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Background: The clinical decision support system can effectively break the limitations of doctors’ knowledge and
reduce the possibility of misdiagnosis to enhance health care. The traditional genetic data storage and analysis
methods based on stand-alone environment are hard to meet the computational requirements with the rapid

Methods: In this paper, we propose a distributed gene clinical decision support system, which is named GCDSS.
And a prototype is implemented based on cloud computing technology. At the same time, we present CloudBWA
which is a novel distributed read mapping algorithm leveraging batch processing strategy to map reads on Apache

Results: Experiments show that the distributed gene clinical decision support system GCDSS and the distributed
read mapping algorithm CloudBWA have outstanding performance and excellent scalability. Compared with
state-of-the-art distributed algorithms, CloudBWA achieves up to 2.63 times speedup over SparkBWA. Compared
with stand-alone algorithms, CloudBWA with 16 cores achieves up to 11.59 times speedup over BWA-MEM with 1

Conclusions: GCDSS is a distributed gene clinical decision support system based on cloud computing techniques. In
particular, we incorporated a distributed genetic data analysis pipeline framework in the proposed GCDSS system. To
boost the data processing of GCDSS, we propose CloudBWA, which is a novel distributed read mapping algorithm to
leverage batch processing technique in mapping stage using Apache Spark platform.
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Background

Clinical decision support system (CDSS) provides clini-
cians, staff, patients, and other individuals with know-
ledge and person-specific information to enhance health
and health care [1]. CDSS can effectively break the limi-
tations of doctors’ knowledge and reduce the possibility
of misdiagnosis to guarantee the quality of medical care
with a lower medical expenses. Genetic diagnosis have
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the advantages of early detection, early discovery, early
prevention and early treatment [2].

With the development of next-generation sequen-
cing (NGS) technology, the number of newly se-
quenced data increase exponentially in recent years
[3]. How to store and analyze the large amount of
genetic data has become a huge challenge. Therefore,
faster genetic data storage and analysis technologies
are urgently needed. The current best practice gen-
omic variant calling pipeline [4] is that use the
Burrows-Wheeler Alignment tool (BWA) [5] to map
genetic sequencing data to a reference and use the
Genome Analysis Toolkit (GATK) [6] to produce
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high-quality variant calls, which takes approximately
120 h to process a single, high-quality human genome
using a single, beefy node [7]. It need more time to
compute when the sequencing depth is deeper or the
length of reads is longer. What’s more, time is equal
to life in the medical field, especially in emergency.
Therefore, it is significant to accelerate the processing
of genetic data for CDSS [8]. However, the traditional
genetic data storage and analysis technology based on
stand-alone environment are hard to meet the com-
putational requirements with the rapid data growth
for the limited scalability [2].

In order to solve the problems mentioned above, we
propose GCDSS, a distributed gene clinical decision sup-
port system based on cloud computing technology.
There are two main challenges in implementing GCDSS
and improving its performance.

The first one is to design and implement a distrib-
uted genetic data analysis pipeline framework. The
genetic data analysis usually involves a large amount
of data, varied data formats and complicate analysis
process. It is difficult to design and implement such
framework. The second challenge is the limited scal-
ability of traditional read mapping algorithms. Read
mapping is the first and time-consuming step in the
whole genetic data analysis pipeline. The lengths of
the read are generally range from several to thou-
sands of bases. A sample can typically produce bil-
lions of reads. It is critical and difficult for
subsequent analysis to map these reads to the refer-
ence genome quickly and accurately.

In order to meet the challenges, we considered distrib-
uted storage, distributed computing framework and dis-
tributed algorithms. Also, we exploit cloud computing
technology to parallelize genetic data analysis pipeline.
We claim the following contributions and highlights:

1) In this paper, we design a distributed genetic data
analysis pipeline framework for GCDSS and
implements its prototype based on cloud computing
technology. The unified pipeline framework
effectively integrates read mapping and calibration,
the variant discovery and genotyping, disease
identification and analysis into the framework.

2) A novel distributed read mapping algorithm
CloudBWA is presented in this paper. It enable
traditional BWA-MEM [9] algorithms run in a
horizontally scalable distributed environment
based on Apache Spark. CloudBWA supports dif-
ferent genomics data formats, which facilitates
the distributed storage of the large amount of
genetic data. Also, we design and implement
batch processing strategy to improve the per-
formance of read mapping algorithm.

Page 12 of 107

Our experimental result shows that GCDSS has an ex-
cellent scalability and an outstanding performance.

We first summarize the related work in following
aspects:

A. Genetic data analysis pipeline

Over the past few years, a large number of distributed
genetic data analysis pipeline frameworks have emerged
in research institutions, such as Illumina [10], UCLA
[11, 12], AMPLab [7, 13-15] and Broad Institute of MIT
and Harvard [4, 12]. CS-BWAMEM [11], a fast and scal-
able read aligner at the cloud scale for genome sequen-
cing, is developed by UCLA, which is for distributed
read mapping, and implemented distributed sort and
mark duplicates. Adam [7, 14], the distributed genomics
data formats, and Avocado [13], the distributed variant
discovery and genotyping algorithms, are presented by
AMPLab. Moreover, Avocado has not implemented dis-
tributed read mapping. Distributed local sequence align-
ment algorithms DSW [16] and CloudSW [16] both
achieve outstanding performance.

B. Read mapping

At present, BWA [5, 9, 17] is one of the best popular
read mapping tool, which consists of BWA-SW [17],
BWA-MEM [9] and BWA-backtrack [5]. SNAP, BWA
and other traditional read mapping algorithms have a
shortcoming of limited scalability. CS-BWAMEM is a
fast and scalable read aligner at the cloud scale for gen-
ome sequencing, but it only support paired-end read
mapping. SparkBWA is a tool that integrates the BWA
[5, 9, 17] on a Apache Spark framework running on the
top of Hadoop. Nevertheless, the I/O overhead of
SparkBWA is extremely large because it has to read and
wirte disk too many times [2]. SparkBWA can be error
when numPartitions size is too large to run on Spark,
such as the size of numPartitions is larger than the num-
ber of Spark workers. Moreover, if numPartitions size is
relative small, it may result in uneven distribution of
data and calculations, which ultimately reduce the per-
formance of the system.

C. Cloud computing

Over the past decade or so, Hadoop [18], HDFS
[19], Spark [20] and Alluxio [21] have been imple-
mented and released as open source, which have
greatly promoted the academic research and industrial
applications. Especially in recent years, cloud comput-
ing technology has developed rapidly and become
more mature, its performance has also been greatly
improved [22-24]. Cloud computing has the



Xu et al. BMC Medical Genomics 2018, 11(Suppl 5):100

characteristics of good fault tolerance, easy to expand,
large scale, low cost and distributed, which has been
widely used in academia and industry [25, 26]. However,
the absorption of those technologies in the scientific
field is slow [27].

Methods

The GCDSS architecture includes the general overview,
the workflow, the specific implementation and corre-
sponding API respectively. This section especially put
concentration on the design method and implementa-
tion for building the data analysis framework in distribu-
tion pipeline.

System architecture
GCDSS uses genetic data for clinicians, patients, em-
ployees, and others to provide intelligent knowledge and
personalized information to assist in clinical
decision-making and help enhance health. The differ-
ence between GCDSS and traditional CDSS is that
GCDSS mainly uses the genetic data to analyze and
process, instead of using the data of traditional Chinese
medicine or modern medicine to build the system. With
the development of NGS technology, the number of
newly sequenced data has exhibited an exponential
increase in recent years. The traditional genetic data
storage and analysis technology based on stand-alone
environment have limited scalability, which has been dif-
ficult to meet the computational requirements of rapid
data growth. This paper aims to design and implement a
distributed gene clinical decision support system by
using cloud computing technology.

As shown in Fig. 1, the GCDSS system workflow is
composed of three stages: NGS data processing, variant
discovery and genotyping, disease identification, and

Disease identification and
discovery

NGS data processing Variant discovery and

genotyping

Analysis-ready _|,|  Analysis-ready

Raw reads T .
reads variants

N

! Reference genome

Processed variants -

Mapped reads - Diagnostic report

i Known database

.....

[] Input /output data [ Computation operation

Fig. 1 GCDSS workflow
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discovery. In this section, we will describe these stages
respectively.

1) The NGS processing

The NGS data processing mainly consists of read map-
ping and calibration.

After achieving sequencing data from high-throughput
sequencer like HiSeq X Ten of Illumina, GCDSS system
needs to map billions of the raw reads to the reference
genome. In the next step, it obtains the most probable
location of every read, which is normally referred to read
mapping. The Read mapping stage is generally compli-
cated and critical for subsequent analysis, as it needs to
accurately and efficiently map billions of reads to the
reference genome. To address the scalability problem of
traditional read mapping algorithms, we employ a dis-
tributed read mapping algorithm, named CloudBWA
based on the cloud computing techniques. The
CloudBWA will be described in detail in the next
Section.

During the process of genetic sequencing by sequen-
cer, errors during sample preparation and sequencing
can lead to the duplication of some reads. To improve
the accuracy of subsequent analysis, we detect duplicates
by reads’ alignment position and orientation after read
mapping, and the reads that have identical position and
orientation in RDD [28] are assumed to be duplicates.
All duplicate reads but the highest quality read are
marked as duplicates. We can remove duplicate reads
easily by filter function of Spark.

Since a lot of read mapping algorithms have adopted
greedy strategy, which leads to inaccurate local align-
ment, it is necessary to LR for the inaccurate alignment
after read mapping. The LR algorithm first identify
regions as targets from reads, and then compute the
convex hull of overlapping targets, and next classify
reads and realignment reads of RDD.

During the process of genetic sequencing, systemic
errors produced by the sequencer can lead to the incor-
rect assignment of base quality scores. BQSR is quite ne-
cessary for improving subsequent analysis accuracy. The
correction is applied by estimating the error probability
for each set of covariates under a beta-binomial model

[7].
2) Genotyping and variant discovery

The second phase of the GCDSS workflow includes
variant discovery and genotyping, both of which are
intended to discover the possible variant in
analysis-ready reads, as well as the genotyping proced-
ure. Due to that the majority of variants is named single
nucleotide polymorphism (SNP), and SNPs normally
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have stable heredity, wide distribution, and easy detec-
tion, therefore in this paper we mainly focus on the vari-
ant discovery and genotyping of SNP, and employ the
insertion-deletion polymorphism (Indel) accordingly.

In this paper, we use Genotyping, which employs the
biallelic genotyper [10] to obtain the sample genotype.
Especially, it first marks the variants in the relevant vari-
ant RDD and gets the observations, and then for the
next step, it turns the single variant observation into the
genotype call, and finally creates a genotype RDD.

3) Disease identification

Finally, the last stage is the disease identification and
discovery. As illustrated in Fig. 2, this disease identifica-
tion phase is composed of two steps: the associated data-
base construction and data analysis for the association.

The associated database construction stage mainly
uses public database to build an associated database es-
pecially for the discovered variations with known dis-
eases. It is acknowledged that NCBI has a public
variation database whose size is as large as about 26
gigabytes with around 150 million variations [29]. In the
databased, each variation contains the information with
following items: the chromosome, position, variant id,
reference base, alternate base. NCBI also provides a
mapping database of disease and variation. The number
of information in the mapping database is about 19,000.
Each item contains the OMIM id, the locus id, the SNP,
locus symbol, SNP id and so on. Meanwhile, the Online
mendelian inheritance in man (OMIM) also provides a
comprehensive and timely research support of human
genes descriptions and phenotypes, as well as the rela-
tionships between them [30]. In this paper, we employ
OMIM as disease database at present, due to that
OMIM describes a wide variety of disease-related med-
ical features, diagnosis measures, treatment measures,
state-of-the-art research progress and other materials.
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Also, the main steps to build an association database
are listed as below:

(1) Preprocessing and mapping the variation and
disease database.

(2) Analyzing the variation database comprehensively,
then mapping the variation and disease database,
filtering out the variations which are not related to
disease.

(3) Obtaining the association database by integrating
the processed disease database, which should
include the variation and corresponding disease
information.

We provide two modes for association database. The
simple mode only focuses on the disease id, position,
chromosome name, reference base, variant id, and the
alternate base. In addition to information of simple
mode, the complex mode also includes the locus symbol,
method, title, and the link to the corresponding descrip-
tion on the OMIM website. The link can be accessed to
the latest OMIM website page with the latest
information.

System implementation

In this paper, GCDSS employs a hierarchical structure
with cloud computing techniques. The system architec-
ture of GCDSS consists of four layers: storage layer,
computing layer, service layer and application layer.

Distributed storage

The first layer is the storage layer, which mainly in
charges of storing the related data, including original
genetic data, variant data, and disease data.

HDES is designed to store and manage very large data
sets. HDFS has the characteristics of high reliability, ex-
cellent scalability and high performance, which has been
widely used in various fields. In GCDSS, HDES is used

¢ variation and disease

Fig. 2 Workflow of disease identification and discovery
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as persistence in storage layer, which is mainly used to
store large files or important data, including original se-
quencing data in FASTQ, result data in Adam format
and so on.

However, the data in HDEFS is stored in disk, which
has limited I/O performance. To improve the read and
write performance, we employ Alluxio as primary stor-
age in the process of computing, which speeds up 1/O
performance by serving data from memory in local node
rather than disks, and reduces network traffic between
nodes by caching hot files in memory. Between different
operations or Spark applications, GCDSS store inter-
mediate data into Alluxio, which avoids storing inter-
mediate data into disk and saves time.

In order to facilitate the calculation of Spark, we need
to create several new RDDs by reading data from Alluxio
or HDFS. To reduce repeat calculation in Spark applica-
tion, we cache the RDD in memory by invoking persist
or cache functions of Spark in different scenario. For
example, we cache the data in memory while there are a
series of transformations before an action.

After analyzing genetic data, we obtain result data and
need show it to users. We employ NoSQL database
Neo4j to show the result. Neo4j is a robust (fully ACID)
transactional property graph database. It can vividly dis-
play the attributes of different things and their relation-
ship and has high distributed query performance. We
leverage Neo4j to store the result data, including infor-
mation of the sample and its disease data, and provide
query function for users.

To address the above problems, we leverage Adam
system to convert traditional genetic data formats to
Parquet format [31]. To be specific, the Columnar
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parquet formats can provide storage to minimize the I/
O bandwidth and space [7].

Distributed computing framework
The computing layer is mainly responsible for analyzing
genetic data and obtaining related results. Computing
layer is based on Apache Spark, a memory-based distrib-
uted computing framework. Spark has the characteristics
of excellent scalability and high performance. Spark is
far more efficient than MapReduce [32] in memory, or
10x faster on disk. Spark provides different APIs in Java,
Scala, and Python, which makes it easier to be used and
compatible with other software like SAMtools [33].
BWA [5] is one of the most widely used read mapping
algorithms. It has great accuracy and high performance
in single node. BWA-MEM [9] is the newest algorithm
in BWA tool. Therefore, we select BWA-MEM to read
mapping. In this paper, we present CloudBWA, a distrib-
uted read mapping algorithm based on cloud computing
technology. CloudBWA integrates BWA into Spark,
which is based on Adam system for the genetic data for-
mats, such as FASTA, FASTQ, SAM, and VCE, etc. [11].
Meanwhile We employ Avocado [10] Avocado to
accomplish the variant discovery and genotyping.

Distributed algorithms

In order to facilitate the genetic data analysis in dis-
tribution, we implement several distributed algo-
rithms, including the extract-transform-load library
(ETLIib), the base algorithm library (BAlib), the con-
version library (Clib) and the upload/download library
(UPLib).

-
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Fig. 3 Framework of the CloudBWA algorithm
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BAlib is a general algorithm library to distributed
process and analyze the genetic data processing and ana-
lysis, including read mapping algorithm, Indel realign-
ment algorithm, base quality score recalibration
algorithm, mark duplicates algorithm, sorting algorithm,
variants discovery algorithm, genotyping algorithm, dis-
ease identification and analysis algorithm and so on.

ETLIib is a library which is responsible for the extrac-
tion, cleaning, conversion and loading of genetic data,
which is used to process the raw data and facilitates sub-
sequent operations.

UPlib is a library dedicated to the uploading and
downloading genetic data. As the usual FASTA, FASTQ
and SAM data formats are not suitable for distributed
environments at present, uploading files from the local
file system requires related operations to process them.
Moreover, it also requires related operations to process
for downloading data from DES to local file system.

Clib is a library designed for converting different data
formats. It provides mutual conversion functions be-
tween standalone data formats FASTA, FASTQ, SAM,
VCF and distributed data formats Adam [2].
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Distributed read mapping algorithm

In order to solve the scalability problems of the con-
ventional read mapping algorithms, in this paper we
propose a distributed read mapping algorithm
CloudBWA, which is based on cloud computing tech-
niques. This section describes the CloudBWA frame-
work and the CloudBWA workflow respectively.

First, the CloudBWA framework is shown in Fig. 3,
CloudBWA wusually employs a Master-slave frame-
work. In general, the Master node is primarily re-
sponsible for manage the metadata and the cluster,
which combines Spark Master, Alluxio Master and
HDFS NameNode. In comparison, the Slave node
consists of two layers: a storage layer and a compute
layer. The specifications of both layers are presented
in Distributed read mapping algorithm section.

The CloudBWA workflow mainly utilizes Spark and
the BWA tools to a distributed read mapping frame-
work, including data storage and conversion. As pre-
sented in Fig. 4, the CloudBWA algorithm is composed
of three stages: the data preprocessing stage, the Map
stage, and the post-processing stage.

DFS RDD DFS
Partition - Partition
! Batch processing 1
read; 1 adam, ;
P read; p, samy p,, adamy j, p
rea adam
Worker, | Block, | 2 N N L2 |—»{Block,
read, j, samy adam, p,
read; m . * adam; y,
Partition. - Partition.
z Batch processing artition,
ready ; adamy,
ready p, samy adamy p,
Worker,|Block,|-»{ | readz; adamz; | —»{Block,
> >
ready p samgy adamg p,
read; i . adamy
—> >
Partition X Partition,
n Batch processing artition,
ready ; adamy, ;
ready, p, samy adamy, ,,
Workery[Block, ] | readn,2 adamyz | —»Block,
> > >
readp j, samy, j, adamy, ;,
readp m £ i adamy m
> Preprocessing< » Map < ¥ Post-processing |
Fig. 4 Workflow of the CloudBWA algorithm
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1) Preprocessing

The preprocessing stage mainly reads data from the
distributed file system (DFS) and works on the pre-
process procedure. The DFS supported by CloudBWA
has Alluxio and HDFS. Alluxio is small capacity and
fast speed, and HDFS is more stable and larger cap-
acity, but the read and write speed is relatively
slower.

Data preprocessing contains following steps:

(1) Inputting data. CloudBWA supports input
genetic data in forms of the traditional FASTA,
FASTQ and VCF formats, and then uses Adam
to convert them into distributed data formats.
CloudBWA also supports input genetic data in
forms of Parquet data format.

(2) Converting data. Since the Map phase requires
information such as the sequence and name of
the read, it is necessary to extract and convert.

(3) Filtering data. Filtering out the data which is not in
accordance with the requirements.

(4) Pairing reads. It is necessary to pairing paired-
end reads in preprocessing phase. Otherwise, it
will increase the overhead of subsequent compu-
tation if paired-end reads are distributed in dif-
ferent nodes. CloudBWA pairs reads by invoking
the Spark’s groupBy function and using the name
of reads as key. Users can also specify the size of
numPartitions, which can be used to adjust the
number of partitions in each node and weaken
the effect of stragglers.

(5) Caching data. To reduce repeat computation,
caching processed data into memory.

2) Map
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Table 1 Real datasets
Public datasets

Description Number

GRCh38 Reference genome About 3.2 billion base
ERR000589 Paired-end reads 23,928,016 reads
SRR062634 Paired-end reads 48,297,986 reads

This Map phase employs batch processing techniques
to speed up the data processing procedure. When the
batch is too small, the utilization rate of computing re-
sources is not high. When the batch is too large, it will
increase the system memory and CPU load and result
in lower performance. So it is critical for the perform-
ance of CloudBWA to select the size of the batch.

As illustrated in Fig. 4, a new RDD of reads is gen-
erated after the preprocessing stage. Each RDD has
several or a number of partitions. To facilitate the de-
scription comprehensively, each node in the Fig. 4 has only
one partition, which can actually be adjusted by numParti-
tions in preprocessing phase. Considering that the data dis-
tribution is sufficiently uniform, each partition has m pairs
of reads. Paired-end reads of Partition;are named as read;
1 to read; .. The paired-end reads in different partitions
are generally different. CloudBWA provides two output
mode: SAM and Adam mode. Assuming the size of batch
is k. The Map phase are composed of following steps:

(1) Loading the reference genome. The mapPartitions
function of Spark is used to process each partition.
The jJBWA [34] is called to launch the reference
genome that has already been built BWA index.

(2) Read mapping stage. When the size of batch
reaches k, the CloudBWA architecture will call the
jBWA to do the read mapping process. If the
remaining batch size of the partition is less than k,

Runtime(s)
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g
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Fig. 5 Impact evaluation of different batch size and output mode
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they will be mapped. For example, read, 5, will be
processed and return to sam; ,, by read mapping.
The sam; 5, is SAM format string.

(3) Unifying the expression stage. Due to that jBWA
may return multiple results after mapping, they
need to be filtered and transformed. CloudBWA
designs and implement a processing mechanism
to unify the expression.

(4) Processing in Adam mode. If the output is
formatted as Adam mode, CloudBWA will invoke
SAM tools to convert SAM format string into
SAM Record format, and obtains or generates
the reference sequence dictionary SQ, read group
RG and program information PG, and then
convert them into Adam format.

(5) After processing an entire batch, the next batch
of reads in the partition will be processed from
(2) until the genetic data of the partition is
processed.

(6) When the whole partition is finished, CloudBWA
will release the related data and operations of
jBWA. When all the partitions are processed,
CloudBWA will start the next phase
automatically.

3) Post processing

CloudBWA needs to do a post processing after the
map phase. The main steps are shown as follows:

(1) Generating RDD. CloudBWA needs to obtain the
reference sequence dictionary SQ, read group RG and
program information PG, and then combines them
with mapped reads in map phase to generate a new
SAM or Adam RDD.

(2) If the output mode is SAM mode, CloudBWA will
save SAM RDD into DFS or return SAM RDD.

(3) If the output mode is Adam mode, CloudBWA will
return Adam RDD or save Adam RDD into DFS with
specified storage block size and compression method.

Using Adam format output and storage increases com-
putational overhead, but reduces storage space because
Adam uses Parquet column storage, which can compress
easily and has smaller storage space [2]. When the three
phases are completed, CloudBWA completes the distrib-
uted read mapping.

Results

The main goal of this paper is to solve the scalability
problems of traditional genetic data analysis pipeline. In
this section, we evaluate GCDSS in two major aspects:
performance and scalability. CloudBWA is a distributed
read mapping algorithm in GCDSS. The major aim of
CloudBWA is address the second challenge: the scalabil-
ity of traditional read mapping algorithms is limited.
Read mapping is rather time-consuming in the whole
genetic data analysis pipeline. Therefore, we focused on
the evaluation of CloudBWA. We also evaluate the feasi-
bility of the GCDSS prototype.

All our experiments are performed on an 8-node local
cluster. The operation system of each node is
Ubuntu-14.04.1. Each node has a dual core Intel Xeon
W3505 CPU with 22GB of RAM, and it is connected via
Gigabit Ethernet. The version of Apache Spark is 1.5.2.
The Alluxio version is 1.3.0. The version of HDES is
2.6.0. The version of Java JDK is 1.8.0_121. The version

Speedup

1 2 3 4 5 6 7 2
The numbers of nodes

Fig. 7 The speedup improvement by increasing the number of nodes
.
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of Scala is 2.10.5. We employ wgsim [35] to generate
simulation data. The version of wgsim is 0.3.2. The
parameters of wgsim are set as default besides descrip-
tion. In order to validate algorithm or system in real
environment, we use real datasets ERR000589 and
SRR062634 (see Table 1) that are the same as
SparkBWA [20]. ERR000589 has 23,928,016 reads and
the length of each read is 51 base. SRR062634 has
48,297,986 reads and the length of each read is 100 base.
Their sequencing platform is Illumina.

CloudBWA is measured with different metrics, includ-
ing the impact of different parameters on CloudBWA,
the scalability evaluation, the performance comparison.

Performance evaluation

We evaluated the impact of different parameters on
CloudBWA, including the batch size and number of the
Partitions.

(1) Impact of the batch sizes and output mode

The experimental raw data reads are generated by
wgsim with 20 million of reads at 50 base length.
The memory of the Spark node is configured as 20G.
The size of numPartitions is set to 32. Adam uses
GZIP software to compress the data. Reference is
chromosome 1 of GRCh38. We use HDFS as the dis-
tributed file system with FASTQ as the input format
of reads.

Figure 5 illustrates impact evaluation of batch size
and output mode on CloudBWA framework. The ex-
perimental result proposes that SAM mode is more
efficient than the Adam mode for all possible batch
sizes. This is due to that Adam format needs more
computation resources, including the conversion and
compression process. When batch size is only 1 read,
the runtime of SAM and Adam mode is remarkable.
When the batch size increases, the runtime of SAM
mode will decrease at first and then increase accord-
ingly, and finally become stable. The run time of
Adam mode will rise when batch size is considerable.
The runtime is the least when batch size is about 10
reads.

Impact of different data format and numPartitions
CloudBWA supports both FASTQ and Adam input for-
mat. We use the same experimental data as the first ex-
periment. The output mode is SAM mode with 10 reads
for the batch size. We use Alluxio as the distributed file
system with FASTQ as the input format of reads. The
CloudBWA is evaluated with different numPartitions
sizes.

Figure 6 demonstrates the impact of different input
data formats on the CloudBWA. The experimental result
illustrates that Adam input format is more efficient than
FASTQ format. Adam format achieves 9.6% perform-
ance improvement over SAM format on average. When
inputting data with Adam format in DFS, CloudBWA
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can directly process the data, which avoids extra trans-
formation overhead like FASTQ format. The experimen-
tal result shows that with the growth in numPartitions,
the running time of CloudBWA will grow quickly, and
then becomes flat with minor increments. When the size
of numPartitions is 16, the runtime of CloudBWA is the
least. At present, CloudBWA employs BWA to read
mapping in each partition, including loading index file
and releasing related data.

Scalability evaluation
In order to measure the scalability of CloudBWA, we run
the algorithm with different number of nodes. The data are
the same as the first experiment. Every node uses one core.
The numPartitions size is 16 with Adam input data format.
The output mode is SAM with 10 reads for the batch size.
Figure 7 illustrates the speedup improvement of
CloudBWA architecture in line with the number of
nodes growth. The experimental result shows that
CloudBWA achieves approximately linear speedup when
the number of nodes grows from 1 to 8.

Comparison

We use different experiments to compare the perform-
ance of CloudBWA and other related algorithms, includ-
ing stand-alone algorithms and distributed algorithms.

Comparison with distributed algorithms
We compare CloudBWA with different distributed algo-
rithms, including SparkBWA [20] and CS-BWAMEM [13],
both of which are the state-of-the-art read mapping algo-
rithms in distribution. The version of CS-BWAMEM is
0.2.2, with output format is Adam and 100 reads batch size.
The version of SparkBWA is 0.2 with SAM output format
and numPartitions size is 8 The SparkBWA uses two
threads in each node. The version of CloudBWA is 1.0.1,
with numPartitions size at 16 and batch size at 10 reads.
The three algorithms use 8 nodes and 16 cores in cluster.
Figure 8 illustrates the performance comparison with
both distributed algorithms. In particular, Fig. 8a uses differ-
ent number of reads, which is from 4 million to 40 million,
and their length is 50 base. The experimental results dem-
onstrate that CloudBWA is more efficient than the
SparkBWA and CS-BWAMEM algorithm in different
number of reads. The Adam mode of CloudBWA achieves
average 1.84 times speedup over CS-BWAMEM. The SAM
mode of CloudBWA gains up to 2.63 times speedup over
SparkBWA. Figure 8b evaluates the results for different
length of reads, which is from 50 to 1000 base. The num-
bers illustrate that CloudBWA is more efficient than
SparkBWA and CS-BWAMEM in various length of reads.
The Adam mode of CloudBWA gains up to 2.22 times
speedup over CS-BWAMEM. The SAM mode of
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CloudBWA achieves 1.44 times speedup over SparkBWA
on average.

Comparison with real data
In order to more fully validate CloudBWA, we design
two different experiments with real data (see Table 1).

The stand-alone algorithms use one node and one core.
The distributed algorithms use 8 nodes with 16 cores. The
version of CloudBWA is 1.2.0. CloudBWA uses 160 as
NumPartitions size and 11 as batch size for ERR000589.
CloudBWA uses 128 as NumPartitions size and 10 reads as
batch size for SRR062634. We cannot obtain experiment
result of CS-BWAMEM because of it has out of memory
error in real data.

Figure 9 illustrates the performance comparison with real
data. The parameter of parentheses is the number of pro-
cessor cores. The experimental result illustrates that
CloudBWA has outstanding performance. For ERR000589,
CloudBWA (16) achieves 11.59, 8.39, 1.66 times speedup
over BWA-MEM (1), BWA-SW (1), SparkBWA (16), re-
spectively. For SRR0062634, CloudBWA (16) achieves
11.02, 23.86, 1.68 times speedup over BWA-MEM (1),
BWA-SW (1), SparkBWA (16), respectively.

Discussion
After evaluating the CloudBWA, which is the key compo-
nent algorithm in GCDSS, we also measure the other

GCDSS’s components. We especially focus on the perform-
ance and scalability analysis.

Calibration evaluation

The experimental benchmarks and configurations are
the same as the experiment of A 3) (1). The length of
reads is set to 50.

Performance of calibration

Figure 10 illustrates the performance of calibration. The
experimental results demonstrate that sort is the fastest
process and LR is the slowest process in the calibration
procedure. MD is actually slower than BQSR at the
beginning, but MD is far more efficient when the num-
ber of reads is more than 20 million. With the growth in
the population of reads, the four operations’ runtime of
calibration are also approximately linear increasing.

Scalability of calibration

Figure 11 demonstrates the scalability of calibration. The
experimental result reveals that the four operations of
calibration achieve about linear speedup when the num-
ber of nodes increases from 1 to 8 in cluster.
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Table 2 Evaluation of disease identification and discovery

Number of raw reads 4,000,000 20,000,000 40,000,000
Number of mapped reads 3,911,329 19,553,895 39,107,115
Number of mate mapped reads 3,824,558 19,117,950 38,234,922
Reads number after variant discovery 3,655,139 17,772,692 37,313,251
Reads number after genotyping 5071 13,797 15,571
Reads number after disease analysis 3 14 34

Variant discovery and genotyping evaluation

The experimental benchmarks and configurations are
the same as the experiment of A 3) (1). The length of
reads is set to 50.

Performance evaluation

Figure 12 illustrates performance of variant discovery
and genotyping. The experimental result shows that with
the growth of the number of reads, the runtime of vari-
ant discovery and genotyping both are around near
linear.

Scalability evaluation

Figure 13 tells scalability of variant discovery and geno-
typing. The experimental result shows that variant discov-
ery and genotyping both achieve near linear speedup in
line with the growth the number of nodes from 1 to 8.

Disease identification and discovery evaluation

Disease identification and discovery also plays a vital role
of the GCDSS. We also accomplish several experiments
to measure the disease identification and discovery. In
order to analyze the GCDSS system comprehensively,
this paper also incorporates the benchmarks same as the
previous read mapping and variant analysis.

Table 2 tells the evaluation results of disease identifica-
tion and discovery. We select 4 million, 20 million, and
40 million respectively. The experiment result shows
that the corresponding number of data are 3, 14, and 34
after the data are analyzed by disease identification and
discovery of GCDSS.

Conclusions

In this paper, we have presented GCDSS, which is a dis-
tributed gene clinical decision support system based on
cloud computing techniques. In particular, we incorpo-
rated a distributed genetic data analysis pipeline frame-
work in the proposed GCDSS system. To boost the data
processing of GCDSS, we propose CloudBWA, which is
a novel distributed read mapping algorithm to leverage
batch processing technique in mapping stage using Apa-
che Spark platform. The experimental results show that
CloudBWA is able to achieve outstanding performance
with excellent scalability. Compared to state-of-the-art
distributed read mapping algorithms, CloudBWA
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achieves up to 2.63 times speedup over SparkBWA.
Compared with unicore read mapping algorithms,
CloudBWA with 16 cores achieves up to 11.59 times
speedup over BWA-MEM with uniprocessor. We also
evaluated other GCDSS’s key components, including
calibration, variant discovery, genotyping, disease identi-
fication, and discovery. The experimental results illus-
trate that GCDSS also achieves remarkable speedup with
satisfying scalability.

In the future, we plan to exploit numerous technolo-
gies to further improve performance and increase the
variety of disease analysis.

Availability
An open source GCDSS (under GNU GPL v.2 license)
are available at: https://github.com/xubo245/GCDSS.
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