomal recessive
disorder is to sequence distantly related affecteds in a
pedigree with consanguineous marriages. In this case,
the probability P that two sequenced individuals will
share a homozygous can be calculated based on the
pedigree structure and the corresponding path diagram,
and the P-value becomes

Pk;n ¼ 1−BinomCDF k−1; n; f het ½ð ÞE−1
� �

where E is the number of independent edges in the
paths connecting the two sequenced individuals through
a single common ancestor. (Additional file 4).
If the affected individuals are heterozygous for the pu-

tative variants, the P-value is.

Pk;n;r ¼ 1−BinomCDF k−1; n; rf bothð Þ
where r is the coefficient of relationship [23] or the

fraction of the genome shared between affected family
members, and fboth is the probability of an individual
having either a heterozygous or homozygous variant in
the gene of interest.
If multiple families and unrelated individuals had been

sequenced with different degrees of relatedness, the
P-value can be obtained by assuming that the control
population is a pool of families with similar pedigree
structures, calculating the probabilities of observing a
combination of results that is at least as extreme as

the current observation, and taking the sum of these
probabilities.
To illustrate, consider that we have sequenced inde-

pendent cases and sib pairs with a rare, autosomal dom-
inant Mendelian disorder, and we observed that k of n
independent cases (singletons) and j of m sib pairs (dou-
bletons) have heterozygous variants in a given gene. We
can calculate the probability Pn,m,k,j of observing exactly
this number of successes based on the proportion of in-
dependent cases versus sib pairs and knowledge of the
fraction of individuals heterozygous for rare variants in a
given gene, fhet. As an example, assume that we have se-
quenced two unrelated cases and four sib pairs concord-
ant for disease status. After variant filtering, we note
that three sib pairs and one unrelated case carry rare
variants in the same gene. Then, we calculate the prob-
ability of observing any of the more extreme possible
outcomes: observing 2 singletons and 3 sib pairs, 2 sin-
gletons and 4 sib pairs, or 2 singletons and 4 sib pairs
who have heterozygous variants in the given gene. Then,

P ¼ P2;4;1;3 þ P2;4;2;3 þ P2;4;2;4 þ P2;4;1;4

The formula for calculating Pn,m,k,j can be found in
Methods, and detailed derivations of this and other
equations can be found in Additional file 4. The a priori
probability p, i.e. values for fhet, fhom, and fboth for any
given gene, can be queried from the SORVA dataset on-
line, and standalone computer software for obtaining p
and calculating P-values based on the methods described
herein is also available on our website.

Significance of findings in large-scale studies of complex
disorders
In complex disorders where most of the genes contribut-
ing to risk remain unknown, our dataset may be used to
provide additional evidence supporting novel gene find-
ings and provides a simple method to calculate the sig-
nificance of observing variants in a given gene in a
large-scale study. As an example, several large-scale
whole-exome sequencing (WES) studies have been car-
ried out to-date in trios and quads to elucidate causal
genes underlying autism spectrum disorders (ASD) [24–
29]. However, genes identified as containing de novo
variants rarely overlap between studies, raising the ques-
tion of how many genes are truly causal and how likely
genes are to be identified as associated with autism by
chance in these studies as well as others. We assessed
the number of individuals carrying rare (MAF < 0.1%),
heterozygous LOF variants in 1145 genes cumulatively
associated with ASD by more than a dozen studies,
meta-analyses and reviews [14, 27, 30–47]. There was no
significant difference between the distribution of values
and that of all genes, and assuming that truly causal
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genes are more intolerant of rare LOF variants, our find-
ings support the hypothesis that many genes could have
been randomly associated with the disorder (Fig. 5,
Additional file 6). Furthermore, there are 19 putative
autism genes in which >0.5% of individuals carry rare,
LOF variants. These genes are likely to be false positives,
because no single gene contributes to a large proportion
of autism cases. Our results highlight the need to per-
form statistical validation of findings involving genes as-
sociated with complex disorders.
Appropriately, several WES studies on ASD calculate

the significance of their findings. For example, Sanders
et al. demonstrate in a study which identifies de novo
coding mutations in 928 individuals that finding two in-
dependent de novo mutations in a single gene is highly
unlikely by chance, and this occurring is viewed as evi-
dence for association between ASD and the gene SCN2A
(sodium channel, voltage-gated, type II, α subunit) [28].
Neale et al. also consider the probability of seeing two
independent de novo mutations in a single gene when
evaluating their findings [25]. Iossifov et al. (2012) dem-
onstrates that disrupted genes are significantly enriched
for FRMP-associated function; however, they also high-
light several individual non-FRMP-associated genes
based on their plausibility to cause an ASD phenotype
but make no attempt at applying statistics when consid-
ering these. In fact, de novo mutations in genes may
have arisen in these genes by chance [24].
To validate our methods, we validated findings by

O’Roak et al. (2012) [26], who reported de novo variants
as well as inherited LOF variants in ASD cases. In a tar-
geted sequencing study of 44 candidate genes in 2446
ASD probands, the authors found that six individual genes

(CHD8, GRIN2B, DYRK1A, PTEN, TBR1, and TBL1XR1)
had evidence of mutation burden for de novo variants, for
which they calculated the P-value using simulations. Ap-
plying our methods, we find that more cases carry de novo
variants than expected by chance in 6 out of the 6 genes.
(Table 1). Furthermore, one additional gene, ADNP, was
found to be significant using our method when only con-
sidering de novo variation in the cohort. One advantage to
our method is that it allows one to incorporate informa-
tion about inherited variants, and by doing so, 3 additional
genes are found to contain more variation than expected
by chance. For genes that rarely contain LOF variation in
the population, observing more than one inherited variant
in the cohort is unlikely to happen by chance, and the
P-value decreases. To summarize, our methods approxi-
mate P-values obtained using more complex and compu-
tationally intensive methods such as simulations, with the
advantage that it can incorporate information about both
inherited and de novo variation, and the fact that it incor-
porates precomputed population level data makes our
methods easy to apply to calculating the statistical signifi-
cance of observing rare variants in a given gene.

Applications in predictive genomics
If a genetic disease is associated with the presence of
variants in a given gene, information about the variants
in the gene in affected individuals and in population
controls can be used to more accurately assess the prob-
ability that a person will develop a disease given their
genotype.
Consider a randomly chosen person from the general

population who is undergoing prenatal genetic testing.
Define A as the event that their child will be born with a

Fig. 5 Histogram of the number of individuals with rare LOF variants in putative autism genes. The distribution of the number of individuals with
a rare variant (MAF < 0.1%) in all genes is nearly identical to the distribution for putative autism genes (N = 1145) and high-confidence autism
genes (N = 109) (dashed lines), suggesting that the genes may have been associated with autism by chance. Genes that frequently contain rare
LOF variants in the population (red shaded region) are unlikely to be causal for ASD
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disease, and B as the event that the child carries a rare,
LOF variant in a given gene associated with the disease.
For many heterogeneic Mendelian disorders, studies of
large cohorts provide information regarding the relative
contribution of individual causative genes and the geno-
type–phenotype correlations, giving us the conditional
probability P(B|A). The term P(A) can be defined as the
disease incidence, and the value of P(B), or the propor-
tion of individuals carrying a rare, LOF variant in the
gene, can be queried from our dataset. Then, according
to Bayes’ theorem

PðAjBÞ ¼ PðBjAÞ � PðAÞ
PðBÞ

we can calculate that the probability that the child will
have the disorder. The following example illustrates such
an application.
Consider that prenatal testing identified that a fetus is

compound heterozygous for novel variants in the gene
POMGNT1, which suggests a possible phenotype of con-
genital muscular dystrophy (CMD). It is known that 53%
of patients with CMD have homozygous or compound
heterozygous variants in one of six known CMD genes,
10% have homozygous or compound heterozygous vari-
ants in POMGNT1, and the incidence of CMD is estimated
to be 1:21,500 [48, 49]. Since most mutations observed in
affected individuals are novel and are not found in healthy
population controls, we will assume a low MAF threshold
of 0.1% for variant filtering. At this threshold, 2 out of 2504

individuals (0.08%) in our dataset have a rare
protein-altering variant in the gene POMGNT1, therefore
P(B) = 0.0008, and we calculate that the positive predictive
value (PPV), the probability that the child will have the dis-
ease given a positive test result, is roughly 1.0%. Using this
method, sensitivity, the probability P(B|A), is quite low
(10%); whereas specificity is high (1-P(B) = 99.9%). If we ag-
gregate data for all known CMD genes, we can increase
sensitivity to 53% with a negligible decrease in specificity,
due to the fact that the other CMD genes contains very
few, in any variants in our dataset. This example highlights
that sensitivity greatly depends on the proportion of cases
that can be explained by variants in a given set of genes.
This type of analysis thus has implications for interpret-
ation of broad NGS-based prenatal testing and can be ex-
trapolated as well to preconception testing and risk to
potential children.
It is important to note that the extreme numbers in-

volved—the very low prevalence of a disorder and in many
cases, the fact that no individual on the 1000 Genomes
Project dataset had been observed with variants in a gene,
i.e. the lack of previous false-positive results—make it dif-
ficult to compute the PPV. A previous study suggests that
the latter “zero numerator” problem can be solved using a
Bayesian approach that incorporates a prior distribution
describing the initial uncertainty about the false-positive
rate [50]. Alternatively, the number of rare LOF variants
observed in a gene has been published as part of the ExAC
and GnomAD datasets, which contain information about
60,706 and 123,136 individuals, respectively [8]. Although

Table 1 Validation of mutational burden findings in autism genes

Number of indivs with variant

Gene LOF / de novo Nonsyn / de novo Inh / LOF P Pincluding inh vars

ADCY5 0 2 1 0.723 0.446

ADNP 2 0 1 1.1 × 10−3 1.7 × 10− 3

CHD8 8 1 0 1.7 × 10−21 1.7 × 10− 21

DYRK1A 3 0 1 5.9 × 10−6 1.1 × 10−5

GRIN2B 3 1 0 8.2 × 10−5 8.2 × 10− 5

LAMC3 0 2 4 0.550 0.022

PTEN 1 2 1 8.2 × 10−3 9.2 × 10− 3

SBF1 0 2 1 0.833 0.502

SETD2 1 1 2 0.078 0.0110

SGSM3 0 2 2 0.086 0.0471

TBL1XR1 1 1 0 0.0167 0.0167

TBR1 2 1 0 3.4 × 10−5 3.4 × 10−5

UBE3C 0 2 1 0.432 0.291

In a targeted sequencing study of 44 candidate autism genes in 2446 individuals [26], 12 genes contained both recurring de novo variants and inherited LOF
variants in multiple individuals, or had evidence of excess mutation burden of de novo variants. Gene names that are in bold were statistically significant in the
original study. P-values calculated using our methods validate findings by O’Roak et al. [27] for all 6 of these genes, and one additional gene. If we also consider
inherited LOF variants, 3 additional genes are statistically significant using our methods. Inherited nonsynonymous variants were not reported in the original
study, hence the P-value is conservative. Abbreviations: nonsyn nonsynonymous variant or single amino acid deletion, LOF loss-of-function variant, Inh inherited
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only nonsense or splice site variants were included in the
LOF classification, and they only include values for a sin-
gle MAF threshold of 0.1%, the number can be used a
rough estimate for f. Furthermore, if even the count ob-
tained from GnomAD is zero, we can assume that f is less
than 1/123136, or 3/123136 if we are being conservative.
To summarize, for monogenic disorders and disorders

where there exist detailed phenotype-genotype correlation
data, our dataset will provide the denominator in the equa-
tion to calculate the probability that an individual with a
rare variant in a known disease gene will have a rare genetic
disorder. As further research uncovers novel gene-disease
associations, and as we increase the size of the public data-
set from which P(B) values can be calculated, we can up-
date expected false-positive rates and calculating PPVs will

become increasingly accurate. As illustrated, our methods
will be be useful for applications in predictive genomics,
including prenatal testing and testing for late-onset gen-
etic disorders.

Comparison to other gene ranking methods
We applied our method to calculate the significance of
several previous studies’ findings [51–77]. In all except
one study where the Mendelian disorder was found to
be caused by inherited disease variants (N = 20) [51–68,
76, 77], findings were confirmed to be significant using
our methods, and in 11 out of 20 studies, P-values were
highly significant (P < 0.0001). (Table 2, Additional file 7)
In many studies, initial exome sequencing in a limited
number of individuals is followed by sequencing of only

Table 2 Statistical significance of variants found to be causal in selected previous studies
Inheritance Gene Individuals sequenced Indivs w/ var

in gene
Variant
consequence

Zygosity
filter

MAF
thresholdb

fa P-val Approximate
# of genes
targeted

Corrected
P-value

AR ISPD 1 full-sibling doubleton
and 5 unrelated affecteds

all LOF CHet/Hom Exclusion 0 4.16E-008 7200 3.00E-004

AD CDKN1C 1 third-cousin doubleton
and 4 unrelated affecteds

all nonsyn Het Exclusion 0.0044 5.24E-015 2500 1.31E-011

AD MLL2 10 unrelated affecteds 7 / 10c LOF Het Exclusion 0.0020 1.51E-017 20,000 3.02E-013

complex PBRM1 7 unrelated affecteds 4 / 7d LOF Hom none stated 0 5.56E-014 20,000 1.11E-009

complex WDR62 2 affecteds in
consanguineous family%

all LOF Hom Exclusion 0 9.75E-008 20,000 1.95E-003

AR C5orf42 6 unrelated affecteds alld nonsyn Het 0.1% 0.0779 2.23E-007 20,000 4.46E-003

AR C5orf42 2 affecteds in
consanguineous family

all nonsyn Hom none stated 0 4.88E-008 20,000 9.75E-004

complex AP4E1 6 affecteds in a single,
large family

all nonsyn Het 1% 0.0459 1.44E-003 530 0.76

AR ANTXR1 2 unrelated affecteds
from consanguineous
families

all nonsyn Hom 0.1% 0 3.04E-013 144 4.38E-011

AR ITGB6 2 unrelated affecteds all nonsyn CHet/Hom none stated 0.0012 1.44E-006 20,000 2.87E-002

AR CSPP1 1 proband sequenced in
region of homozygosity

all LOF Hom 1% 0 2.00E-004 40 7.99E-003

AR GMPPB 3 unrelated affecteds and
3 sibs in consanguineous
family sequenced in single
candidate gene

alld nonsyn CHet/Hom 1% 0.0032 2.15E-014 1 2.15E-014

AR DHODH 1 full-sibling doubleton
and 2 unrelated affecteds

all nonsyn CHet/Hom Exclusion 0.0004 1.35E-007 20,000 2.69E-003

AR SCN5A Gene screened in 10
affecteds from 7 families

5 / 10 nonsyn CHet/Hom none stated 0.0012 9.25E-010 1 9.25E-010

AD MAX 3 unrelated affecteds all nonsyn Het Exclusion 0.0064 2.61E-007 20,000 5.22E-003

AR GPSM2 1 proband sequenced in
region of homozygosity

all LOF Hom Exclusion 0.0000 2.00E-004 66 1.32E-002

AR TBC1D24 15 unrelated affecteds 6 / 15 nonsyn CHet/Hom 1.00% 0.0004 2.02E-017 20,000 4.05E-013

AR PGM3 3 unrelated affecteds all nonsyn CHet/Hom 0.3% 0.0004 6.37E-011 20,000 1.27E-006

Applying our methods to previous NGS findings, in which researchers filtered variants using various criteria, would have statistically validated findings in
silico. See Additional file 7 for more details. aThe parameter f denotes the proportion of individuals in the 1000 Genomes Project dataset who have a rare
variant at least as severe as the identified variants. bWe used a threshold of MAF < 0.1% for studies with no specific MAF threshold. A MAF threshold labeled
exclusion refers to studies where variants were not filtered for a given threshold and variants were excluded based on their presence in public databases
such as dbSNP. cFollow-up Sanger sequencing identified mutations in 2 out of 3 exome-negative cases. dFollow-up sequencing of the given gene identified
further mutations in multiple additional cases. Abbreviations: MAF minor allele frequency, AD autosomal dominant, AR autosomal recessive, XL X-linked,
nonsyn nonsynonymous variant, LOF loss-of-function variant, Het heterozygous, Hom homozygous, CHet/Hom compound heterozygous or homozygous
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the putative causal gene in a large number of individuals.
In one such study, the P-value resulting from the initial
exome sequencing is significant enough to suggest caus-
ality, and the follow-up sequencing essentially serves to
establish the proportion of cases in which the phenotype
is attributed to variants in the gene [61]. In others stud-
ies, however, the initial sequencing merely identifies po-
tential candidate genes, and follow-up sequencing is
required to achieve genome-wide significance [58, 59,
62, 76, 77]. In these cases, the second round of sequen-
cing is not corrected for multiple testing, because only a
single gene is interpreted during follow-up sequencing.
(Additional file 7).
The rankings of frequencies at which a gene contains

rare, deleterious variants is comparable to previously pub-
lished gene ranking methods for prioritizing variants. The
list of genes sorted and ranked according to the number
of individuals carrying rare (MAF < 0.5%) heterozygous,
loss-of-function variants correlates well with genes ranked
based on pLI scores, which describe the probability that a
gene is intolerant of LOF variation (ρ = 0.515) [8, 9]. These
scores were derived from the ExAC dataset consisting of
exome sequencing data from 60,706 individuals. The
order in which ExAC pLI score ranks genes correlates
more closely with SORVA rankings than rankings based
on EvoTol [10] (ρ = 0.400), RVIS [5] (ρ = − 0.157) and
FLAGS [7] (ρ = 0.278) methods.
We compare methods in their ability to prioritize

disease-causing genes from the Online Mendelian Inher-
itance in Man (OMIM) database [1]. pLI scores, EvoTol,
and RVIS outperform SORVA for known autosomal
dominant disease genes, however all methods perform
similarly for autosomal recessive genes, and SORVA out-
performs EvoTol, RVIS, and FLAGS for genes known to
cause X-linked disorders. (See Additional file 8 for re-
ceiver operating characteristic (ROC) curves.)

Discussion
We demonstrate the utility of using mutational burden
data to aid in prioritizing variants in silico and quantify-
ing the significance of seeing a variant within a gene. We
have shown this using examples from previous studies
encompassing multiple NGS study designs and disease
inheritance models. Other metrics such as gene con-
straint pLI scores and EvoTol rankings [9, 10] are appro-
priate for prioritizing genes by their likelihood of causing
genetic disorders, but our methods will calculate the stat-
istical significance of findings based on the constellation
of families and individuals that variants are seen in, inde-
pendent of how genes were prioritized initially.
Although there was some variation between the fre-

quency of individuals with a rare variant in a given gene
between populations, and selecting a comparable popu-
lation to a study would be ideal when calculating variant

significance, this restriction is not necessary. To illus-
trate, if individuals in the African population frequently
carry LOF variants in a gene but this does not hold
true for another population that more closely matches
the study population, one may nevertheless consider
the gene to be less likely to cause a rare Mendelian
disorder.
A limitation of this method of ranking genes is that

genes are prioritized on the basis of their likelihood of
being involved in disease in general rather than in the
specific disease of interest [4]. On the other hand, this
can be viewed as a benefit in the sense that results are
unbiased and do not depend on previously existing an-
notations, which would bias rankings to prefer known
and well-studied genes. This bias is a known issue in the
interpretation of clinical variants [78]. To illustrate, Bell
et al. discovered that an unexpected proportion (27%) of
literature-annotated disease variants in recessive
disease-causing genes were incorrect [79], and Piton et
al. estimated that 25% of X-linked intellectual disability
genes are incorrect or require further review based on
allele frequency estimates that have become more accur-
ate with the availability of large-scale sequencing data-
sets [80]. Disease genes that are incorrectly annotated as
disease-causing may explain the lack of difference be-
tween the average number of individuals carrying vari-
ants in genes causal for autosomal dominant and
autosomal recessive genes. One would expect decreased
counts for autosomal dominant disease genes due to
stronger purifying selection among deleterious variants
that arise in these genes, where a single variant may be
sufficient to cause disease [81]. Another possibility is
that the sample size may be too small to include a suffi-
cient number of individuals who are carriers for rare,
deleterious variants in recessive disease genes.
Future improvements to our methods would include

increasing the amount of genetic information from un-
affected individuals. Our results suggest that for most
applications, low MAF thresholds should be used to
achieve power to detect genes associated with disease;
however, at thresholds of MAF < 0.0005, most genes will
lack any data; e.g. there will be no individuals observed
who are carriers of LOF variants. The SORVA dataset is
useful in its current state with data from a relatively
small number of individuals, but increasing the popula-
tion size by several orders of magnitude will increase the
utility of the application. The recently approved Preci-
sion Medicine Initiative will fund sequencing and data
collection from 1 million or more Americans and make
the data accessible to qualified researchers, and the
methods described in this manuscript could be applied
to this larger dataset and contribute towards the aim of
this initiative to generate knowledge applicable to the
whole range of health and disease [82].
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Additional improvements would include incorporating
additional information regarding specific categories of
variants, such as the degree to which stop codon gain
(also known as nonsense) variants in a gene are con-
strained to the end of the gene. Knowing whether an es-
sential gene is highly intolerant of nonsense mutations
in only certain regions of the gene would allow one to
lower the priority of nonsense variants in regions toler-
ant of mutations when evaluating variants in silico. For
example, Li et al. exclude stop-gain variants occurring in
the terminal gene exon and those that do not affect all
transcripts of a gene when evaluating deleterious LOF
mutations in a large cohort of individuals [83]. The limi-
tation to providing individual-level mutational burden
counts at such a high level of granularity is that re-
searchers will be restricted to following the same methods
of filtering and annotating variants. This would be prob-
lematic because, by default, many commonly-used soft-
ware pipelines do not annotate variants with the
information about the proportion of transcript truncated
[84–89]. Selecting variant filtering thresholds in SORVA
that are identical to those used in one’s study is essential
in having comparable data with which to calculate variant
significance. For this reason, we also did not filter mis-
sense variants based on annotations from commonly tools
such as SIFT [90], PolyPhen-2 [91], and CADD [92],
which provide an interpretation of mutation impacts.

Conclusions
Our methods provide a score for prioritizing variants
within a gene that is unbiased and directly interpretable.
Restricted by the sample size of our dataset, we provide
limited population-level data, and adding more data will
greatly improve the utility of our method. However, even
in its current state, SORVA is useful for vetting candi-
date genes from NGS studies and allows researchers to
calculate the significance of seeing a variant in a given
gene or protein domain, which is an important step to-
wards developing a quantitative, statistics-based ap-
proach for presenting clinical findings.

Methods
Datasets
Genomic data and allele frequencies for calculating a
priori probabilities of observing a variant within a gene
were obtained from the 1000 Genomes Project (phase 3
variant set) [17]. This variant set contains 2504 individ-
uals from 26 populations in Africa (AFR), East Asia
(EAS), Europe (EUR), South Asia (SAS), and the Ameri-
cas (AMR).

Bioinformatics pipeline
Genomic annotations were assigned to each variation
using SNP & Variation Suite (SVS) v8.1 [84] with the

following parameters: gene set Ensembl release 75 [93],
human genome version GRCh37.p13. Variants were fil-
tered for coding mutations that result in a change in the
amino acid sequence (e.g. missense, nonsense and
frameshift mutations), or mutations that reside within a
splice site junction (intronic distance of 2 base pairs).
Biallelic data was recoded based on an additive model to
correct for MAF of variants on the X chromosome for
male samples, using a script in SVS. Variants were then
filtered for minor allele frequency thresholds of MAF <
5%, < 1%, < 0.5%, < 0.1% and < 0.05%, based on allelic
frequency within the dataset. For each filtered list of
variants, we collapsed variants by gene and performed
the following two scenarios: 1) an individual was
counted as having a rare variant in a gene if the variant
mapped to any transcript of a gene; 2) we counted the
number of variants in a given gene per individual, i.e. if
an individual carried two rare mutations within a gene,
they were counted twice. In a separate analysis, we
collapsed variants by protein domains obtained from
Interpro [19] using the Ensembl API [86]. Finally, we re-
peated each analysis using a subset of the 1000 Genomes
Project data grouped according to superpopulation. Vari-
ant collapsing methods were performed using a custom
Python script run by SVS, and an individual was counted
as having a rare variant in a gene if the variant mapped
to any transcript of a gene.
In addition to replicating the analysis for gene versus

protein domain, for each population, and for each MAF
threshold, we also repeated the calculations for multiple
categories of predicted variant consequence on the pro-
tein transcript. The two categories were 1) nonsynon-
ymous variants or those predicted to be more severe by
Ensembl [93], briefly nonsynonymous or LOF variants,
and 2) potential LOF variants (includes splice site, pro-
tein truncation stop codon gain mutations, and frame-
shift indels).

Comparison of disease gene categories
To determine whether our results show concordance
with studies identifying essential genes critical for the
survival of a human, we compared the number of indi-
viduals with rare, deleterious mutations between gene
lists containing essential human genes, those known to
cause Mendelian diseases, and control genes, defined as
genes not included in either category. We considered
genes to be essential human genes if they were deter-
mined as such in at least one of the following two stud-
ies. The first essential human gene set is defined as ‘core’
essential genes that are required for fitness of cells from
both the HAP1 and KBM7 cell lines, determined
through extensive mutagenesis in near-haploid human
cells (N = 1734) [94]. The second essential human gene
set consists of genes essential to four screened cell lines,
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KBM7, K562, Raji and Jiyoye, determined using the
CRISPR system. From the latter set, we selected genes
with an adjusted P-value CRISPR score < 0.4025 for each
cell line (N = 1878) [95].
To identify genes known to cause Mendelian disease,

we parsed data from Online Mendelian Inheritance in
Man (OMIM) [1] and identified phenotype descriptions
with known molecular basis. We parsed the genotype
description field for the gene name and the following
phrases: ‘caused by heterozygous/homozygous mutation’,
‘autosomal recessive’, ‘autosomal dominant’, ‘X-linked’, ‘on
chromosome X’, and categorized genes as autosomal re-
cessive (AR) (N = 655), autosomal dominant (AD) (N =
785), and X-linked (XL) (N = 126) accordingly.

Comparison of gene ranking methods
Genic mutational intolerance scores were obtained from
four previous studies and included the Residual Vari-
ation Intolerance Score (RVIS) [5], scores from Shyr et
al. 2014 (FLAGS) [7], pLI scores based on the ExAC
dataset [8, 9], and EvoTol scores [10]. We considered
15,266 genes that were found in all four datasets, as well
as ours, and ranked genes based on scores obtained
using each method. Spearman’s rho test [96, 97] was
used to measure the size and statistical significance of
the association between the rankings obtained from
ExAC and those obtained by RVIS, FLAGS and SORVA
methods. This test measures the strength and direction
of association between two ranked variables.
In order to assess the performances of all five methods

when prioritizing putative disease genes and plot re-
ceiver operating characteristic (ROC) curves, we used
the sets of OMIM genes described earlier. We filtered
the OMIM gene sets to overlap the 15,266 genes that
were scored by all five methods. Genes were ranked ac-
cording to each metric and a count of the number of
disease-causing genes that would be found at each per-
centile are reported. In order to show the baseline pre-
diction, the result of randomly assigning a percentile to
each gene is also shown. SORVA genes were ranked
according to the number of 1000 Genomes Project indi-
viduals who were heterozygous or homozygous for rare
(MAF < 0.005) LOF variants in a given gene, and ties be-
tween genes were resolved based on the number or indi-
viduals who have rare (MAF < 0.005) LOF or missense
variants in a gene, and finally less rare (MAF < 0.05)
LOF or missense variants.

Calculating depletion of variants in protein domains
We performed two analyses: first, we calculated whether
protein domains in a gene were depleted of variation
compared to the rest of the gene, and second, we calcu-
lated whether there were any types of protein domains

that were depleted of variation in general across the en-
tire genome.
First, for each protein domain mapping within a gene,

we calculated whether domains were depleted of vari-
ation compared to the rest of the gene. Depletion was
calculated as: (number of variants per individual in pro-
tein domain / number of variants per individual in gene
× length of protein domain / length of transcript). A
value of 1 is expected by chance, and a small value indi-
cates protein domains most intolerant towards muta-
tions. We then calculated the P-value of obtaining such
a depletion score using the binomial cumulative density
function, under the assumption that each site is equally
likely to be mutated. This P-value is then “PHRED-s-
caled” by expressing the rank in order of magnitude
terms rather than the precise rank itself. High scaled
scores indicate that a protein domain is depleted of rare
(MAF < 0.5%) mutations compared to the rest of the
gene, hence protein domains with high scores tend to be
enriched for highly mutated genes. We filtered out genes
with no observed mutations and protein domains that
span more than 50% of the length of the transcript,
resulting in 7828 genes remaining.
Next, we calculated whether there were any types of

protein domains that were depleted of variation in gen-
eral across the entire genome. We weighted each gene
with instances of the protein domain equally. In other
words, if a gene had multiple instances of a protein do-
main, we first calculated the mean number of heterozy-
gous rare (MAF < =0.5%) LOF variants observed (in the
entire dataset of 2504 individuals) in either protein do-
main within the gene. Next, we calculated the mean and
variance of the means for each gene.
To determine whether a protein domain was well cov-

ered by sequencing, we calculated the mean coverage of
an instance of a protein domain in the 1000 Genomes
Project sample HG00096 [17]. We calculated depth of
coverage from phase 3 exome alignment data using
GATK and custom code, which is available at https://
github.com/alizrrao/DepthOfCoveragePerInterval.

Combining P-values when calculating significance of
observing given variants in sequenced families
Let’s assume that we sequenced individuals in families
with multiple family structures, e.g. we have sequenced
independent cases and sib pairs with a rare, autosomal
dominant Mendelian disorder, and we observed that k of
n independent cases (singletons) and j of m sib pairs
(doubletons) have heterozygous variants in a given gene.
In the control population, the fraction of unrelated indi-
viduals heterozygous for a variant in the gene is fhet ≈
fboth = r0fboth for fhet < < 1 where the relationship coeffi-
cient is r0 = 1, and the fraction of sib pairs who share
heterozygous variants in the gene is r1fboth where the
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relationship coefficient is r1=½. Weighting these by the
fraction of unrelated individuals and sib pairs, the total
fraction of “familial units” that do not have or share the
variant is

F ¼ 1−
n

nþm
r0 f both−

m
nþm

r1 f both

which equals the probability of a failure in any given
trial. The probability Pn,m,k,j of having n +m trials and
observing exactly k singleton successes and j doubleton
successes is equal to:
Pn, m, k, j = P(X = n +m − k − j) × P(Y = k)
where X is a binomial random variable with n +m tri-

als and probability of success equal to F, and Y is a bino-
mial random variable with k + j trials and probability of
success equal to

r0n
r0nþr1m

Finally, to calculate the P-value for observing k of n
independent cases and j of m sib pairs who have hetero-
zygous variants in a given gene, we calculate the prob-
ability Pn,m,k,j of observing exactly k singleton successes
and j doubleton successes or any combination of out-
comes that is less likely, and sum these values.
P−value ¼ Pn

a¼0

Pm
b¼0 Pn;m;a;b½Pn;m;a;b≤Pn;m;k; j�

The P-value can be derived in a similar manner for vari-
ous experimental designs, where multiple families with
different pedigree structures are sequenced to identify het-
erozygous variants shared by affected cases or, in case of
an autosomal recessive disorder, homozygous or potential
compound heterozygous variants. Additional details can
be found in Additional file 4: Supplementary Methods.

Additional files

Additional file 1: Number of individuals carrying a rare variant in a
gene under various filtering thresholds. Each data point represents a
single gene which contains a variant in the aggregate population (n =
2504 individuals). Calculations were repeated using multiple variant
filtering thresholds to determine the scenario that most differentiates
between essential genes, those known to cause autosomal dominant,
autosomal recessive or X-linked disease, and other genes. We varied filters
for type of variant (‘LOF or missense’ or ‘LOF only’), zygosity (Het or Hom)
and MAF threshold. Colored shapes indicate the centroids of each group
of genes. Abbreviations: LOF, loss-of-function; nonsyn, nonsynonymous or
LOF; het, heterozygous; hom, homozygous; ess, essential; AD, autosomal
dominant; AR, autosomal recessive; XL, X-linked. (PDF 29608 kb)

Additional file 2: Mean number of individuals mutated for different
types of protein domains. We calculated the mean number of individuals
(out of 2504 individuals) who carried mutations in a given type of protein
domains, averaging per gene. (XLS 2951 kb)

Additional file 3: Variant depletion scores for all protein domain in
every gene. For each instance of a protein domain in a gene, we
calculated variant depletion scores to identify regions within a gene that
may be under differing degrees of evolutionary constraint. (XLS 28555 kb)

Additional file 4: Supplementary methods. Includes derivation of
equations and math used for calculating the significance of finding rare
variants in a given gene. (PDF 173 kb)

Additional file 5: Screenshot of an example query run on SORVA. Users
can select variant filtering thresholds such as population, MAF cutoff,
zygosity and whether to consider only LOF variants or missense variants,
as well. Output includes the number of individuals who carry a rare
variant in the gene and in any protein domain that maps to the gene.
(PNG 129 kb)

Additional file 6: List of candidate autism genes. Genes listed were
used to produce Fig. 5. (XLS 102 kb)

Additional file 7: Calculating P-values for findings from previous whole-
exome or targeted sequencing studies. The parameter f denotes the pro-
portion of individuals in the 1000 Genomes Project dataset who have a
rare variant at least as severe as the identified variants. A MAF threshold
labeled exclusion refers to studies that did not filter by a given threshold
and excluded variants based on their presence in public databases such
as dbSNP; in such cases, results were calculated using a MAF threshold of
0.1%. Abbreviations: MAF, minor allele frequency; AD, autosomal domin-
ant; AR, autosomal recessive; XL, X-linked; nonsyn, nonsynonymous vari-
ant; LOF, loss-of-function variant; Het, heterozygous; Hom, homozygous;
CHet/Hom, compound heterozygous or homozygous. (XLS 44 kb)

Additional file 8: ROC curves for the selection of known disease-
causing genes from gene rankings. Comparison between gene ranking
metrics from SORVA, FLAGS, ExAC pLI score, RVIS, and EvoTol using the
OMIM database, showing the cumulative percentage plots for the re-
sidual scores for three OMIM gene lists. The OMIM gene categories are
(a) autosomal dominant disease causing (N = 681), (b) autosomal reces-
sive disease causing (N = 556), and (c) X-linked disease causing (N = 118).
SORVA were based on the number of 1000 Genomes Project individuals
who were heterozygous or homozygous for rare (MAF < 0.005) LOF vari-
ants in a given gene. Dashed lines indicate control. Abbreviations: ROC,
Receiver Operating Characteristic; AUC, area under the curve, LOF, loss-of-
function. (PDF 83 kb)
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