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Abstract

Background: Matched tumor-normal sequencing, applied in precision cancer medicine, can identify unidentified
germline Medically Actionable Variants (gMAVS) in cancer predisposition genes. We report patient preferences for
the return of additional germline results, and describe various gMAV scenarios delivered through a clinical genetics
service.

Methods: Tumor profiling was offered to 1960 advanced cancer patients, of which 1556 underwent tumor-normal
sequencing with multigene hotspot panels containing 20 cancer predisposition genes. All patients were provided
with an IRB-approved consent for return of additional gMAVs.

Results: Of the whole cohort 94% of patients consented to be informed of additional germline results and 5%
declined, with no statistically significant differences based on age, sex, race or prior genetic testing. Eight patients
were found to have gMAVs in a cancer predisposition gene. Five had previously unidentified gMAVs: three in TP53
(only one fulfilled Chompret’s Revised criteria for Li-Fraumeni Syndrome), one in SMARCB1 in the absence of
schwannomatosis features and one a TP53 variant at low allele frequency suggesting an acquired event in blood.

Conclusion: Interest in germline findings is high among patients who undergo tumor profiling. Disclosure of
previously unidentified gMAVs present multiple challenges, thus supporting the involvement of a clinical genetics
service in all tumor profiling programs.

Keywords: Germline mutation, Neoplasms/genetics, Neoplastic syndromes, Hereditary Cancer, Incidental findings,
Secondary findings, Next generation sequencing

Background
Tumor profiling through next generation sequencing
(NGS) has facilitated precision cancer therapies by iden-
tification of actionable tumor variants to guide cancer
patient management [1]. Genetic analysis of tumor tissue
can detect both acquired (somatic) aberrations found
exclusively in the cancer cells, and inherited (germline,
constitutional) variants. Often in molecular profiling of
tumors, germline DNA from normal tissue is also tested
to aid in filtering tumor-specific events by identification

and subtraction of germline variants [2]. However the
analysis of germline DNA may identify pathogenic germline
variants in cancer predisposition genes included in NGS
molecular profiling panels [3]. The American Society of
Clinical Oncology (ASCO) and the Clinical Sequencing
Exploratory Research (CSER) Consortium Tumor Working
Group, support the communication of medically relevant
secondary or incidental germline findings from tumor pro-
filing programs based on patient preferences [4, 5]. CSER
defines secondary findings as “results that are unrelated to
the diagnostic question, but are systematically sought and
analyzed, while incidental findings are not sought out,
but identified nonetheless” [6]. Recently, these findings
have been collectively referred to as “additional findings”
based on patients’ preferences [7]. A number of NGS
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tumor profiling programs have reported additional
germline findings in actionable cancer predisposition
genes with the frequency ranging between 4.3 and 17.5%
of patients tested [8–11]. While studies designed to ac-
tively seek secondary gMAVs require considerable amount
of analysis and resources, studies designed not to actively
seek gMAV may also encounter additional findings inci-
dentally. Although at a lower frequency, mechanisms to
incorporate such additional findings into the clinical care
of these patients should be considered. Tumor profiling
programs may also provide a new avenue to identify indi-
viduals with a cancer predisposition syndrome with impli-
cations on their clinical management and families.
The Princess Margaret Cancer Centre completed ac-

crual of two tumor profiling studies, the Integrated
Molecular Profiling in Advanced Cancers Trial (IMPACT)
and Community Oncology Molecular Profiling in Ad-
vanced Cancers Trial (COMPACT). Two targeted NGS
panels of 48–50 genes were analyzed to inform precision
cancer therapies in advanced cancer patients through
paired tumor-germline sequencing [12]. Peripheral blood
lymphocytes (PBL) were selected as representative of
normal tissue to identify germline variants to aid in
identification of tumor-specific variants. Although the
variant analysis was not designed to detect all germline
variants in cancer predisposition genes in the tested
panels, the potential of detecting germline medically ac-
tionable variants (gMAVs) incidentally was recognized.
Information about gMAVs was offered to the patients
and disclosed only to those who provided consent. Here,
we describe patient preferences in the return of additional
gMAVs in cancer predisposition genes detected through
tumor profiling, the types of variants detected and consid-
erations in the interpretation and disclosure of the findings.

Methods
Patient cohort
The patient cohort consisted of advanced cancer patients
who were candidates for clinical trials with targeted
therapies and enrolled in the tumor profiling programs
IMPACT or COMPACT (NCT01505400) (Fig. 1) [12].
Patients were age ≥ 18 years, with Eastern Cooperative
Oncology Group (ECOG) performance status ≤1, had
available formalin-fixed embedded archival tumor tissue
and provided a blood sample to represent the germline
DNA from PBL. At study registration all participants were
asked to provide information regarding prior germline
testing. Written informed consent for tumor profiling and
germline co-analysis was obtained from all participants.
An additional University Health Network Research Ethics
Board-approved consent form for return of gMAVs was
offered to the participants from June 2013 for IMPACT
and January 2014 for COMPACT, until the closure of
both trials in December 2015. Participants interested in

the return of gMAV results were asked to identify a dele-
gate (preferably biologic relative), who could receive the
results on their behalf if required. Demographic and clin-
ical data were extracted from prospectively maintained
databases and medical records.

Genetic analysis
DNA extraction and molecular analysis on PBLs or tumor
FFPE tissue was performed as previously described [12].
NGS molecular test methods used included one of the
following targeted amplicon cancer panels, designed to
detect hotspot variants in regions of selected genes with
known utility in somatic cancers: 1) TruSeq Amplicon
Cancer Panel (TSACP; Illumina, San Diego, CA) sequenced
on the MiSeq benchtop sequencer (Illumina), which in-
cluded hotspot regions of 48 genes. (Additional file 1:
Table S1) Sequence alignment and base calling used
MiSeq Reporter (Illumina), followed by variant calling
using NextGENe v.2.3.1 software (SoftGenetics, State
College, PA) and data review using the Integrative Gen-
omics Viewer (IGV, Broad Institute); or 2) Ion AmpliSeq
Cancer Panel (ASCP; ThermoFisher Scientific, Waltham,
MA) sequenced on the Ion Proton benchtop sequencer
(ThermoFisher Scientific), which included hotspot regions
of 50 genes (Additional file 1: Table S2) Sequence align-
ment and base calling was performed by Torrent Suite
software (ThermoFisher Scientific) and analysis using
NextGENe v.2.3.1 and IGV software.
Somatic variants identified met laboratory-defined

thresholds of > 500× read coverage and allele frequency of
> 10%. Recurrent mutations between 400-500X coverage
or 5–10% allele fraction were reported if they were verified
by an orthogonal molecular method. Three genes with
read depth consistently falling below 500× on TSACP
(GNAS, HRAS, CDKN2A) were not included in the data
analysis.
Selected targeted hotspot regions (i.e. partial gene

regions, not full gene/full exon sequences) of 20 genes
which also have inherited cancer risk were included in
the panels (Additional file 1: Table S1 and S2). For
samples with insufficient DNA quality or quantity for
either NGS panel, a custom multiplex genotyping assay
was performed only on tumor tissue [12]. Tumor profiling
with NGS methods was only performed when germline
DNA was available. Germline and tumor samples from
the same patient were tested using the same methods and
analyses, and variants identified in tumor DNA were
compared to variants identified in germline DNA to
identify tumor-specific events. All NGS analyses used
hg19, NCBI Build 37, as reference genome. All testing
was performed in a laboratory accredited by the College
of American Pathologists and certified to meet Clinical
Laboratory Improvement Amendments.
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Determination of germline variants in cancer
predisposition genes
Among the genes with targeted partial hotspot regions
evaluated on the TSACP and ASCP NGS panels, 20
genes were related to cancer predisposition syndromes
(Additional file 1: Tables S1–S3). Any germline variants
detected in the select hotspot targeted regions of the
cancer predisposition genes analyzed were investigated
in online mutation databases (ClinVar, HGMD, IARC
TP53, BIC), population variant databases (dbSNP, ExAC,
1000 Genomes) and relevant literature, and classified
as pathogenic, likely pathogenic, uncertain signifi-
cance, likely benign or benign using the variant assess-
ment guidelines as specified by the American College
of Medical Genetics [13]. The variant analysis approach
was not specifically designed to systematically detect all
germline variants as the focus of the data analysis was on
primary detection of somatic acquired mutations. However,
gMAVs were still identified incidentally. The gMAVs were
defined as those germline variants which were pathogenic
or likely pathogenic, were associated with a cancer predis-
position syndrome and could have a clinical impact on the
patient and/or prompt genetic testing in family members.
gMAVs were considered as non-constitutional (mosaic or
somatic event in PBL) when the allelic frequency of the
variant in germline DNA was less than 25–30% based on
validation data of the two NGS panels.

Return of germline medically actionable variants in
cancer predisposition genes
A “Genomics Tumor Board” was developed which
included medical oncologists, clinical molecular la-
boratory geneticists, genetic counsellors and a med-
ical geneticist. All pathogenic or likely pathogenic
variants from germline DNA analysis, as well as vari-
ants of conflicting interpretation for cancer predis-
position syndromes were reviewed in conjunction
with the personal and family history to determine
clinical significance and potential management steps.
Each case was discussed independently to determine
whether germline results would be returned to pa-
tient or their delegate. If a cancer predisposition
syndrome was previously identified through standard
clinical routes, no further action was taken. For
potentially newly uncovered gMAVs in cancer predis-
position genes, patients who consented to return of
additional findings or their delegate were contacted
by the clinical genetics service, which comprised of a
medical geneticist and genetic counsellor. Confirm-
ation of the germline results on a new sample in an
accredited clinical laboratory was required prior to
being incorporated into the patient’s medical record.
Surveillance recommendations and familial cascade
testing was conducted through standard clinical gen-
etics routes (Additional file 2: Figure S1).

Fig. 1 Patient recruitment and additional germline findings. gMAV Germline Medically Actionable Variant, NGS Next generation sequencing
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Statistical analysis
Descriptive statistics were used to summarize patient
demographics (age, gender, race, tumor type, ECOG and
prior germline testing). Comparisons between patients
who consented for return of additional gMAVs and those
who did not, were performed using t-test for age and
Chi-Square test for gender, race, tumor type, ECOG and
prior genetic testing. Differences with p-values of < 0.05
were considered statistically significant. All statistical ana-
lyses were conducted in SAS, version 9.4.

Results
Consenting rates and patients’ preferences
A total of 1960 patients with a variety of malignancies
were consented for IMPACT and COMPACT. The
median age at enrollment to both studies was 58 years
(range 18–89 years) and 67% of the population was
female. Other relevant clinical characteristics are depicted
in Fig. 2 and Additional file 1: Table S4. Of note, 18%
(361/1960) patients did report already having clinical
germline genetic testing which is consistent with the refer-
ral rates in our centre [14]. In the consent form 1844
(94%) agreed to the return of additional pathogenic germ-
line results, 103 (5%) declined and 13 (1%) improperly
filled the section regarding additional findings. There was
no statistically significant difference by age, sex, race or
prior genetic testing among the patients who consented
for return of germline results and those who declined
(Table 1).

Variants detected through germline DNA analysis
Samples from 1556 patients were tested with NGS panels,
and eight patients were found to have gMAVs in cancer
predisposition genes Fig. 1 and Table 2.

A variety of distinct scenarios were encountered in
patients with gMAVs that were categorized as (Fig. 1):

A. Confirmation of a previously identified cancer
predisposition syndrome

B. Identification of a cancer predisposition syndrome
in a patient eligible for clinical genetic testing but
not previously tested

C. Identification of a potential cancer predisposition
syndrome in a patient ineligible for clinical genetic
testing

D. A mosaic variant or somatic PBL variant likely not
related to an inherited cancer predisposition

For category A patients (Table 2: patients 1 and 2) whose
gMAVs were previously identified and disclosed by the clin-
ical genetics service prior to the study, no further action
was taken.
One category B patient (Table 2: patient 3) was identified.

A woman, who fulfilled Chompret’s Revised criteria for
germline TP53 genetic testing for Li-Fraumeni syndrome
(LFS) [15] due to the history of multiple malignancies, how-
ever was not referred for a clinical genetics assessment and
was found to have a pathogenic variant in TP53 (c.473G >
A; p.Arg158His) consistent with LFS. Unfortunately, the
patient died of her malignancy prior to the availability of
genetic results and the clinical confirmation could not be
performed. Family members were referred for cascade test-
ing on the TP53 variant identified.
Category C included four patients (Table 2: patients

4–7) who did not meet genetic testing criteria for the
identified gMAV at diagnosis of the disease. Patient 4
was a woman who did not meet Chompret’s Revised cri-
teria despite an extensive personal history of cancer. She
was enrolled in the tumor profiling program due to a

Fig. 2 Patients’ characteristics – disease site
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metastatic Her2+ breast cancer and germline DNA ana-
lysis revealed a pathogenic variant in TP53 (c.817C > T;
p.Arg273Cys). She presented a prolonged partial response
on Her2 therapy and was enrolled in an LFS surveillance
program [16] where she was found to have a lung adeno-
carcinoma. Patient 5, a man diagnosed with a gastro-
esophageal junction adenocarcinoma at age 29 years, and
Patient 6, a man diagnosed with an ileocecal valve adeno-
carcinoma at age 36 years, were also found to harbor
gMAVs in TP53. Interestingly, Patient 6 was found to have
a c.467G >A (p.Arg156His) TP53 germline variant, which
in absence of other variants has been reported with con-
flicting interpretations in ClinVar [17], but when present in
conjunction with an additional germline TP53 variant has
been associated with LFS [18]. The tumor analysis of
Patient 6 did show another variant in TP53 (c.742C > T;
p.Arg248Trp). Given this potential association with LFS
and the tumor results, the Genomic Tumor Board rec-
ommended return of this result and further TP53 ana-
lysis to rule out LFS. Sanger sequencing and Multiplex
Ligation–dependent Probe Amplification of TP53 on an-
other sample in a clinical molecular laboratory confirmed
and classified the TP53 c.467G >A variant as a variant of
unknown significance, but no other germline variants
in TP53 were identified. Segregation analysis to further
characterize the pathogenicity of this variant was not
possible due to the unavailability of other family members
with cancer history. Patient 7, a 75 year old man with
esophageal cancer and no family history of note, was found
to have a germline SMARCB1 variant (c.143C >T; p.Pro48-
Leu), which has been associated with schwannomatosis and
multiple meningiomas [19]. The patient did not have
any features of schwannomatosis, but was referred for

Table 2 Characteristics of patients with germline Medically Actionable Variants

Pt Cat Sex Cancer (Age at diagnosis) HCS Variant in PBL (AF)

1 A F Desmoid tumor (32), Rectal cuff adenocarcinoma (43) FAP APC c.3927_3931del
(p.Glu1309AspfsX4) (29%)

2 A F Embryonal Rhabdomyosarcoma (3), Thyroid (18), Peripheral
Nerve Sheath Tumor (23), Renal leiomyosarcoma (29),
Extraosseous sarcoma (31)

LFS TP53 c.743G > A
(p.Arg248Gln) (48%)

3 B F Breast Cancer (39), Colorectal adenocarcinoma (39),
Pleomorphic sarcoma (54), Lung Adenocarcinoma (55)

LFS TP53 c.473G > A
(p.Arg158His) (57%)

4 C F Papillary Thyroid (28),Non-melanotic Skin Cancer (35),
Breast Cancer (37), Lung Adenocarcinoma (39)

LFS TP53 c.817C > T
(p.Arg273Cys) (53%)

5 C M Gastro-esophageal junction adenocarcinoma (29) LFS TP53 c.818G > A
(p.Arg273His) (52%)

6 C M Ileocecal valve adenocarcinoma (36) LFS TP53 c.467G > A
(p.Arg156His) (49%)

7 C M Esophageal adenocarcinoma (75) Sch SMARCB1 c.143C > T
(p.Pro48Leu) (72%)

8 D F Gallbladder Cancer (74) N/A TP53 c.524G > A
(p.Arg175His) (16%)

AF allele frequency, Cat category, F female, FAP familial adenomatous polyposis, HCS hereditary cancer syndrome, LFS Li-Fraumeni syndrome, M male, Pt patient,
Sch schwannomatosis

Table 1 Patients’ characteristics and acceptance of the return of
secondary germline Medically Actionable Variants

Accepted n = 1844 Declined n = 103 p-value†

Age– years (mean) 57.6 57.6 > 0.95

Gender - n p-value‡

Female 1235 (67%) 71 (69%) > 0.68

Male 609 (33%) 32 (31%)

Race - n

White 1003 (54%) 56 (54%) > 0.95

Asian 207 (11%) 16 (16%)

Black 35 (2%) 1 (1%)

Mixed 14 (1%) 0 (0%)

Unknown 585 (32%) 30 (29%)

Cancer site - n

Gynecological 518 (28%) 25 (24%) 0.015

Gastrointestinal 382 (21%) 19 (18%)

Breast 233 (13%) 18 (17%)

Lung 227 (12%) 17 (17%)

Pancreas 194 (11%) 8 (8%)

Sarcoma 21 (1%) 5 (5%)

Others 269 (15%) 11(11%)

Prior genetic testing - n

Yes 345 (19%) 15 (15%) 0.292

No 1499 (81%) 88 (85%)

ECOG - n

0 760 (41%) 37 (36%) 0.288

1 1084 (59%) 66 (64%)

ECOG The Eastern Cooperative Oncology Group, n number. Values are
expressed as mean (+/− standard deviation), except otherwise stated. †. T-
d’Student test; ‡. Chi square test
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neurologic assessment and familial testing did not iden-
tify the variant in the offspring.
Category D patient (Table 2: patient 8) was a 78 year

old adopted woman with a diagnosis of cholangiocarci-
noma at age 74, treated with gemcitabine/cisplatin in the
metastatic setting prior to her enrollment in the tumor
profiling program. PBL DNA analysis found a variant in
TP53 (c.524G > A; p.Arg175His), which has been associ-
ated with LFS [20] but was only present at a low allele
frequency (16%). Negative cascade testing in the off-
spring and the absence of variants in TP53 or other
genes in the tumor, suggests that the finding may be due
to mosaicism or more plausibly, a treatment related mu-
tation limited to the blood [21, 22]. She declined a skin
biopsy for mosaic studies because she was too unwell
and shortly after passed away.

Discussion
Here, we describe the integration of a clinical genetics
service in a tumor profiling program not specifically de-
signed to actively seek nor comprehensively analyze
germline medically actionable variants (gMAV). Despite
this analytical approach of only analyzing gene hotspots,
additional gMAVs were found incidentally and disclosed
by a clinical genetics service. We also explore patients’
preferences for the return of gMAVs in cancer predis-
position genes. We are the first to describe the various
scenarios and complexities in incorporating these add-
itional findings into the clinical care of the study patients
and families.
Patients expressed great interest in the return of gMAVs

(94%), while minority declined (5%) or improperly filled in
the consent form (1%). This is consistent with smaller stud-
ies such as Gray et al, who reported their experience in 69
lung, colorectal and breast cancer patients, and found that
87% of patients were willing to know about their inherited
risk of cancer and 81% of patients agreed to the return of
germline information regarding cancer risk and other med-
ically actionable findings [23]. Yusuf et al, reported their
experience in 100 breast cancer patients where 90% were
willing to know about their cancer risk, while 87% of pa-
tients were also interested in other preventable/treatable
diseases [24]. In another study from the same group, that
included 1167 patients with multiple types of tumors, 99%
of the cohort was in agreement to receive information
about secondary germline findings [9]. More recently, a
study of 413 breast, lung and colorectal cancer patients
reported that 77% of patients were interested in germ-
line variants of serious but preventable diseases, while
only 56% were interested if the illness was unpreventa-
ble. In this study 49% of patients wanted to be informed
about variants of unknown significance [25].
Patients’ desire to be informed about additional germline

findings remains high over time. Still, the demographic

profile of the patients who decline or agree to the return of
additional germline results has not been established. In our
analysis, there were no statistically significant differences
among the two groups in terms of sex, age, race, tumor
type and ECOG status. Our cohort was heterogeneous, but
with potential bias due to a high number of gynecological
(28%) and breast cancer (13%) patients, which enriched the
study with predominantly female population (67%).
Advanced cancer patients that are found to harbor

previously unrecognized gMAVs in cancer predisposition
genes can present multiple challenges for disclosure of
the results even if they did consent for the return of add-
itional findings. Alongside with molecular geneticists who
determine the pathogenicity of a variant, a critical role is
played by the clinical genetics team tasked to disclose
germline results to the patient. For this purpose we depict
four categories of results (Fig. 1) that highlight the com-
plexity of genetic counseling [26]. Individuals who are
eligible for genetic testing are often unrecognized and
under-referred [27], and a tumor profiling program may
identify a previously eligible patient (Category B) who did
not have a genetics assessment. This underscores the im-
portance of enquiring about personal and family cancer
history in all cancer patients, especially in those undergo-
ing a tumor molecular profiling that can reveal inherited
variants.
On the other hand, current genetic testing criteria, such

as Chompret’s Revised criteria for TP53 genetic testing (pa-
tients 4–6) do not capture all the cases and may miss indi-
viduals with less striking family histories or de novo cases
(Category C). Other disorders such as schwannomatosis
(Patient 7) may have low penetrance, making personal and
family history unreliable for screening assessment. As ex-
emplified in Patient 4, the identification of atypical heredi-
tary cancer cases provides an opportunity for a patient to
undergo appropriate surveillance and the detection of add-
itional malignancies in at risk organs. The widespread use
of NGS in tumor profiling programs may complement
traditional routes of ascertaining patients and families with
a cancer predisposition syndrome.
An emerging area of clinical uncertainty occurs when

NGS testing identifies variants in PBL at allele frequency
lower than expected for heterozygosity. These low allele
frequencies are now detectable using NGS and may be
due to a variety of causes such as post-zygotic mosaicism
[28], age acquired clonal mosaicism [29, 30] or treatment-
related clonal hematopoiesis [22, 28, 31]. This situation
was observed in Category D and further follow-up studies
are necessary to delineate the etiology of the NGS result,
as post-zygotic mosaicism has implications on the family,
while age acquired clonal mosaicism and treatment-re-
lated clonal hematopoiesis do not.
Our study revealed a total of eight patients with add-

itional gMAVs in a cohort of 1556 advanced cancer
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patients who underwent NGS tumor profiling. This is
likely an under-representation of the true prevalence of
hereditary cancer syndromes in our cohort, as this study
was not designed to systematically identify all germline
genes and variants causing a hereditary cancer syndrome.
Despite these constraints a number of gMAVs were

detected as additional findings. As numerous targeted
panels perform tumor only sequencing, mostly for eco-
nomic reasons, these gMAVs may be missed. Our study
highlights the potential drawbacks of the tumor-only
testing approach since patients were identified with con-
stitutional variants that likely would have been consid-
ered somatic with tumor-only NGS panel testing. We
also describe the benefit of integrating a tumor profiling
program with a clinical genetics service to incorporate
these findings into the clinical care of patients. This will
ultimately identify more cancer predisposition families
and, in turn, preventable cases of cancer.

Conclusions
Here, we describe the largest cohort reported so far to
undergo a precision cancer medicine tumor profiling
program, where germline DNA was used primarily to aid
in filtering tumour variants. The normal DNA analysis
resulted in a variety of returnable additional findings,
disclosed through the incorporation of a clinical genetics
service within the research study and into the clinical care
of these families.
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