
RESEARCH ARTICLE Open Access

Identification of glioblastoma gene
prognosis modules based on weighted
gene co-expression network analysis
Pengfei Xu, Jian Yang, Junhui Liu, Xue Yang, Jianming Liao, Fanen Yuan, Yang Xu, Baohui Liu and Qianxue Chen*

Abstract

Background: Glioblastoma multiforme, the most prevalent and aggressive brain tumour, has a poor prognosis. The
molecular mechanisms underlying gliomagenesis remain poorly understood. Therefore, molecular research,
including various markers, is necessary to understand the occurrence and development of glioma.

Method: Weighted gene co-expression network analysis (WGCNA) was performed to construct a gene co-
expression network in TCGA glioblastoma samples. Gene ontology (GO) and pathway-enrichment analysis were
used to identify significance of gene modules. Cox proportional hazards regression model was used to predict
outcome of glioblastoma patients.

Results: We performed weighted gene co-expression network analysis (WGCNA) and identified a gene module
(yellow module) related to the survival time of TCGA glioblastoma samples. Then, 228 hub genes were calculated
based on gene significance (GS) and module significance (MS). Four genes (OSMR + SOX21 +MED10 + PTPRN) were
selected to construct a Cox proportional hazards regression model with high accuracy (AUC = 0.905). The prognostic
value of the Cox proportional hazards regression model was also confirmed in GSE16011 dataset (GBM: n = 156).

Conclusion: We developed a promising mRNA signature for estimating overall survival in glioblastoma patients.

Keywords: GBM, WGCNA, TCGA, Cox proportional hazards regression module

Background
Glioblastoma multiforme (GBM), the most prevalent and ag-
gressive primary intracranial tumour, displays heterogeneity,
rapid proliferation and extensive invasion, with a median
survival of approximately 15 months [1, 2]. Therefore, devel-
oping appropriate and effective biomarkers to predict prog-
nosis is crucial for glioblastoma patients. Previous genomic
analyses of glioblastoma have identified some molecular
markers, including epidermal growth factor receptor (EGFR),
platelet-derived growth factor receptor alpha (PDGFRA),
vascular endothelial growth factor (VEGF), insulin-like
growth factor 1 (IGF-1), P53 and isocitrate dehydrogenase 1
(IDH1), and X-linked alpha thalassemia mental retardation
syndrome gene (ATRX) [3, 4]. In addition, methylation levels
of the promoter of O6methylguanineDNA methyltransferase

(MGMT) are related to sensitivity of temozolomide therapy
and the prognosis of patients. The 1p/19q loss is another
prognosis marker and indicates a better prognosis [5].
With the development of high-throughput sequencing

and bioinformatics, abundant sequencing data provide a
remarkable opportunity to detect glioblastoma-associated
key genes, networks and pathways. However, identification
of these features remains challenging. Weighted gene
co-expression network analysis (WGCNA) is a system
biology method used for describing the correlation pat-
terns among genes and finding highly correlated modules.
In this study, we performed WGCNA for RNASeq data
derived from The Cancer Genome Atlas (TCGA) and re-
constructed gene co-expression networks. Then, we iden-
tified gene modules related to survival and recurrence
time. Using Kaplan-Meier survival analysis and multivari-
ate Cox regression analysis, we identified an independent
prognostic model. This finding provides new insights into
the molecular mechanism of GBM.
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Methods
Data download and pre-processing
RNA sequencing data (RNA-Seq2 level 3 data) from
human glioblastoma samples were obtained from the
TCGA data portal (https://portal.gdc.cancer.gov),
which contains 152 glioblastoma tissues [3]. These
data were updated to January 28, 2016. According to
the instructions for WGCNA, fragments per kilobase
per million (FPKM) is recommended as the data
type for subsequent analysis. As some genes without
significant changes in expression between samples
will be highly correlated in WGCNA, the 5000 most
differentially expressed genes were used in the fol-
lowing WGCNA studies. The clinical metadata of
152 samples were also downloaded and filtered for
useful information. Because the clinical data of
TCGA database was constantly updated, the survival
time of the death patients was more accurate. The
age, gender, survival time and recurrence time data
of 75 deceased patients were selected and divided
into two groups according to the median (Table 1).
Subtype data of 152 samples was downloaded from
GlioVis database (http: //gliovis.bioinfo.cnio.es/) [6].
The GSE36245, GSE16011 and GSE50161 datasets
were included in the study, and both originated from
an Affymetrix Human Genome U133 Plus 2.0 Array
[7–9]. GSE36245 dataset only contained 46 glioblast-
oma samples, so it was used to validate whether the
modules which are obtained from TCGA database
were reproducible. GSE16011 dataset (GBM: n = 159)
was used to validate whether the Cox proportional
hazards regression model was reproducible. GSE50161
dataset (GBM: n = 34; Normal control: n = 13) contained
glioblastoma and normal brain samples and was used to
perform difference analysis.

Weighted gene co-expression network analysis and
module preservation
WGCNA was performed using the R package WGCNA
[10]. First, RNASeq data were filtered to reduce outliers.
A co-expression similarity matrix was composed of the
absolute value of the correlation between the expression
levels of transcripts. For an unsigned network, the cor-
relation coefficient between gene i and j was defined as
Sij: Sij = |cor(i,j)|. The co-expression similarity matrix
was then transformed into the adjacency matrix by
choosing 7 as a soft threshold (Fig. 1a). A topological
matrix was created using the topological overlap meas-
ure (TOM) [11, 12]. Finally, we chose the dynamic hy-
brid cut method, a bottom-up algorithm, to identify
co-expression gene modules [13]. To identify the signifi-
cance of each module, we calculated gene significance
(GS) to measure the correlation between genes and sam-
ple traits. Module significance (MS) was defined as the
average GS within modules and was calculated to meas-
ure the correlation between modules and sample traits
(age, gender, survival time and recurrence time) [14, 15].
Statistical significance was determined using the correl-
ation P value. The module Preservation function in the
WGCNA R package was used to calculate the Z summary

to evaluate whether a module was conserved [16].

Hub gene identification and module visualisation
Hub genes were identified using “network screening”
within the R package WGCNA [10]. This method identi-
fies genes that have high GS and MS. We selected the q.
weighted < 0.01 as a cutoff to obtain the hub genes [17].
The targeted module visualisation was performed using
Cytoscape3.5.1. Cytoscape is an open source software for
visualising molecular interaction network (http://www.cy
toscape.org/index.html) [18].

Functional enrichment analysis
Gene ontology (GO) and pathway-enrichment analysis
(Kyoto Encyclopedia of Genes and Genomes (KEGG)) were
performed using the R package clusterProfiler (https://
guangchuangyu.github.io/clusterProfiler) [19–21]. Enriched
ontological terms and pathways with P < 0.05 were selected.

Cox proportional hazards regression model
The prognostic value of each hub gene was first assessed by
univariate Cox proportional hazards regression. Then, statis-
tically significant genes were used to construct the multivari-
ate Cox regression model as follows: Risk score = (0.2844*
expression level of oncostatin M receptor (OSMR)) + (−
0.1682* expression level of SRY-Box 21 (SOX21)) + (1.3462*
expression level of mediator complex subunit 10 (MED10))
+ (0.3776* expression level of protein tyrosine phosphatase,
receptor type N (PTPRN)). Glioblastoma samples were di-
vided into high-score and low-score groups based on the

Table 1 Information for 75 glioblastoma patients

TCGA Datasets

Variables Case number
(N = 75)

Age

< 59 38

> =59 37

Gender

Female 55

Male 20

Survival time

< 448 39

> =448 36

Recurrence time

< 178 38

> =178 37
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Fig. 1 Weighted gene co-expression network of glioblastoma. a Identification of the soft threshold according to the standard of the
scale-free network. b Dendrogram of consensus module eigengenes. The red line represented merging threshold. Modules with a
correlation coefficient greater than 0.75 were merged. c Identification of a co-expression module in glioblastoma. The branches of the
cluster dendrogram correspond to the 19 different gene modules. Each piece of the leaves on the cluster dendrogram corresponds to a
gene. d Correlation between the gene module and clinical traits. The clinical traits include age, gender, survival time and recurrence time.
The correlation coefficient in each cell represented the correlation between the gene module and the clinical traits, which decreased in
size from red to blue. The corresponding P value is also annotated
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median of the risk score. K-M survival curves were gener-
ated to assess the prognostic value of the model using the R
package “survival” (https://CRAN.R-project.org/package=
survival). The receiver operating characteristic curve (ROC)
was generated to assess the accuracy of the model with the
R package “survivalROC” (https: //CRAN.R-project.org/
package = survivalROC) [22].

Statistical analysis
The Pairwise t tests and Tukey’s Honest Significant
Difference test were used to perform differentail
analysis. All statistical tests and graphing were per-
formed using RStudio (www.rstudio.com) and

GraphPad Prism 7.0. P values < 0.05 were considered
statistically significant [23]. Statistical significance
was indicated in the figures as follows: *P < 0.05, **P
< 0.01 and ***P < 0.001.

Results
Pre-processing of TCGA RNA sequencing and clinical data
Glioblastoma RNASeq data were downloaded from
TCGA and constructed into a matrix RNASeq with gene
symbols as the rows and patient barcodes as the column
names. Furthermore, expression estimates in less than
20% of cases were removed, and the top 5000 most dif-
ferentially expressed genes were used in WGCNA
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Fig. 2 Module preservation and visualisation. a Module preservation statistics of TCGA modules in GEO modules (y - axis) vs module size
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studies. Simultaneously, the corresponding clinical data
were also downloaded to relate co-expression modules
to clinical phenotypes. After outliers were removed, we
selected data from 75 deceased patients among the 152
samples, including 5000 genes (Table 1).

Gene co-expression network analysis
WGCNA was performed to construct a gene
co-expression network to identify biologically mean-
ingful gene modules and better understand the mo-
lecular mechanism of glioblastoma. WGCNA defined
gene modules as a set of genes with topological
overlaps. The specific approach was to establish a
hierarchical clustering tree based on dynamic hybrid
cut. Each piece of the leaves on this tree corre-
sponded to a gene, and the different gene modules
were the branches of the tree. Identification of
co-expression modules could facilitate identification
of hub genes that drive and maintain important
functions. Ultimately, 19 gene modules were

identified. The grey module includes genes that were
not assigned to any gene modules (Fig. 1b, c).

Calculation of module-trait correlations in GBMs
To analyse the relationship between gene modules and
sample clinical information, we used the module eigen-
gene (ME) as the overall gene expression level of corre-
sponding modules and calculated correlations with
clinical phenotypes, such as age, gender, survival time and
recurrence time. The yellow and dark green modules were
significantly associated with survival time (Fig. 1d and
Additional file 1: Table S6).

Module preservation statistics
To validate whether the modules were reproducible (or
preserved), we selected 4644 genes which from GSE36245
(GBM: n = 46) to construct a weighted gene co-expression
network. Then, the Z summary score was calculated to de-
termine module preservation. Modules with a Z summary

score > 10 were regarded as preserved [24]. That is, the

Fig. 3 Enrichment analysis of hub genes. a Enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for 228 hub
genes related to survival time. Molecular Function b, Biological Process c and Cellular Component d of Gene Ontology (GO) enrichment analysis
were shown separately
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modules of the TCGA dataset also existed in the network
of the Gene Expression Omnibus (GEO) dataset. The 10
modules were highly conserved, including the yellow
module, while the dark green module was poorly con-
served (Fig. 2a). Thus, we focused on analysis of the yellow
module in the follow-up study.

Identification of the hub gene
The function of the WGCNA R package, called network
Screening, was used to search for the hub gene in the yel-
low module. We used the q. weighted < 0.01 and obtained
228 survival-related genes. These intramodular hub genes
were centrally located in their respective modules and
may thus be critical components within the modules [25].

Module visualisation of network connections
To further depict the expression network of module genes
related to survival time, we exported the co-expression
network of the yellow module into Cytoscape. The nodes
were defined as individual genes in the network, and edges
were defined as the interactions between genes. As shown
in Figures, the yellow module included 311 nodes and
21,557 edges. The hub genes of the modules were marked
as orange nodes (Fig. 2b).

GO and pathway-enrichment analysis of hub genes
To explore the cellular component (CC), molecular func-
tion (MF) and biological process (BP), we performed GO
enrichment analysis. A total of 228 hub genes were signifi-
cantly enriched in the following subclasses of GO classifi-
cation (Fig. 3): focal junction (GO: 0005925, P = 3.17E -
15), cell adhesion molecule binding (GO: 0050839, P =
1.07E - 15), collagen binding (GO: 0005518, P = 1.56E -
11), extracellular matrix organisation (GO: 0030198, P =
2.67E - 20), and extracellular structure organisation (GO:
0043062, P = 1.10E - 21). KEGG pathway analysis showed
that the top enriched terms were focal adhesion
(hsa04510, P = 1.53E - 10) and ECM-receptor interaction
(hsa04512, P = 1.39E - 07) based on P value. These results
suggest that these genes were closely related to the cell
adhesion function (Fig. 3a–d and Additional files 2, 3, 4,
5: Table S2–5).

Construction of the cox proportional hazards regression
model based on hub genes and Kaplan-Meier analysis
We further narrowed down and selected the top 20 genes
significantly related to survival time by univariate Cox
analysis of 228 hub genes (Additional file 6: Table S1).
Then, we used the 20 genes to perform multivariate Cox
analysis and construct a Cox proportional hazards regres-
sion model from 152 glioblastoma patients. The risk score
for predicting survival time was calculated with a formula
based on the above mentioned four genes: risk score
= (0.2844 * expression level of OSMR) + (− 0.1682 *

expression level of SOX21) + (1.3462 * expression level of
MED10) + (0.3776 * expression level of PTPRN) (Fig. 4a–
c). We divided 152 patients into high-risk (N = 76) and
low-risk (N = 76) groups according to the median of the
risk score. The five-year survival rate of the high-risk
group was significantly poorer than that of the low-risk
group (Fig. 5a). The model was reproducible in GSE16011
dataset (Additional file 7: Figure S1 and Additional file 8:
Table S7). Elevated expression of OSMR, MED10 and
PTPRN was associated with an increased risk score, but
SOX21 produced the opposite effect. The area under the
ROC curve was 0.905 (Fig. 5c), indicating a higher predict-
ive value. Moreover, K-M curves confirmed that the four

Fig. 4 Cox proportional hazards regression model. a The risk score
of the low-risk and high-risk groups. b Survival status and time of
152 glioblastomas. c Heatmap of the model genes
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Fig. 5 Kaplan-Meier curves and receiver operating characteristic (ROC). a Kaplan-Meier curves show that the high-risk group had greater mortality
than does the low-risk group (P = 0). b Kaplan-Meier curves of the four different genes. c Time-dependent ROC curves indicated higher predictive
value. The area under the ROC curve (AUC) was 0.905
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genes could function as an independent predictive indica-
tor for the survival of glioblastoma patients (Fig. 5b).

Difference analysis of the four genes
To assess the expression level of the four genes between
normal and glioblastoma tissues, we chose the GSE50161
datasets (normal brain tissue = 13, glioblastoma tissue =
34) to perform difference analysis. Interestingly, OSMR
(P = 0.0011) and PTPRN (P < 0.0001) were differentially
expressed (Fig. 6a, d), while MED10 (P = 0.5332) and
SOX21 (P = 0.2831) were not (Fig. 6b, c). Subsequently,
we assessed the mRNA expression levels of the four genes
within each subtype (Classical, Mesenchymal and Pro-
neural) [26]. The results showed that mRNA expression
levels of the four genes in proneural subtype were signifi-
cantly different from the other two subtypes (Fig. 7a).
Meanwhile, the four genes had a better prognosis in pro-
neural subtype (Fig. 7b).

Discussion
Due to the diffusely infiltrative nature of glioblastoma, com-
pletely removing tumours is difficult, and these tumours
also resist radiation therapy and chemotherapy. Thus, mo-
lecular studies, including various markers, are necessary to
understand gliomagenesis and development. In addition,
some molecular markers are important for determining
molecular subtypes, identifying individualised treatments
and judging clinical prognosis. For instance, overexpression
or amplification of EGFR, mutations in IDH1 and IDH2
and phosphatase and tensin homologue (PTEN) mutations
contribute to the pathogenesis of glioblastoma [27]. With
the rapid development of high-throughput sequencing and
bioinformatics methods, exploiting the great potential of
RNASeq data requires new analytic approaches that move
beyond gene difference analysis.
Instead of relating thousands of genes to a clinical trait,

we used a recently developed methodology to construct a
weighted gene co-expression network in 75 glioblastoma

Fig. 6 Expression of the four genes between normal and glioblastoma tissue in GSE50161. a OSMR; b SOX21; c MED10; d PTPRN;
**P < 0.01, ****P < 0.0001
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samples from TCGA, revealing survival time-specific mod-
ules (yellow, p < 0.01). As the most important gene in the
module, the hub gene is the main feature of the gene

module and closely related to the corresponding clinical in-
formation. Thus, we identified 228 intramodular hub genes
based on GS and MS. The enrichment analysis of GO and
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KEGG showed that adhesion function and adhesion mole-
cules accounted for the highest proportion of hub genes.
These results can partly explain why glioblastoma tumours
exhibit high invasiveness, and adhesion molecules can play
an important role in gliomagenesis. By constructing the
Cox proportional hazards regression model, we selected an
optimal four-gene model (OSMR + SOX21 +MED10 +
PTPRN) for prognosis prediction. Among the genes in this
model, OSMR and SOX21 have been previously reported
in glioblastoma studies [28–31]. OSMR encodes a member
of the type I cytokine receptor family. OSMR forms a com-
plex with EGFRvIII, the most common EGFR mutation that
occurs in glioblastoma, and regulates glioblastoma tumour
growth. Overexpression of OSMR and low methylation
level was reported to have a poor survival time in GBM
[28]. According to our research and previous reports [29],
expression level of OSMR was higher in mesenchymal and
classical subtypes than proneural subtype. SOX21, the
counteracting partner of SOX2, functions as a tumour sup-
pressor during gliomagenesis by negatively regulating
SOX2 [30, 31]. Currently, MED10 is known only as a com-
ponent of the coactivator for DNA-binding factors that ac-
tivate transcription via RNA polymerase II. The protein
encoded by PTPRN is a member of the protein tyrosine
phosphatase family and may be involved in cancer initiation
and progression [32]. However, MED10 and PTPRN have
not been previously reported in glioblastoma-related stud-
ies. Each gene was confirmed to have independent prog-
nostic significance. The difference analyses were performed
in the GSE50161 datasets. Although MED10 (P = 0.5332)
and SOX21 (P = 0.2831) exhibited no differential expression
in glioblastoma and normal tissues, they may exhibit differ-
ential expression between glioblastoma and low-grade gli-
oma. Thus, further studies are needed.
WGCNA used a statistical method to make the gene net-

work consistent with the scale-free distribution; the resulting
gene modules are more in line with biological phenomena
and can be more finely divided. To date, there are a few
similar studies on glioblastoma. Aoki K used the Cox pro-
portional hazards regression model to investigate the effects
of genetic alterations in 308 diffuse lower-grade gliomas
(LGGs) and verified the results using the dataset from
TCGA. The authors reported that IDH mutation, 1p19q de-
letion, Notch homologue 1 (NOTCH1) mutations and
phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1)
mutations were significantly associated with poor prognosis
in LGGs [33]. However, glioblastomas were not examined.
Horvath S adopted WGCNA to detect oncogenic modules
and confirm abnormal spindle-like microcephaly-associated
protein (ASPM) as a potential molecular target in glioblast-
oma [34]. Yu X used protein expression data of develop-
ment process of macaque rhesus brain and RNA-seq data of
GBM to identify several prognostic genes [35]. Similarly,
Xiang Y applied WGCNA and K-means algorithm in gene

expression data of GBM obtained from the TCGA database
and found some prognosis sub-networks [36]. But, com-
pared to the K-mean clustering method, WGCNA can con-
struct a gene co-expression network to identify the hub
genes associated with trait-related modules directly.
Whether the two methods are used simultaneously was rea-
sonable needed to further research. In addition, similar stud-
ies using WGCNA to predict prognostic molecules are rare.
These results indicate that further analysis of this module
may provide more clues to understand the occurrence and
development of glioma. However, this study has some limi-
tations. First, we did not validate the prognostic value of the
four-gene model due to the lack of survival data in the GEO
datasets. Thus, prediction of prognosis using the four-gene
model needs further verification. Second, we selected only
5000 genes for analysis in WGCNA. These transcript
changes can not represent all the genetic changes in glio-
blastomas. By increasing the number of genes in the study,
we can find more molecular targets and key pathways.
Third, these results were only detected using bioinformatics
analysis and needed further experimental verification. Over-
all, our study provide a new perspective to identify the po-
tential molecules and therapeutic targets for glioblastoma.

Conclusions
In conclusion, in this study we performed a WGCNA
approach with GBM RNA-seq data from TCGA data-
base to reveal a survival time-specific module. We
also constructed a Cox proportional hazards regres-
sion model and identified four independent prognostic
factors (OSMR, SOX21, MED10 and PTPRN). Al-
though the specific mechanism remained to be stud-
ied, these genes could be considered as risk factors
for GBM patients and novel therapeutics.
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