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Abstract

Background: Non-small cell lung cancer (NSCLC) represents more than about 80% of the lung cancer. The early
stages of NSCLC can be treated with complete resection with a good prognosis. However, most cases are detected
at late stage of the disease. The average survival rate of the patients with invasive lung cancer is only about 4%.
Adenocarcinoma in situ (AIS) is an intermediate subtype of lung adenocarcinoma that exhibits early stage growth
patterns but can develop into invasion.

Methods: In this study, we used RNA-seq data from normal, AIS, and invasive lung cancer tissues to identify a gene
module that represents the distinguishing characteristics of AIS as AIS-specific genes. Two differential expression
analysis algorithms were employed to identify the AIS-specific genes. Then, the subset of the best performed AIS-
specific genes for the early lung cancer prediction were selected by random forest. Finally, the performances of the
early lung cancer prediction were assessed using random forest, support vector machine (SVM) and artificial neural
networks (ANNs) on four independent early lung cancer datasets including one tumor-educated blood platelets
(TEPs) dataset.

Results: Based on the differential expression analysis, 107 AIS-specific genes that consisted of 93 protein-coding
genes and 14 long non-coding RNAs (lncRNAs) were identified. The significant functions associated with these
genes include angiogenesis and ECM-receptor interaction, which are highly related to cancer development and
contribute to the smoking-free lung cancers. Moreover, 12 of the AIS-specific lncRNAs are involved in lung cancer
progression by potentially regulating the ECM-receptor interaction pathway. The feature selection by random forest
identified 20 of the AIS-specific genes as early stage lung cancer signatures using the dataset obtained from The
Cancer Genome Atlas (TCGA) lung adenocarcinoma samples. Of the 20 signatures, two were lncRNAs, BLACAT1 and
CTD-2527I21.15 which have been reported to be associated with bladder cancer, colorectal cancer and breast
cancer. In blind classification for three independent tissue sample datasets, these signature genes consistently
yielded about 98% accuracy for distinguishing early stage lung cancer from normal cases. However, the
prediction accuracy for the blood platelets samples was only 64.35% (sensitivity 78.1%, specificity 50.59%, and
AUROC 0.747).
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Conclusions: The comparison of AIS with normal and invasive tumor revealed diseases-specific genes and
offered new insights into the mechanism underlying AIS progression into an invasive tumor. These genes can also
serve as the signatures for early diagnosis of lung cancer with high accuracy. The expression profile of gene
signatures identified from tissue cancer samples yielded remarkable early cancer prediction for tissues samples,
however, relatively lower accuracy for boold platelets samples.
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Background
Lung cancer is one of the most common cancer types
and the main cause of cancer-related deaths. About 14%
of all new cancers are lung cancers, and about 154,050
deaths from lung cancer are estimated in the United
States for 2018 by the American Cancer Society.
Non-small cell lung cancer accounts for about 80% of
the lung cancer cases and is consist of various subtypes
[1]. Generally, most of the deaths caused by lung cancer
are in late stages which are due to the distant metastasis
and invasion [2]. In contrast, the early stages or
non-invasive subtypes of lung cancer can be cured [2].
Lung adenocarcinoma in situ is a subtype of NSCLC

and shows non-invasive growth patterns. The 5-year sur-
vival rate of AIS is almost 100% with appropriate therapy
[3]. However, AIS can develop into an invasive stage of
lung cancer that has only approximate 4% patient sur-
vival rate [1]. AIS is different from the other lung cancer
histologies in that most AIS patients are non-smokers
and women [4, 5]. Previous studies of AIS, for purposes
of classification and diagnosis, have indicated differences
in appearance from these and other types of lung cancer.
The studies of AIS at the genetic level have not yet been
widely performed, consequenctly, our understanding of
the mechanism that causes AIS is limited. On the other
hand, AIS cases could be missed diagnosed as pneumo-
nia since sometimes AIS has a varied appearance on CT
[6] and generally 62% of the AIS patients do not have
symptoms [7]. Similarly, early stage lung cancer often is
asymptomatic.
Previous studies have identified gene biomarkers in-

volved in lung cancer progression and development [8],
including several critical long non-coding RNAs [2, 9, 10].
More effective and robust molecular biomarkers for early
lung cancer diagnosis remained to be uncovered. Cur-
rently, studies on AIS progression based on RNA sequen-
cing techniques were performed. Some protein-coding
genes and lncRNAs that related to AIS were identified [3]
and indicated the evolution of lung cancer from normal to
invasive stages. However, large-scale study and compari-
son of these genes at different disease stage of cancer
development are not exploited.
In this study, we first identified the genes that were

specifically expressed in AIS tissue samples compared

with normal and invasive cancer cases simultaneously.
The differential expression analysis was performed by
using two computational methods, the most widely used
edgeR [11] and the newly developed Cross-Value Associ-
ation Analysis (CVAA) [12]. The combined results of
these two methods were used for downstream analysis.
Only a small group of genes (107) including both
protein-coding genes (94) and lncRNAs (13) were found
that potentially dominate the AIS and the invasive pro-
gression (Additional file 1: Figure S1). Smoking is con-
sidered one of the most risk factors that cause lung
cancers and about 75% of the lung cancer cases are
attributable to tobacco use. The lung cancer in never
smokers even considered as different diseases [5]. The
AIS-specific genes were significantly enriched of lung
cancer related functional annotations such as angiogen-
esis [13, 14] and the ECM-receptor interaction which is
a known pathway contributes the smoke-free lung can-
cers [15–17]. We further identified 20 early lung cancer
signature genes that can be used for distinguishing the
early lung cancer cases from normal ones. In particular,
we performed an experiment using the random forest
method on four independent datasets generated by
RNA-seq or microarray techniques and achieved about
98% prediction accuracy for early stage lung cancer in
tissue samples but only 64.35% overall accuracy in the
blood platelets dataset.
Our results suggested that AIS-specific genes could

help us to better understand this uncommon lung
cancer subtype. The AIS-specfic genes may also play a
critical role in the lung cancer progression. Moreover,
the expression profiles of early lung cancer signature
genes we identified showed the ability for accurate and
robust early cancer prediction.

Results
Comparison of gene expression in AIS and invasive lung
cancer
To investigate the genes that dominate the intermediate
type of AIS and underlie different phenotypes (normal,
AIS and invasive cancer cases), we collected the
RNA-seq library (GSE52248) consisted of normal, AIS
and invasive cancer samples of six lung cancer patients
[3]. The raw RNA-seq data were generated from
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formalin fixation and paraffin embedding (FFPE) proc-
essed tissues. First, the RNA-seq data were processed
and the gene expression profile was calculated referring
the gene annotation from Ensembl (Methods). Then, the
differential expression analysis via edgeR was performed
on 16,501 expressed genes consisted of 15,106
protein-coding genes and 1395 lncRNAs. As a result,
1348 significant differentially expressed genes (DEGs)
were found between normal and invasive lung cancer
samples under the threshold |log2 fold change| > 1 &
FDR < 0.05. Based on the same thresholds, 719 DEGs
between normal and AIS cases as well as 98 DEGs
between AIS and invasive cancer tissues were identi-
fied. The gene expression patterns in AIS and invasive
cancer tissues demonstrated much more consistency
(Additional file 1: Figure S1) despite these two pheno-
types was with great differences. Our results indicated
that only a small number of genes potentially domi-
nated the evolution of lung cancer from AIS into
invasive lung cancer.

Identification of AIS-specific genes
To comprehensively identify the gene set that was spe-
cifically expressed in AIS tissue, we applied two differen-
tial expression analysis methods, edgeR [11] and CVAA
[12], based on the gene expression profiles of paired
normal and AIS, AIS and invasive cancer samples. The
edgeR is one of the most widely used differential expres-
sion (DE) analysis method, while CVAA is a newly
developed normalization-free and nonparametric DE
analysis method. Unlike the commonly used DE analysis
methods, CVAA neither normalizes nor assumes the
distribution of the gene expressions. Instead, it reveals
the DEGs according to the gene expression comparison
and ranking. The DEGs between normal and AIS that, at
the same time were differentially expressed in invasive
cancer compared with AIS samples were further used as
the candidates for AIS-specific genes (Methods). The
union set of the DEGs identified by the two methods
was collected. As a result, a total of 107 (22 upregulated
and 85 downregulated) genes including 93 protein-coding
genes and 14 long non-coding RNAs were identified as
AIS-specific genes (Methods, Additional file 2: Table S1).

LncRNAs potentially regulate ECM-receptor interaction
pathway and involved in lung cancer
We applied the function annotation via David [18] on the
93 protein-coding genes and found a number of enriched
functions (Additional file 3: Table S2), including angiogen-
esis and ECM-receptor interaction which shows the aggres-
siveness of the tumor and has an important role in
metastasis [13, 14]. A previous study of lung cancer [17]
indicated that non-smokers also have the risk of the lung
cancer. Some well-known cancer-related pathways such as

cell cycle and p53 were enriched of differentially expressed
genes in only current smoke patients, whereas ECM-recep-
tor interaction pathway is over-represented in the patients
that never smoke and is considered to contribute to
smoking-independent lung cancer [17]. Interestingly, it has
been found that AIS is more common in women and
non-smokers [3] and the disrupted ECM-receptor inter-
action pathway was also found based on the AIS data in
our study. Many ECM proteins are factors that promote
the metastatic cascade as they are significantly deregulated
during the progression of cancer [16].
The ECM-receptor interaction pathway contains 87

protein-coding genes and three of them (CD36, SPP1,
TNR) are AIS-specific. We further employed GENIE3
(Gene Network Inference with Ensemble of trees) [19]
to predict the regulatory relationships between the 14
AIS-specific lncRNAs and the 87 genes (Methods). As a
result, 12 lncRNAs were found to potentially regulate the
genes in ECM-receptor interaction pathway (Additional
file 4: Figure S2), suggesting their roles in the lung cancer
progression. Moreover, the odd ratios of the regulations
between the lncRNAs and the ECM-receptor interaction
pathway indicated novel lncRNAs, such as FENDRR
(OR = 1.53), MEOX2-AIS (OR = 3.22), as regulators inter-
act with this pathway (Methods). Collectively, these results
suggested that the AIS-specific genes played critical roles
in the progression of AIS and the development of invasive
lung cancer.

Early lung cancer signatures identification
AIS is a pre-invasive lung adenocarcinoma lesion. Hence,
the AIS-specific genes can potentially serve as gene signa-
tures for early lung cancer detection. We employed ran-
dom forest for selecting the top genes from the 107
AIS-specific genes that can effectively distinguish normal
from early-stage cancer cases (Methods). Using the gene
expression profiles of the normal (n = 59) and early-stage
(stage I) lung adenocarcinoma cases (n = 286) from TCGA
project, random forest reported the importance of each
gene by calculating the classification error rate. We found
that one gene set composed of 20 genes yielded the lowest
error rate (1.16%). Therefore, these 20 genes including
two lncRNAs (BLACAT1, CTD-2527I21.15) ranked by
the importance scores of random forest were considered
to be early lung cancer diagnosis signatures and were used
for further validation and analysis (Additional file 5: Table
S3). Of the 20 gene signatures, 13 were continually down-
regulated along with the lung cancer progression from
normal to AIS to invasive. In contrast, the expression
levels of the other seven genes were significantly increased
(Fig. 1) indicating their lung cancer-related functions.
Interestingly, all the 20 genes were discovered by CVAA
indicating the power of this new method and the necessity
of the comprehensively identification of DEGs.
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Early lung cancer signatures provide insights into early
lung cancer diagnosis
A large portion of early-stage NSCLC can be cured [2].
Lung cancer deaths are mainly caused by the distant
metastases that drive cancer into late stages [2]. Early

diagnosis of lung cancer is critical for patient survival
and treatment. The expression patterns of our 20 early
lung cancer signatures were distinct between the normal
and early stage of the TCGA lung adenocarcinoma
samples (Fig. 2) suggesting their potential capability for

A

B

Fig. 1 The gene expression patterns of the 20 early lung cancer signatures. A, seven genes including the two lncRNAs were upregulated along
with the lung cancer progression from normal to invasive. B, 13 genes were continually downregulated

Fig. 2 The expressions of the 20 early lung cancer signatures in TCGA lung adenocarcinoma normal (59, blue) and early (286, gold, stage I) cases
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early lung cancer prediction. We next examined the
effectiveness of these biomarkers by employing widely
used machine learning classification algorithms.
We first applied random forest [20] for detecting the

early lung cancer cases (Methods). The gene expression
profile of TCGA lung adenocarcinoma dataset consisting
of 59 normal and 286 early samples that reported as
stage I were downloaded. The expression patterns of the
signature genes of this dataset were shown in Fig. 2. The
average prediction accuracy of the random forest
model was 98.86% (Table 1, Method) based on the
expression profiles of these signature genes.
We then collected the second independent early lung

cancer dataset: GSE68465 [21] which was generated
using the microarray platform (HG-U133A). The dataset
consisted of 276 early (stage IA and IB) lung cancer and
19 normal samples. Two lncRNAs (BLACAT1,
CTD-2527I21.15) and three protein-coding genes
(SCUBE1, HS6ST2, RTKN2) of the signatures were not
included in this dataset. We achieved 99.51% prediction
accuracy, 99.95% sensitivity, and 92.83% specificity in
average for this dataset (Table 1). The third dataset
(GSE10072) [22] was also microarray platform-based
and contained 58 lung cancer and 49 normal cases. The
patients were grouped into never, former, and current
smokers by their smoking behaviors. Using the expres-
sion profile of same genes as the second dataset, we
obtained 97.91% accuracy for lung cancer case predic-
tion (sensitivity = 98.05%, specificity = 97.75%).
Blood-based liquid biopsies provide promising

non-invasive cancer detection. Blood-based biomarkers
have been studied and identified [23]. Based on the
age-matched tumor-educated blood platelets (TEPs)
early lung cancer samples (GSE89843) [23], we assessed
the effectiveness of our 20 gene signatures identified
from tissue samples on these TEPs data (Methods).
However, the prediction accuracy is relatively lower
(64.35%), (Table 1), suggesting these signatures might be
tissue-specific.
We further examined the prediction performances

using different machine learning algorithms including
random forest, SVM [24], and ANNs [25] crossing the
four datasets. To comprehensively measure the robustness
of our signature genes, we calculated the average area
under an ROC curve (AUROC) values of each model
for each dataset (Fig. 3, Additional file 6: Figure S3). All
the machine learning models succeed in predicting the

early lung cancer tissue samples, excepting the ANNs
based model for GSE68465. GSE68465 contained unbal-
ance samples size (19 normal vs. 276 tumor, Methods). In
summary, the early lung cancer signature genes we identi-
fied showed the robustness and high accuracy for distin-
guishing normal and early lung cancer cases.

The early lung cancer signature genes were highly lung
cancer related
We conducted further literature search and found that
majority early lung cancer signature genes we identified
were reported to be highly associated with cancer pro-
gression, diagnosis, therapy, and patient overall survival.
All the 18 protein-coding genes were found to be dir-
ectly involved in lung cancer development suggested by
previous studies (Additional file 5: Table S3). For in-
stance, the protein-coding genes CD36 [26] and
TMPRSS4 [27] were already identified as potential thera-
peutic targets of lung cancer, while TMPRSS4 can induce
cancer stem cell-like properties in lung cancer [28].
HMGB3 and FABP4 showed their high diagnostic and
prognostic value in human NSCLC [29, 30]. SPP1,
AGER, and RTKN2 regulate the lung cancer-related
pathways such as VEGF (vascular endothelial growth
factor) signaling pathway and NF-kappaB [31, 32]. The
loss of WNT7A is a major contributing factor for in-
creased lung cancer tumorigenesis [33]. The expression
level of FAM107A is decreased in patients with NSCLC
[34], whereas the high levels of expression of HS6ST2
are observed in lung cancer cell lines [35].
The associations of the two lncRNAs and NSCLC are not

reported yet. The lncRNA BLACAT1 (Bladder Cancer As-
sociated Transcript 1) was up-regulated in bladder cancer.
BLACAT1 also affects cell proliferation, indicates a prog-
nosis of colorectal cancer and is significantly associated
with poor overall survival [36]. Our results suggested diag-
nostic value of BLACAT1 for NSCLC. The other lncRNA
CTD-2527I21.15 is a basal-like breast cancer marker.
CTD-2527I21.15 locates adjacently to FXYD3 in chromo-
some 19 and potentially cis-regulates its expression in
cancer [37]. Moreover, our results indicated combinatory
effect of these genes for early lung cancer diagnosis.

Methods
Data collection and processes
The raw RNA-seq data of the AIS cases (GSE52248)
were downloaded. The low-quality reads were trimmed

Table 1 The early lung cancer prediction performances on four different datasets using random forest

Model Assessment TCGA GSE68465 GSE10072 GSE89843 (Blood)

Random Forest Accuracy 98.68% 99.51% 97.91% 64.35%

Sensitivity 99.28% 99.95% 98.05% 78.12%

Specificity 95.68% 92.83% 97.75% 50.59%

Li et al. BMC Medical Genomics 2018, 11(Suppl 5):106 Page 93 of 107



via Trimmomatic version 0.36 [38]. The human gene an-
notation of Ensembl was used. We applied STAR (v2.4)
[39] followed by Cufflinks (v2.2.1) [40] to calculate the
gene expressions. The other four independent lung can-
cer datasets were TCGA lung adenocarcinoma,
GSE68465, and GSE10072 of which the gene expression
profiles were available and GSE89843 which was a blood
platelets RNA-seq library. The TCGA lung adenocarcin-
oma dataset was consisted of 596 samples. In this study,
only the 59 normal samples and the 286 early lung
cancer (stage I) samples were used for the analysis. The
dataset GSE68465 was generated by microarray platform
HG-U133A and collected from 6 contributing treatment
institutions. The patients were around 64 years old on
average and 42.3% of the patients were dead in about 4
years after the clinical report. Here, only the gene ex-
pression profiles of 19 normal samples and 276 early
(stage IA and IB) lung cancer samples were used for the
prediction. GSE10072 was also a microarray data and
the fresh frozen lung cancer tissue samples were col-
lected from patients with never (20), former (26), and
current (28) by smoking behaviors. Additional 49 normal
samples were used as control. All the samples were
generated by Environment and Genetics in Lung Cancer
Etiology (EAGLE). The RNA-seq data of the blood
platelets of 53 early locally advanced NSCLC patients
were collected from the study of GSE89843 [23]. The
other 53 healthy age-matched (range from 48 to 86)
samples in the same study were used as normal controls
for the prediction. The gene expressions (FPKM) were
calculated using the raw RNA-seq reads.

Differentially expressed gene identification
The read counts of the genes were calculated by
HTSeq-count (v0.6.1) [41]. Then, the R package edgeR
was applied for differential expression analysis between
the samples of various types. The threshold |log2 fold
change > 1| & FDR < 0.05 was used in our study for
defining significantly differentially expressed genes. The
R package of the CVAA (version 0.1.0) method was
obtained from the author and applied under the default
setting [12]. The genes were ranked by CVAA based on
the significance of the differential expression. We
selected the same number of the top CVAA DEGs and
the top edgeR DEGs for the further analysis. The indi-
vidual sets of AIS-specific genes identified by edgeR and
CVAA were combined together.
CVAA is a normalization-free and nonparametric method

that identifies DEGs.

Regulation prediction by GENIE3
GEne Network Inference with Ensemble of trees
(GENIE3) calculates the regulatory relationships be-
tween genes based on the expression patterns [19]. The
gene expression profile of normal and early stage of the
TCGA lung adenocarcinoma sample was used. The 14
AIS-specific lncRNAs were considered as regulators
while all the protein-coding genes were used as potential
target genes. All the regulations between lncRNAs and
protein-coding genes were ranked by the weight
(Additional file 7: Figure S4) and only the regulations
over the third quartile of all the weights were considered
as confident regulations.

Fig. 3 The performance assessments for early lung cancer prediction using random forest, SVM and artificial neural networks for four lung cancer
datasets. The AUROC were calculated based on 100 boostrapping tests.
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The odd ratios were calculated as:

OR ¼ PIRT=PIRN

PORT=PORN

Where PIRT represents the number of the target genes
of a given lncRNA that in (I) the ECM-receptor interaction
pathway (P) whereas PIRN represents the non-target genes
in the pathway. PORT and PORN in the denominator stand
for the number of target and non-target genes outside of
(O) the pathway, respectively.

Machine learning models for predicting the early lung
cancer
Random forest allows for measuring the importance of
the features, which are the genes in our study, for classi-
fication. The function of random forest cross-validation
for feature selection (rfcv) was applied to reveal the best
gene set for the cancer cases prediction. We used the
arguments: 5-fold cross-validation, log scale, and 0.9 step
which means 10% of the features were removed at each
step of testing.
Then we compared classification performances of

three machine learning models, random forest, SVM,
and ANNs. Random Forest is an ensemble learning
method that can be used for classification. The random-
Forest package [20] was used with 1000 trees and seed
115 for reproducibility. The e1071 is one widely used R
package for performing SVM [24]. The tune function was
used for detecting the best parameters of cost and gamma
of SVM. The package neuralnet was used for performing
the ANNs [25]. Here, we used two hidden layers with 50
and 25 neurons respectively. For each dataset, we
randomly selected 2/3 of the samples as training set and
the other 1/3 as testing set. Then, the average assessments
of the accuracy, sensitivity, specificity, and the area under
the receiver operating characteristic curve (AUROC) were
calculated by running the experiment 100 times.

Discussions
AIS cases represent the minority of lung cancer cases,
however, they provide valuable information about
early diagnosis and treatment of the disease. With
more attention and the availability of NGS data of
AIS cases, we expect more comprehensive analysis for
lung cancer can be conducted.
The identification of the differentially expressed genes

is critical in cancer studies. Several computational
methods for differential expression analysis were devel-
oped [11, 12, 40, 42]. Most of these methods are normal-
ized based and assume the distribution of the gene
expression profile. On the other hand, the results of
these differential expression analysis methods are
often not consistent. Here, in addition to apply edgeR, we

employed the newly developed CVAA, a normalization
free and nonparametric approach for differential expres-
sion analysis. Out of 719 significant DEGs between nor-
mal and AIS cases identified by edgeR and CVAA, the
overlap rate was about 50% on average (Additional file 8:
Figure S5A). Moreover, less than 20% of 98 DEGs be-
tween AIS and invasive lung cancer were common genes
revealed by both methods (Additional file 8: Figure S5B).
Thus, the union set of the AIS-specific genes identified
by edgeR and CVAA can provide a more comprehensive
and robust gene set as candidate involved in lung cancer
progression. Interestingly, the 20 early lung cancer gene
signatures, which are the most discriminative genes in
classifying normal and early cancer cases, were all identi-
fied by CVAA.
The second dataset (GSE68465) is unbalanced, which

contained 19 normal samples and 276 lung cancer sam-
ples. The prediction performances of the ANNs model
was poor compared with random forest and SVM for
this data, suggesting performance of ANNs was im-
pacted more by unbalanced dataset. The performance of
ANNs on unbalanced data might be improved by opti-
mizing paramters.
Tumor is highly heterogeneous and poses significant

challenges in diagnosis and treatment. The gene expression
profiles were different between two subtypes of the same
tumor or between tissue and liquid sample types from the
same patients. Our finding in this study indicted the limita-
tion of the biomarkers that identified from tissue lung
cancer samples for predicting the blood-based data.

Conclusions
In this study, we identified the AIS-specific genes that po-
tentially dominate the lung cancer procession from AIS
into the invasive tumor. A further analysis of these specific
genes in AIS revealed their essential functions and proper-
ties in diverse types of lung cancer tissues. We also identi-
fied several novel lncRNAs that were involved in lung
cancer by interacting with the lung cancer-related path-
ways. Twenty early lung cancer signature genes were iden-
tified. A cross assessment based on diverse machine
learning models and independent datasets indicated our
signatures were robust for early lung cancer prediction.
These signature genes were highly lung cancer-related,
and the combined gene group showed the capability to im-
prove the early lung cancer diagnosis with high accuracy.
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