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Abstract

Background: Detection of copy number variants (CNVs) is an important aspect of clinical testing for several
disorders, including Duchenne muscular dystrophy, and is often performed using multiplex ligation-dependent probe
amplification (MLPA). However, since many genetic carrier screens depend instead on next-generation sequencing
(NGS) for wider discovery of small variants, they often do not include CNV analysis. Moreover, most computational
techniques developed to detect CNVs from exome sequencing data are not suitable for carrier screening, as they
require matched normals, very large cohorts, or extensive gene panels.

Methods: We present a computational software package, geneCNV (http://github.com/vkozareva/geneCNV), which
can identify exon-level CNVs using exome sequencing data from only a few genes. The tool relies on a hierarchical
parametric model trained on a small cohort of reference samples.

Results: Using geneCNV, we accurately inferred heterozygous CNVs in the DMD gene across a cohort of 15 test
subjects. These results were validated against MLPA, the current standard for clinical CNV analysis in DMD. We also
benchmarked the tool’s performance against other computational techniques and found comparable or improved
CNV detection in DMD using data from panels ranging from 4,000 genes to as few as 8 genes.

Conclusions: geneCNV allows for the creation of cost-effective screening panels by allowing NGS sequencing
approaches to generate results equivalent to bespoke genotyping assays like MLPA. By using a parametric model to
detect CNVs, it also fulfills regulatory requirements to define a reference range for a genetic test. It is freely available
and can be incorporated into any Illumina sequencing pipeline to create clinical assays for detection of exon
duplications and deletions.

Keywords: Copy number variation (CNV), DMD, Carrier screening, Exome sequencing, Muscular dystrophy,
Logit-normal distribution, Logistic normal distribution

Background
In recent years, analysis for copy number variants (CNVs),
which have been demonstrated to be causal in a number
of genetic disorders, has become a prominent component
of clinical testing for diagnosis and prenatal screening
[1–3]. However, while the vast majority of CNV analy-
sis is performed using targeted microarray technologies
[3, 4], many clinical tests rely predominantly on high-
throughput sequencing in order to identify smaller causal
variants more comprehensively [5].
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In particular, carrier screening for recessive disease-
associated variants is increasingly moving towards whole
exome sequencing (WES) to detect single-nucleotide
variants and small indels, forgoing broad CNV analysis
[6–8]. This is concerning for several serious genetic dis-
orders, such as Duchenne muscular dystrophy (DMD),
where a large proportion of disease-causing mutations
are copy number variants. In DMD (and the milder form
Becker muscular dystrophy) approximately 75% of inher-
ited causal mutations are copy number variants encom-
passing one or more exons in the DMD gene located on
the X-chromosome [9, 10]. The majority of these vari-
ants do not encompass the entire gene, instead occurring
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in one of two known recombination hot spots, between
exons 43 and 55, and exons 2 and 23.
To make WES more applicable for subsequent CNV

analysis, several groups have worked on developing com-
putational methods which can use targeted sequencing
data to identify copy number variants [11–15]. However,
although there have been some attempts to use these com-
putational techniques in a clinical setting [5, 16, 17], a
variety of limitations prevent most from being directly
applicable to carrier screening.
Several of these methods focus on detecting larger

CNVs in the context of tumor cell line studies,
where factors like normal-cell contamination can affect
identification and matched-normal samples are available
[11, 12, 14]. Others rely on non-parametricmodels and are
designed for large scale population studies [11–13]. Only a
few have reported sensitivity and specificity levels for indi-
vidual genes comparable to the levels obtained through
microarray and other alternative methods. In contrast,
genetic carrier screening involves germlinemutation anal-
ysis without normal matches and typically provides only a
small cohort of reference samples. Most of all, it requires
a consistently high degree of sensitivity and specificity for
both rare and common CNVs, even when only a small
number of specific genes are being screened.
To address these shortcomings, we propose a para-

metric approach for detecting exon-level CNVs in a test
sample, which uses a generative model for read depth
data across targets in a small number of genes. We model
read depth across these targets as multinomially dis-
tributed, allowing us to avoid having to explicitly correct
for differences in capture efficiency and coverage biases
caused by exon length or GC content across targets. To
make the model more robust to the inherent variability
in library preparation and sequencing, we incorporate a
non-conjugate logistic-normal prior distribution into our
model. We then implement a Markov Chain Monte Carlo
(MCMC) approach in order to estimate posterior distri-
butions for various copy number states across targets in
the genes of interest. Like other techniques, our approach
relies on read depth counts in a set of reference samples,
specifically for estimation of the prior distribution param-
eters. These reference samples are assumed not to carry
CNVs in the genes of interest and must be sequenced
using the same pipeline as the samples to be tested.
We have implemented this model and the CNV detec-

tion pipeline in a python package called geneCNV. We
then used the package to evaluate a set of samples
with known CNVs in the DMD gene, and benchmarked
our results against three other computational methods
chosen to highlight a breadth of different approaches
towards CNV detection (XHMM [13], CNVkit [14] and
ExomeDepth [15]). In addition, all computational results
were compared with results from multiplex ligation

dependant probe amplification (MLPA), a standard clini-
cal method for detection of CNVs in DMD [18, 19].
Currently, DMD is typically not included in many car-

rier screens, likely because of the additional processing
required by CNV analysis [7]. However, with our pipeline
and benchmarking analysis, we have demonstrated the
ability to accurately detect CNVs in DMD in a clinical set-
ting by using a parametric model and exome sequencing
data.

Methods
A generative model for read depth data
In analyzing the proportion of read pairs mapping to each
target of interest in DMD, we found significant correla-
tion between samples processed using the same sequenc-
ing pipeline (Additional file 1: Figure S1). Based on this,
we developed a generative model which treats target
read pair counts as drawn from a multinomial distribu-
tion. Then to explicitly account for both the similarities
and sample-to-sample variations across read pair count
ratios, we incorporated a non-conjugate prior distribution
for the multinomial probabilities. Though we considered
a conjugate Dirichlet prior, we applied a multivariate
logistic-normal distribution instead to account for any
potential inter-target covariation and to more flexibly
model variation in coverage across multiple samples.
Figure 1 describes the full model graphically, indicating

the latent copy number states and latent target intensities

Fig. 1 Generative model for read pair coverage during sequencing.
Read pairs map to relevant targets during sequencing according to
multinomial distribution with parameter p = {p1, . . . , pk}. Note that v
is drawn from multivariate normal with parameters μ,�, and ci is
drawn from multivariate discrete uniform distribution with support
[0, C]
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which together define the overall target mapping proba-
bilities. More explicitly, let k equal the number of targets
of interest. Let xi represent the unnormalized “intensity”
for target i = 1 . . . k and assume the xi for each sample
are generated according to a multivariate logistic-normal
process as follows [20]:

1 v = {v1, . . . vk−1} ∼ MVN(μ,�)

2 vk = 0
3 xi = exp vi

∑k
i=1 exp vi

Thus the prior distribution is fully specified by μ and �,
which have dimension k − 1 and k − 1 × k − 1 respec-
tively(for identifiability the last target intensity is kept
constant). Defining the copy number state at each target
as ci , we have the following for read pair counts Y =
{y1, . . . yk} for each sample:

Y ∼ Mult(p) where pi = cixi
∑

cixi
For the copy number states, we specify a discrete sup-
port representing the possible number of target copies
(0, 1, 2, 3). We found that expanding the support to
include higher copy number states did not improve the
performance of the model when doing germline analysis,
though our implementation allows for an expanded sup-
port. To keep the model’s sensitivity high, we do not intro-
duce a prior for the copy number states biased towards
either 1 (for males) or 2 (for females), and instead use a
discrete uniform prior. The unnormalized joint distribu-
tion corresponding to this model then becomes:

Pr(C,Y , v;μ,�) ∝

exp
(−0.5(v−μ)′�−1(v−μ)

)
(

1
∑

ci exp vi

)R k∏

i=1
(ci exp vi)yi

where R = ∑
i yi represents the total number of read pairs

in Y.

Hyperparameter estimation
We implemented an expectation maximization algorithm
first described by Hoff to fit the mean and covari-
ance of themultivariate logistic-normal distribution based
on read pair counts from 38 training samples [20, 21]
(Additional file 1: Figure S1). In brief, the iterative process
alternates between maximizing the conditional likelihood
Pr(v|Y ,μ,�) for each sample (to find the conditional
mode of each v), and then maximizing the expectation of
this likelihood with respect to μ and �. Thus the first step
maximizes the following conditional likelihood:

exp
(∑k

i=1 viyi
)

(∑k
j=1 exp vj

)R exp
(

−1
2
(v − μa)

T�−1
a (v − μa)

)

(1)

where μa and �a are the values generated by the previ-
ous EM step. Then subsequent values (μa+1,�a+1) are
estimated through

argmax
μ,�

m∑

i=1
E[ log Pr(vi|μ,�)|Yi,μa,�a]

wherem is the number of training samples. This is approx-
imated by minimizing

m log |�|+
m∑

i=1
(μ̂i−μ)T�−1(μ̂i−μ)+

m∑

i=1
trace

(
�−1�̂i

)

(2)

This simplification takes advantage of the expectation of
a quadratic form and the following multivariate normal
approximation (3) to the conditional likelihood (1),

Pr(v|Y ,μ,�) ≈ MVN(μ̂, �̂) (3)

where μ̂ is the conditional mode of v and �̂ is the negative
inverse Hessian at the mode. Finally (2) is minimized by

μa+1 = 1
m

m∑

i=1
μ̂i and

�a+1 = 1
m

m∑

i=1
[ (μ̂i − μa+1)(μ̂i − μa+1)

T + �̂i

Inferring copy number states
MCMC
Given the unnormalized joint distribution above and esti-
mated hyperparameters, we can estimate the true joint
distribution using a Markov Chain Monte Carlo tech-
nique. This also allows us to approximate the marginal
posterior probability distributions for the copy number
states. Examining the discrete copy number posterior
probability distributions provides an intuitive measure of
confidence (analogous to a high-density credible inter-
val) that can be used as a decision criteria to make copy
number variant calls.
Specifically, we implemented a variation of the

Metropolis-within-Gibbs algorithm, where at each itera-
tion, and for each target, we propose a new copy number
state ci drawn uniformly from its support and a new tar-
get intensity vi conditioned on the most recent values for
all other targets. To analyze convergence of the algorithm,
we calculate and track the Gelman-Rubin potential scale
reduction factor (PSRF) for the complete-data log likeli-
hood and the vi values, over steps of 5000 iterations and
using a coarse optimization over burn-in proportion. As
convergence criteria, we use the standard PSRF threshold
of 1.1 for the log-likelihood and require at least 80% of vi
PSRFs to be less than 1.1 [22, 23]. After convergence, we
calculate posterior probability distributions over the copy
number states for each target from the iteration values.
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Metastability error analysis
In addition to Gelman-Rubin convergence analysis, we
account for some potential metastability error with an
additional likelihood comparison step.Metastability error,
when an MCMC simulation appears to have converged
but has only reached a lower-likelihood metastable state,
is caused by multimodality in the joint distribution space.
In general, we reduce the chance of metastability error by
running multiple chains and selecting overdispersed ini-
tial variable values (inherent in the first convergence anal-
ysis step). To further reduce the possibility of metastability
error causing false positives, we compare the complete-
data log-likelihood (Lm) of the combination of most likely
copy number states (comprised of the most likely copy
number state in the posterior at each target) with the
complete-data log-likelihood (Ln) of the “normal” copy
number state. For instance, in females, this would mean
ci = 2 for all targets. (Before comparison, the log-
likelihoods are optimized with respect to target intensi-
ties, holding the copy number states constant at the values
described above.) If Ln is significantly larger than Lm,
indicating metastability error, we repeat the MCMC sim-
ulation, until the difference Lm −Ln surpasses a minimum
(user-defined) threshold.

Absolute copy number identification
Since our generative model cannot identify the absolute
copy number state when all targets have equal copy
number (as the relative frequency of all targets is
equivalent), we incorporated “baseline” targets, which are
assumed to be consistently representative of the normal
genome-wide copy number. This model component relies
on the concept that there are genes throughout the human
genome which are highly dosage-dependent, and so are
less likely to contain copy number variants in healthy
individuals [24].
In a previous study using a similar sequencing pipeline

[25], we identified several candidate baseline genes based
on criteria including consistent average coverage across
samples. For this study, we then selected a smaller set of
baseline genes based on consistency of coverage relative
to our targets of interest (in this case, DMD exons) across
the samples used for training. Specifically, we ranked the
original candidate genes by coefficient of variation σi/μi,
where

μi = 1
n

∑

n

CDMD
Ci

for n samples

and CDMD and Ci represent the total read pair cover-
age for DMD and gene i respectively. We selected seven
genes with the lowest variation across subjects for a
total of 112 additional “baseline” targets, which were
included in the model and read pair counts as a single

aggregated baseline. These genes and their correspond-
ing regions and coefficients of variation are detailed in
Additional file 2: Table S1. By including this aggregate
baseline along with the targets of interest (thus increasing
the dimensions of our hyperparameters and multinomial
probability by one), we were able to accurately identify
the absolute copy number states of the remaining tar-
gets. To accomplish this, during MCMC sampling, the
copy number state of this aggregate baseline was kept
constant and never updated. We also found that the
final results were fairly robust to the exact number of
genes selected for the aggregate baseline (Additional file 3:
Table S2).

Aggregation and final variant calling
Setting the posterior probability threshold for calling a
copy number state not equal to the normal state helps
determine the sensitivity and specificity of the test. For
our study, we set a conservative threshold of 0.5 in
order to maximize sensitivity, with a trade-off in speci-
ficity. This is equivalent to calling the copy number state
with highest probability when the posterior distribution
spans two states. Unlike other techniques, we did not
attempt to aggregate targets before calling copy number
state (through a hidden Markov model or other method),
instead calling copy number state for each target individu-
ally and afterwards aggregating only those that matched in
copy number. This choice was alsomotivated by our desire
to increase sensitivity for small (single- or double-exon)
CNVs.

Sample selection and sequencing
For this study, a total of 43 volunteer saliva samples,
along with 13 DNA samples obtained from the Coriell
Institute (Coriell Institute for Medical Research, Camden,
NJ) were used for model training and validation exper-
iments. In order to benchmark our method’s ability to
call DMD carrier status in females, the Coriell samples
selected included all 9 samples of female carriers available
from a genomic DNA reference panel created to allow for
DMD genetic test development and quality control [26].
Saliva samples were collected, processed, and sequenced
on the Illumina platform as described previously [25],
with slightmodifications. The sequencing of the saliva and
Coriell research samples sequenced was performed on a
NextSeq 500 sequencing system instead of a MiSeq, and
in order to increase the genomic coverage of the DMD
gene, samples were enriched with a custom mix-in panel
containing a 2:1 ratio of baits from the Illumina TruSight
One (TSO) panel (4813 genes) mixed with the Illumina
Inherited Disease Panel capture bait set (a subset of
552 genes).
Of the volunteer samples, 38 samples were used in train-

ing the model, while the remaining five were used as test
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samples in validation experiments (Table 1). The selec-
tion of 38 samples to use for hyper-parameter estimation
was based on an initial estimate of the sample size
required. However, as described later simulations allowed
us to demonstrate that only ∼ 35 samples would likely
have been sufficient. All samples from Coriell were used
as test samples in the validation experiments (Table 1,
Additional file 4: Table S3). In addition, data from 13 vol-
unteer samples previously sequenced using the TSO panel
(according to the manufacturer’s protocol), was used in
the training sample selection analysis (Additional file 1:
Figure S1).

Read pair coverage
Exon target coordinates were determined based on the
intersection of TSO panel bait intervals and exon loca-
tions designated by Ensembl database transcripts for
hg19 (for DMD transcript ENST00000357033.8, Ref-
Seq NM_004006 was used). Coverage across exon tar-
gets was calculated using a module (included in the
geneCNV package) to extract read pair counts from
individual BAMs, where each counted molecule corre-
sponds to a properly mapped pair of reads. Included
reads were correctly oriented, with mapping quality
≥ 60 and insert length less than a designated merge
distance (629 bp for DMD). Before computation, exons
closer than the designated distance were merged to avoid
repeated counting of read pairs that overlapped more
than one exon. Reads flagged as PCR duplicates were
excluded. In addition, due to insufficient and inconsistent
coverage, exon 78 in DMD (chrX: 31144758-31144790)
was excluded from all subsequent analysis. Summary
coverage across the primary exons of DMD for train-
ing and test samples is visualized in Additional file 5:
Figure S2.

MLPA
Copy number states across DMD targets were confirmed
for all samples analyzed in the software comparison
through multiplex ligation-dependent probe amplifica-

Table 1 Samples used for training and testing

Number
of samples

DMDmutation Sex Source Group

38 No known mutations Female Volunteer Training

9 Various CNVs (Additional
file 4: Table S3)

Female Coriell Test

4
a

None Female Volunteer Test

2
a

None Female Coriell Test

2
b

Various CNVs (Additional
file 4: Table S3)

Male Coriell Test

1
b

No known mutations Male Volunteer Test
a
Used as negative control for software comparison only

b
Used only for supplemental experiment (Additional file 10: Figure S7)

tion (MLPA). All amplification and processing steps
were performed according to MLPA General Protocol
and manufacturer protocol for the SALSA MLPA P034
DMD probe mix kit (MRC-Holland, Netherlands). Frag-
ment separation and analysis was performed on the PCR
products via capillary electrophoresis on the ABI 3130xl
(Applied Biosystems, Foster City, USA). Data files were
analyzed with Coffalyser.NET software maintained by
MRC-Holland.

Package Installation and Usage
geneCNV is a python package that provides a suite of
programs to be run at the command line to train the
model and test new samples for CNVs. Full documenta-
tion and tutorial for it is available online at http://genecnv.
readthedocs.io/en/latest/index.html. Here, we very briefly
review the main commands and workflows described by
that documentation.
To begin using the package, one must first train the

model hyperparameters. This requires a list of targets (e.g.
exon locations) in the standard BED file format [27] which
defines the genomic locations of regions whose copy num-
ber will be inferred by the program. Additionally, one
needs a collection of BAM files from samples that are
presumed normal for parameter training.
When selecting samples for model training, they should

both capture the expected variation across samples, but
also be drawn from similar enough samples that the para-
metric model described here is valid and there are no large
categorical differences between them. For example, data
could all come from a similar sequencing protocol (e.g.
identical genomic extraction, bait set, instrument, etc.)
but also capture the variation that is introduced as the
protocol is repeated through time (e.g. different sequenc-
ing runs, lot numbers for reagents, technicians etc.).
Additional file 1: Figure S1 shows correlations between
samples used for training in this paper, as well as sam-
ples that were obtained using different baits for the exome
enrichment. Data from the same bait set is well correlated,
but data from different bait sets is strikingly different,
indicating that data from one bait set should not be used
to train a model that will analyze data from a different bait
set.
Given a collection of BAM files containing sequence

data from samples available for training and a corre-
sponding BED file, the geneCNV package contains two
commands that are used for hyper parameter training.
The first, create-matrix will take a list of BAM files
and genomic intervals and produce a file listing the num-
ber of read pairs mapping to each specified target. The
second command, train-model will then analyze that
matrix to infer the mean and variance hyperparameters
for the model.

http://genecnv.readthedocs.io/en/latest/index.html
http://genecnv.readthedocs.io/en/latest/index.html
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Once a model is trained, it can be used to evaluate
new samples of unknown copy number state using the
evaluate-sample command, which takes as input the
hyperparameters output by the previous training com-
mand and coverage data from a new sample. As output,
this command will produce a text file with the marginal
posterior probabilities for the copy number state at each
exon, another text file giving a summary of any CNVs
detected, and a PDF graphic which provides a visualiza-
tion of the copy number states as shown in Fig. 3c and d.
Together, the three commands in the package provide a
complete workflow from model training through analysis.

Results
Simulated parameter estimation error and classification
performance
There are several potential sources of error in the model’s
ability to accurately call CNVs, including poor estimation
of the prior distribution’s hyperparameters, and subse-
quent inference error (of the copy number state proba-
bility distributions) introduced during MCMC sampling.
As a proof of concept, we quantified the expected effects
of varying read pair coverage and the number of training
samples on the resulting error using simulated data.
Figure 2 shows how the hyperparameter estimation

error decreases as the both the number of samples and

the total coverage per sample increases. We considered
a single set of representative parameters, derived from
mean and covariance values estimated from a cohort of
high coverage samples. We then estimated these param-
eters using our EM training algorithm after simulating
increasing numbers of read pairs for different num-
bers of samples. Error in estimation of the covariance
terms decreased more significantly and consistently com-
pared to error in the mean, though increasing coverage
beyond 75,000 read pairs led to only a marginal continued
decrease in error for both parameters. Similarly, increas-
ing the size of the sample training set beyond 400 samples
led to more modest decreases in estimation error of both
the mean and covariance terms.
In terms of estimating the logistic-normal mean (and

the resulting mean exon intensity values), even using just
35 training samples (and read pair coverage of 45,000)
reduced the average percent error in the normalized xi
intensities to 1%. However, the percent error in the
covariance terms was proportionally much higher, possi-
bly because true covariation between targets (represented
in the off-diagonal terms of the matrix) is likely very
low on an absolute level. Analyzing the distribution of
expected error in the covariance matrix revealed that
there is a small number of terms with extremely high pro-
portional error, and in fact, the median percent error is

Fig. 2 Error in multivariate normal hyperparameter estimation Original parameter (mean and covariance) values were derived from representative
estimates for 79 targets across DMD (and an additional baseline target) using a cohort of high coverage samples. Each point represents the mean
absolute percent error across 5 simulated sets of subjects at the coverage and cohort size indicated. For example, this is calculated as follows for μ

and values of estimated μ̂: 100 ∗ 1
5

∑5
k=1

1
79

∑
i
μi − μ̂i

μi
a shows percent error averaged across μ; b shows percent error averaged across the

expected normalized xi values; cmean and dmedian percent error across terms in �. Legend values indicate total read pair counts (including
baseline targets) for each coverage level simulated
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less than 60% for most cohort and coverage levels tested
(Fig. 2) (Additional file 6: Figure S3 and Additional file 7:
Figure S4). Thus, while limiting the mean percent error
in the covariance terms to less than 100% would require
an unrealistic cohort size and level of coverage for this
number of targets, the majority of covariance terms could
be estimated to within 80% of their true values with 35
training samples (and read pair coverage of 45,000).
Because the original parameters included a term repre-

senting the aggregate baseline, the total read pair count
includes coverage outside of the main targets of inter-
est (in this scenario, only about 46% of the total read
pairs map to targets corresponding to exons in the gene
of interest). Thus, coverage of 45,000 read pairs repre-
sents coverage at the level of approximately 21,000 for
a gene similar to DMD. In terms of per-base coverage,
this corresponds to an average read depth of about 250.
Overall, the analysis indicates that at least 35 training
samples with high coverage (> 200) across the gene of
interest are needed to limit the parameter estimation
error (particularly in the covariance terms) to a reasonable
amount.
We also investigated the effect of increasing test sam-

ple coverage on the model’s ability to infer relative copy
number states (Fig. 3). For this experiment, we assumed
no estimation error in the prior parameters and gen-
erated all test sample target intensities from the same
logistic-normal hyperparameters. We simulated nine dif-
ferent samples (eight with CNVs corresponding to those
found in the Coriell test subjects, and one negative con-
trol) with levels of total read pair coverage varying from
15,000 to 105,000. In generating the copy number calls,
we used credible interval cutoffs (instead of a threshold
as described in Methods) to measure the proportion of
targets we could call with reasonable certainty at each
coverage level (callable targets). This analysis shows that
even with a high calling cutoff, increasing test sample
coverage to approximately 45,000 (∼ 21,000 for gene of
interest) is sufficient to raise exon-level sensitivity and
specificity above 95%, with marginal improvements as
coverage increases beyond this level. At a slightly lower
cutoff, all three metrics reach 100% at a coverage of 75,000
(∼ 34,000 for gene of interest). Thus, assuming the model
has very low parameter estimation error, read pair cov-
erage of 21,000 should generate accurate copy number
calls.
In addition, Fig. 3 demonstrates the behavior of the

MCMC results at very different coverage levels. At an
extremely low coverage level (750 total read pairs), the
resulting estimates for the copy number state distributions
show a large amount of uncertainty, and the underly-
ing true copy number states are unidentifiable. At a high
level of coverage (45,000 read pairs total, with ∼ 20,700
mapping to the gene of interest), the copy number state

distributions clearly indicate the simulated heterozygous
deletion of five exons in this sample.

Validation with samples heterozygous for CNVs in DMD
To initially assess the model’s ability to accurately call
CNVs in DMD, we used samples from nine Coriell sub-
jects (eight of which are heterozygous for CNVs of various
sizes, ranging from a single exon deletion to a 29 exon
duplication). We estimated model hyperparameters from
a set of 38 volunteer subjects sequenced using the same
pipeline as the Coriell test subjects (Additional file 1:
Figure S1). Figure 4 illustrates the model’s performance at
different credible interval cutoff and threshold values. The
proportion of certain calls at cutoffs of 0.9 and 0.99 were
consistent with our simulation results, given the average
DMD coverage (16,400) of these nine samples (36,000
across DMD and baseline targets). The observed sensitiv-
ity and specificity at these cutoff values were also roughly
consistent with the simulation results in Fig. 3, indicat-
ing fairly low parameter estimation error from model
training. As in the simulation, decreasing the cutoff con-
sistently increased both sensitivity and specificity, though
neither sensitivity nor specificity reached 1.0, even at
the lowest possible cutoff. This indicated some noise in
the final MCMC results (and potentially some error in
the hyperparameter estimation), likely due to the lower
coverage of these samples.
In calling complete copy number states, we used a

conservative threshold of 0.5 instead of a cutoff (to gen-
erate calls across all targets), which achieved an exon-
level sensitivity of 0.961 and a specificity of 0.997. Of
the 77 exons included in the CNVs, 74 were correctly
called by our model; the three false negatives were
three non-contiguous exons in a 29-exon duplication
(Table 2, Additional file 8: Table S5). At the subject
level, where one only has to detect a change in any
exon’s copy number to qualify the subject as a carrier,
we observed perfect concordance between the geneCNV
analysis and the known carrier statuses for these test
samples.

Comparison to other software methods
Although no single software technique has been estab-
lished for standard clinical use in CNV analysis, we
selected three other published techniques (representing
diverse approaches to the problem of heterozygous CNV
detection) for comparison with geneCNV. XHMM [13]
uses a PCA-based approach to remove batch-level vari-
ation and a hidden Markov model to identify deletions
and duplications. This approach makes the program well-
suited for discovering relatively larger CNVs throughout
whole exomes, using large cohorts of samples. CNVkit
[14] utilizes a segmentation algorithm to identify regions
differing in copy number, in addition to bias correction
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Fig. 3 Classification performance with increasing read pair coverage Individual subject target intensities for nine simulated subjects were generated
from hyperparameters estimated from a cohort of 38 volunteer subjects. True copy number states from nine Coriell test subjects (eight with CNVs
and one negative control) were used to set multinomial probabilities before read pair coverage simulation. Panel x-axes indicate the total number
of simulated read pairs mapping to the relevant exon targets (including the baseline targets). a and b indicate classification performance under the
credible interval cutoffs of 0.99 and 0.9 respectively (i.e. targets where the highest-density interval of the chosen size overlaps two copy number
states are not assigned a call). Callable targets are those assigned a final copy number call given the chosen cutoff. c and d display the copy number
state visualization produced after MCMC sampling c indicates a typical result using a low read pair coverage (750 total read pairs). The underlying
copy number states are unidentifiable. d shows results for a simulated sample with the same true copy number states as c but a total read pair
coverage of 45,000 (approximately 20,700 at the targets of interest)

and reference normalization steps to subsequently call
deletions and duplications. Finally, ExomeDepth [15] fits
a beta-binomial model to the exon-level read-depth ratios
of test and reference samples in order to identify copy
number variants.

We used the same set of DMD-positive Coriell sam-
ples to measure exon- and subject-level sensitivity for
each of the four methods, and included an additional six
negative controls (two more Coriell samples and four vol-
unteer samples) to better estimate subject-level specificity
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Fig. 4 Sensitivity and specificity trade-off as cutoff and threshold vary exon-level classification performance of geneCNV model on nine Coriell
samples, after hyperparameter training on 38 volunteer samples. Among the nine Coriell test samples here, there were a total of 77 affected exons
and 634 unaffected exons, used in calculating sensitivity and specificity respectively. a shows the effects of varying the credible interval cutoff on
the proportion of callable targets, true positives (sensitivity), and true negatives (specificity) for this test set. Exons where the highest-density interval
of the chosen cutoff size spans two copy number states are given an “uncertain” call and not included in subsequent sensitivity and specificity
analysis. b shows the effects of varying the threshold for abnormal copy number state probability (as defined in Methods) on sensitivity and
specificity. Note that every exon is given a copy number call using this schema

(Table 1 and Additional file 4: Table S3). Since the other
algorithms are designed to utilize a larger number of cap-
ture targets, we expanded their interval inputs to targets
throughout the entire X chromosome for our first com-
parison (Table 3). However, in calculating sensitivity and
specificity, we only considered CNV calls in the DMD
gene. Most prominently, we found that the other three

tools did not generate any false positive calls, so their
specificities on an exon-level were higher than that of
geneCNV, although on the subject-level, all of the meth-
ods had a specificity of 1.0. However, XHMM and CNVkit
did not detect several CNVs in different subjects, result-
ing in significantly lower subject-level sensitivities. Both
geneCNV and exomeDepth identified the CNVs in all

Table 2 Inferred DMD copy number variants in test samples

geneCNV exon-level calls

Sample ID Coriell/MLPA
status

Targets Class Copy
number

Mean
posterior

Genomic Region

NA05117 Ex45DEL Ex45 Deletion 1 1.0 X:31986445-31986641

NA04099 Ex49-
52DEL

Ex49-52 Deletion 1 1.0 X:31747737-31854949

NA05159 Ex46-
50DEL

Ex46-50 Deletion 1 1.0 X:31838081-31950354

NA07692 Ex1-
18DEL

Ex1-18 Deletion 1 1.0 X:32536114-33229673

Ex2-9 Duplication 3 0.9975 X:32715976-33038327

NA23087 Ex2-30DUP Ex11-22 Duplication 3 1.0 X:32490270-32662440

Ex24-25 Duplication 3 1.0 X:32481545-32482826

Ex27-30 Duplication 3 1.0 X:32429858-32466765

NA23094 Ex35-
43DEL

Ex35-43 Deletion 1 1.0 X:32305635-32383326

NA23099 Ex8-17DUP Ex8-17 Duplication 3 0.9376 X:32563265-32717420

Ex5
a

Duplication 3 0.6521 X:3284140-328415141

NA04315 Ex44DEL Ex44 Deletion 1 1.0 X:32235022-32235190

Ex2
a

Deletion 1 0.7831 X:33038245-33038327

Mean posterior represents the average posterior probability for the copy number status indicated across the targets called.
a
Indicates an exon-level false positive result not consistent with MLPA CNV status. Mean posterior values for these exons are significantly lower than for other calls
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Table 3 Software results comparison

geneCNV exomeDepth XHMM CNVkit

Subject-level sensitivity 1.0 1.0 0.75 0.5

Exon-level sensitivity 0.961 0.974 0.922 0.857

Subject-level specificity 1.0 1.0 1.0 1.0

Exon-level specificity 0.998 1.0 1.0 1.0

positive samples, though exomeDepth did outperform
geneCNV slightly in terms of exon-level sensitivity.
The two CNVs not detected by either XHMM or

CNVkit were both single-exon deletions, which suggests
fundamental limitations in these techniques’ power to call
small heterozygous CNVs. As CNVkit relies on a segmen-
tation algorithm, it is likely that very small CNVs would be
filtered out as noise instead of separate segments, and the
authors in fact reported poorer sensitivity on small CNVs.
Similarly, XHMM’s combination of read-depth normal-
ization and hidden Markov model for identification of
contiguous CNVs could result in small CNVs being dis-
counted as noisy data. Manually increasing the Markov
model’s exome-wide CNV rate did not improve XHMM’s
sensitivity, although the relatively small cohort used in this
study would also limit its performance.
Like geneCNV, exomeDepth identified CNVs (with

greater than 80% overlap) in all eight positive samples.
The two approaches are similar in that, fundamentally,
they attempt to detect deviation from an expected read
count at a particular exon; in geneCNV, this expected
read pair count is calculated relative to other targets in
the test sample, while in exomeDepth, the expected read
count is calculated relative to the same target in an aggre-
gated set of reference samples. This model distinction
helps illustrate a key difference in how performance can
change for the two methods as the number of targets
increases. Adding additional targets during geneCNV’s
parameter estimation step increases the number of covari-
ance terms to estimate, and thus the potential estimation
error (Additional file 9: Figure S6), whereas additional tar-
gets in exomeDepth provide more data observations on
which to fit the beta-binomial model.
We then performed a second comparison where we

limited the target inputs to all software techniques, simu-
lating a limited gene panel (Table 4). We included data for
all exons in DMD and the seven genes used as baselines
during absolute copy number identification (Methods). In

Table 4 Software results comparison (limited gene panel)

geneCNV exomeDepth XHMM CNVkit

Subject-level sensitivity 1.0 0.875 0.75 0.5

Exon-level sensitivity 0.961 0.623 0.883 0.857

Subject-level specificity 1.0 1.0 1.0 1.0

Exon-level specificity 0.998 1.0 1.0 1.0

this comparison, geneCNV had the highest sensitivity on
both the exon and subject levels. Sensitivity decreased
overall for the other three methods, though their levels
of specificity did not change. In particular, exomeDepth
had significantly lower exon- and subject-level sensitivi-
ties, as it did not identify a 29-exon duplication in one of
the samples. These results indicate greater advantage (in
terms of achieving both high sensitivity and specificity) in
using geneCNV with smaller targeted gene panels, where
the total number of genes is limited.

Discussion
In this study, we developed and validated a novel com-
putational method for identifying copy number variants
from targeted exome sequencing data using a generative
Bayesian model. Unlike most other methods, our genera-
tive model is intended to be representative of the under-
lying reactions, including paired-end read alignment,
during a typical hybrid-capture sequencing pipeline. An
advantage of our approach is that the hyperparameters
can be used to define an expected (or reference) range
of normal samples, which must be estimated for tests in
CLIA certified labs [28]. Additionally, although in many
contexts this reference range is a “nuisance parameter”
which unlike the copy number state is not directly of inter-
est, defining the expected range of normal variation across
replicate samples with these hyperparameters provides a
direct way to perform quality control management and
detect deviations in clinical sequencing processes.
Since our technique models target alignment with a

multinomial distribution, an important consideration was
the prior distribution for the multinomial parameters.
Our simulation results indicate that using a multivariate
logistic-normal distribution yields accurate copy num-
ber identification when the prior parameters are well-
estimated and coverage is sufficiently high (approximately
21,000 read pairs across targets of interest, or an average of
275 read pairs per exon). The accuracy of the prior param-
eter estimation is sensitive to the number of samples in
the reference set, in addition to these samples’ coverage
levels. Assuming a similarly high level of coverage, the
prior mean can be accurately estimated with as few as 30
reference samples. The prior covariance can be reason-
ably estimated with 30-50 samples, although additional
reference samples (and increased coverage) will improve
parameter estimation.
We then demonstrated the method’s utility as part of a

downstream clinical analysis of copy number variation in
the context of carrier screening for the DMD gene. We
used geneCNV to detect CNVs in nine Coriell samples
with known carrier statuses (including eight with large
deletions or duplications and one negative control). On
a subject level, we found complete concordance between
the overall carrier statuses of these samples (which were
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independently confirmed by MLPA), and the mutation
calls generated by our program. Across the total number
of affected and unaffected exons in these nine samples,
we observed an overall sensitivity of 0.96 and a specificity
of 0.998, indicating almost complete agreement between
geneCNV’s mutation calls and actual copy number state
on an exon level as well.
Compared to existing software designed to detect CNVs

using exome sequencing data, geneCNV tends to be more
sensitive to small deletions and duplications. This is con-
sistent with the idea that many published methods do
not focus explicitly on CNV detection as part of clinical
germline analysis, and are instead better suited for goals
such as tumor analysis and rare CNV discovery. However,
the package exomeDepth achieved results very similar to
ours and was the only compared technique with higher
performance on both exon-level sensitivity and specificity.
ExomeDepth’s approach is also most related to ours

from a modeling perspective, but an important difference
is that increasing the number of targets improves the fit
of exomeDepth’s model. Conversely, limiting the number
of targets tested simultaneously with geneCNV increases
parameter estimation accuracy. Indeed, when using input
data from only a few genes, geneCNV achieved higher
sensitivity for CNVs in DMD than exomeDepth, which
suggests potentially distinctive use-cases for geneCNV
and exomeDepth. For whole exome sequencing data, or
very large sequencing panels, exomeDepth is likely to
have comparable or better performance than geneCNV
in identifying CNVs across large numbers of targets
(> 100). With fewer targets and limited gene pan-
els though, geneCNV is more likely to achieve results
closest in sensitivity and specificity to clinically used
assays.
Using geneCNV for clinical CNV analysis in DMD

demonstrates another advantage of the model, which
allows for testing of targets on the sex chromosomes
in addition to autosomal targets. As long as baseline
normalization is included, and the model is trained on
female samples, absolute copy numbers can be estimated
for targets across all chromosomes for both male and
female test samples (Additional file 10: Figure S7),
allowing the model to both detect female carriers ofDMD
mutations and diagnose affected males.
Finally, it is important to note that geneCNV’s model

is applicable for CNV detection for diseases and genes
outside of DMD, provided that users train the model on
an appropriate training set. As for DMD, any samples used
in these training sets should not contain CNVs in the
targets of interest, and should be processed using the same
sequencing pipeline in order to provide accurate results
for test samples. In addition, any baseline targets should
be reevaluated for consistency of coverage relative to the
disease-relevant targets.

Conclusions
This validation of our computational technique for CNV
detection helps expand the potential utility of whole
exome and targeted panel sequencing used in carrier
screening. This is particularly true for genes like DMD
which have thus far been inadequately covered by most
existing carrier screens. By incorporating our technique
into an existing high-throughput sequencing pipeline,
clinicians can more easily conduct accurate CNV analy-
sis for multiple disease-causing genes without relying on
additional laboratory assays. Notably, because geneCNV
uses an explicit parametric model, its hyperparame-
ters can be used to define the reference range required
for CLIA approved laboratory tests [28], allowing the
technique to be readily applied in these laboratories.

Additional files

Additional file 1: Figure S1. Pairwise sample correlation for normalized
DMD target coverage. (PDF 213 kb)

Additional file 2: Table S1. Selected baseline genes and coefficients of
variation. (PDF 98 kb)

Additional file 3: Table S2. Effects of baseline selection on exon-level
sensitivity and specificity. (PDF 46 kb)

Additional file 4: Table S3. Coriell samples used for validation and
supplemental experiments. (PDF 53 kb)

Additional file 5: Figure S2. Read pair coverage for training and test
samples. (PDF 483 kb)

Additional file 6: Figure S3. Covariance estimation error. (PDF 202 kb)

Additional file 7: Figure S4. Covariance estimation error distributions.
(PDF 169 kb)

Additional file 8: Figure S5. Results and coverage comparison for
subject NA02387. (PDF 291 kb)

Additional file 9: Figure S6. Estimation error with target number.
(PDF 204 kb)

Additional file 10: Figure S7. CNV identification in male subjects.
(PDF 253 kb)

Abbreviations
CLIA: Clinical laboratory improvement amendments; CNV: Copy number
variant; DMD: Duchenne muscular dystrophy; EM: Expectation-Maximization;
MCMC: Markov chain monte carlo; MLPA: Multiplex ligation-dependent probe
amplification; MVN: Multivariate normal distribution; NGS: Next generation
sequencing; TSO: TruSight one; WES: Whole exome sequencing

Acknowledgements
The authors thank Dr. Lee Silver and Dr. Emily Delaney for comments on earlier
versions of this manuscript, and Dr. Lon Chubiz for help performing the MLPA
assays. We also thank the editor, and three reviewers for their time and helpful
comments.

Funding
This study was funded by GenePeeks, Inc.

Availability of data andmaterials
Source code and documentation for geneCNV can be downloaded from
http://github.com/vkozareva/geneCNV.

Authors’ contributions
VK and NFD developed the statistical model. VK, MS, JF and NFD wrote the
software. CS performed all sequencing and MLPA experiments. VK, CS and
NFD wrote the paper. All authors read and approved the final manuscript.

https://doi.org/10.1186/s12920-018-0404-4
https://doi.org/10.1186/s12920-018-0404-4
https://doi.org/10.1186/s12920-018-0404-4
https://doi.org/10.1186/s12920-018-0404-4
https://doi.org/10.1186/s12920-018-0404-4
https://doi.org/10.1186/s12920-018-0404-4
https://doi.org/10.1186/s12920-018-0404-4
https://doi.org/10.1186/s12920-018-0404-4
https://doi.org/10.1186/s12920-018-0404-4
https://doi.org/10.1186/s12920-018-0404-4
http://github.com/vkozareva/geneCNV


Kozareva et al. BMCMedical Genomics           (2018) 11:91 Page 12 of 12

Ethics approval and consent to participate
In accordance with the DHHS Office for Human Research Protections
guidance, the Coriell samples used in this study are not considered human
subjects research. Similarly, the 43 volunteer saliva samples were de-identified
prior to analysis, and so according to the Federal Policy for the Protection of
Human Subjects (‘Common Rule’), are not considered human subjects.
However, all volunteers also agreed to participate in research by signing an
optional research consent form that allows their de-identified data to be used
in this study.

Consent for publication
Not applicable (No individual data).

Competing interests
VK, CS, MS, JF and NFD are employees of and hold equity in GenePeeks, Inc.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 29 January 2018 Accepted: 18 September 2018

References
1. Coughlin CR, Scharer GH, Shaikh TH. Clinical impact of copy number

variation analysis using high-resolution microarray technologies:
advantages, limitations and concerns. Genome Med. 2012;4(10):80.

2. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW,
Hegde M, Lyon E, Spector E, et al. Standards and guidelines for the
interpretation of sequence variants: a joint consensus recommendation
of the american college of medical genetics and genomics and the
association for molecular pathology. Genet Med. 2015;17(5):405.

3. Hehir-Kwa JY, Pfundt R, Veltman JA. Exome sequencing and whole
genome sequencing for the detection of copy number variation. Expert
Rev Mol Diagn. 2015;15(8):1023–32.

4. Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP,
Church DM, Crolla JA, Eichler EE, Epstein CJ, Faucett WA, Feuk L,
Friedman JM, Hamosh A, Jackson L, Kaminsky EB, Kok K, Krantz ID,
Kuhn RM, Lee C, Ostell JM, Rosenberg C, Scherer SW, Spinner NB,
Stavropolous DJ, Tepperberg JH, Thorland EC, Vermeesch JR,
Waggoner DJ, Watson MS, Martin CL, Ledbetter DH. Consensus
statement: Chromosomal microarray is a first-tier clinical diagnostic test
for individuals with developmental disabilities or congenital anomalies.
Am J Hum Genet. 2010;86(5):749–64.

5. Pfundt R, del Rosario M, Vissers L, Kwint MP, Janssen IM, de Leeuw N,
Yntema HG, Nelen MR, Lugtenberg D, Kamsteeg E, Wieskamp N,
Stegmann A, Stevens S, Rodenburg R, Simons A, Mensenkamp AR,
Rinne T, Gilissen C, Scheffer H, Veltman JA, Hehir-Kwa JY. Detection of
clinically relevant copy-number variants by exome sequencing in a large
cohort of genetic disorders. Genet Med. 2017;19:667–75.

6. Beauchamp KA, Wong HKK, J G, Haque IS. 185: The impact of copy
number analysis in expanded carrier screening. Am J Obstetrics Gyn.
2017;216(1):121.

7. Henneman L, Borry P, Chokoshvili D, Cornel MC, van El CG, Forzano F,
Hall A, Howard HC, Janssens S, Kayserili H, Lakeman P, Lucassen A,
Metcalfe SA, Vidmar L, de Wert G, Dondorp WJ, Peterlin B. Responsible
implementation of expanded carrier screening. Eur J Hum Genet.
2016;24(6):1–12.

8. Bell CJ, Dinwiddie DL, Miller NA, Hateley SL, Ganusova EE, Mudge J,
Langley RJ, Zhang L, Lee CC, Schilkey FD, Sheth V, Woodward JE,
Peckham HE, Schroth GP, Kim RW, Kingsmore SF. Carrier testing for
severe childhood recessive diseases by next-generation sequencing. Sci
Transl Med. 2011;3(65):65–4.

9. Tuffery-Giraud S, Béroud C, Leturcq F, Yaou RB, Hamroun D,
Michel-Calemard L, Moizard MP, Bernard R, Cossée M, Boisseau P,
Blayau M, Creveaux I, Guiochon-Mantel A, de Martinville B, Phillippe C,
Monnier N, Bieth E, Khau Van Kien P, Desmet FO, Humbertclaude V,
Kaplan JC, Chelly J, Claustres M. Genotype-phenotype analysis in 2,405
patients with a dystrophinopathy using the UMD-DMD database: a
model of nationwide knowledgebase. Hum Mutat. 2009;30(6):934–40.

10. Chen C, Ma H, Zhang F, Chen L, Xing X, Wang S, Zhang X, Luo Y.
Screening of duchenne muscular dystrophy (DMD) mutations and

investigating its mutational mechanism in chinese patients. PLoS ONE.
2014;9(9):108038.

11. Zhao M, Wang Q, Wang Q, Jia P, Zhao Z. Computational tools for copy
number variation (CNV) detection using next-generation sequencing
data: features and perspectives. BMC Bioinformatics. 2013;14(Suppl 11):1.

12. Tattini L, D’Aurizio R, Magi A. Detection of genomic structural variants
from next-generation sequencing data. Front Bioeng Biotechnol.
2015;3:92.

13. Fromer M, Moran JL, Chambert K, Banks E, Bergen SE, Ruderfer DM,
Handsaker RE, McCarroll SA, O’DonovanMC, OwenMJ, Kirov G, Sullivan PF,
Hultman CM, Sklar P, Purcell SM. Discovery and statistical genotyping of
copy-number variation from whole-exome sequencing depth. Am J Hum
Genet. 2012;91(4):597–607.

14. Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: Genome-wide copy
number detection and visualization from targeted DNA sequencing.
PLOS Comput Biol. 2016;12(4):1004873.

15. Plagnol V, Curtis J, Epstein M, Mok KY, Stebbings E, Grigoriadou S,
Wood NW, Hambleton S, Burns SO, Thrasher AJ, Kumararatne D,
Doffinger R, Nejentsev S. A robust model for read count data in exome
sequencing experiments and implications for copy number variant
calling. Bioinformatics. 2012;28(21):2747–54.

16. Samarakoon PS, Sorte HS, Stray-Pedersen A, Rodningen OK, Rognes T,
Lyle R. cnvScan: a CNV screening and annotation tool to improve the
clinical utility of computational CNV prediction from exome sequencing
data. BMC Genomics. 2016;17:51.

17. Jo HY, Park MH, Woo HM, Kim BY, Choi BO, Chung KW, K KS.
Application of whole-exome sequencing for detecting copy number
variants in CMT1A/HNPP. Clin Genet. 2016;90(2):177–81.

18. White SJ, den Dunnen JT. Copy number variation in the genome; the
human DMD gene as an example. Cytogenet Genome Res. 2006;115:
240–6.

19. Stuppia L, Antonucci I, Palka G, Gatta V. Use of the MLPA assay in the
molecular diagnosis of gene copy number alterations in human genetic
diseases. Int J Mol Sci. 2012;13(3):3245–76.

20. Hoff PD. Nonparametric modeling of hierarchically exchangeable data.
University of Washington Statistics Department, Technical Report.
2003;42.

21. Huang J, Malisiewicz T. Fitting a hierarchical logistic normal distribution.
Carnegie Mellon University, Technical Report. 2009.

22. Gelman A, Carlin J, Stern HS, Dunson DB, Vehtari A, Rubin DB. Basics of
markov chain simulation. In: Dominici F, Faraway JJ, Tanner M, Zidek J,
editors. Bayesian Data Analysis. 3rd edn. New York: Chapman and Hall;
2014. p. 275–91.

23. Brooks SP, Gelman A. General methods for monitoring convergence of
iterative simulations. J Comput Graph Stat. 1998;7(4):434–55.

24. Rice AM, McLysaght A. Dosage sensitivity is a major determinant of
human copy number variant pathogenicity. Nat Commun. 2017;8:14366.

25. Larson JL, Silver AJ, Chan D, Borroto C, Spurrier B, Silver LM. Validation
of a high resolution NGS method for detecting spinal muscular atrophy
carriers among phase 3 participants in the 1000 genomes project. BMC
Med Genet. 2015;16:100.

26. Kalman L, Leonard J, Gerry N, Tarleton J, Bridges C, Gastier-Foster JM,
Pyatt RE, Stonerock E, Johnson MA, Richards CS, et al. Quality assurance
for duchenne and becker muscular dystrophy genetic testing:
development of a genomic DNA reference material panel. J Mol Diagn.
2011;13(2):167–74.

27. Quinlan AR, Hall IM. Bedtools: a flexible suite of utilities for comparing
genomic features. Bioinformatics. 2010;26(6):841–2.

28. 42 CFR Part 493, subpart K (493.1253) Standard: Establishment and
verification of performance specifications. 2010.


	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Methods
	A generative model for read depth data
	Hyperparameter estimation
	Inferring copy number states
	MCMC
	Metastability error analysis

	Absolute copy number identification
	Aggregation and final variant calling
	Sample selection and sequencing
	Read pair coverage
	MLPA
	Package Installation and Usage

	Results
	Simulated parameter estimation error and classification performance
	Validation with samples heterozygous for CNVs in DMD
	Comparison to other software methods

	Discussion
	Conclusions
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5
	Additional file 6
	Additional file 7
	Additional file 8
	Additional file 9
	Additional file 10

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

