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Abstract

Background: Human Down syndrome (DS) is usually caused by genomic micro-duplications and dosage imbalances
of human chromosome 21. It is associated with many genomic and phenotype abnormalities. Even though human
DS occurs about 1 per 1,000 births worldwide, which is a very high rate, researchers haven’t found any effective
method to cure DS. Currently, the most efficient ways of human DS prevention are screening and early detection.

Methods: In this study, we used deep learning techniques and analyzed a set of Illumina genotyping array data. We
built a bi-stream convolutional neural networks model to screen/predict the occurrence of DS. Firstly, we built image
input data by converting the intensities of each SNP site into chromosome SNP maps. Next, we proposed a bi-stream
convolutional neural network (CNN) architecture with nine layers and two branch models. We further merged two
CNN branch models into one model in the fourth convolutional layer, and output the prediction in the last layer.

Results: Our bi-stream CNN model achieved 99.3% average accuracies, and very low false-positive and false-negative
rates, which was necessary for further applications in disease prediction and medical practice. We further visualized
the feature maps and learned filters from intermediate convolutional layers, which showed the genomic patterns and
correlated SNPs variations in human DS genomes. We also compared our methods with other CNN and traditional
machine learning models. We further analyzed and discussed the characteristics and strengths of our bi-stream CNN
model.

Conclusions: Our bi-stream model used two branch CNN models to learn the local genome features and regional
patterns among adjacent genes and SNP sites from two chromosomes simultaneously. It achieved the best
performance in all evaluating metrics when compared with two single-stream CNN models and three traditional
machine-learning algorithms. The visualized feature maps also provided opportunities to study the genomic markers
and pathway components associated with Human DS, which provided insights for gene therapy and genomic
medicine developments.
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Background
Human Down syndrome (DS) is usually caused by
genomic micro-duplications and dosage imbalances of
human chromosome 21 [1]. It is associated with many
genomic and phenotype abnormalities [2, 3]. Currently,
human DS occurs at a very high rate, which is about
1 per 1000 births worldwide [4]. Human DS is also
associated with a group of serious diseases, including
congenital heart defects, intellectual disability, leukemia,
Alzheimer’s disease, Hirschsprung disease, early aging,
physical abnormalities, and other abnormalities [1, 5–7].
Current treatments of human DS mainly concentrate on
physical therapy [8, 9], emotional and behavioral thera-
pies [10, 11], educational therapy, and early intervention
[10, 12]. However, these therapies only have some limited
effects that cannot cure DS fundamentally.

DS screening has been studied for more than 50
years. Currently, widely used approaches include com-
bined genomic test [13], blood test [14], sequencing test
[15], and ultrasound measurement of nuchal translu-
cency [16]. However, 1/16 of positive screening women
may still suffer from further invasive diagnostic proce-
dures, which might result in fetal loss [15, 17]. There-
fore, an accurate and error-less DS screening method
could significantly reduce the risk of human DS screening
procedures.

Recent genome-wide association studies (GWAS) and
single nucleotide polymorphisms (SNPs) studies have
proved strong correlations between genomic abnormali-
ties and occurrences of different kinds of diseases [18–21].
DS related GWAS studies also showed that SNP vari-
ations, gene copy number variations (SNVs), and lots
of unidentified genomic variations were associated with
the complex genomic disorders and abnormalities of
Human DS [22, 23]. However, only a few biomarkers have
been discovered to associate with Human DS, such as
chorion gonadotropin, unconjugated estriol, and alpha-
fetoprotein [24, 25]. Human chromosome 21(Hsa21)
encodes more than 500 genes [26, 27] and have various
functions, including RNA splicing protein modifiers,
cell surface receptors, transcription factors, adhesion
molecules, and biochemical pathway components [27, 28].
Currently, 160 of Hsa21 genes have already been anno-
tated as protein-coding genes by SwissProt. Five of them
are microRNAs. Most of them have unknown functions
[29]. The over-expression of Hsa21 genes results in com-
plex genomic disorders and perturbations of biological
processes and pathways [28]. Illumina has introduced a
new exome genotyping array technique to identify rare
single-nucleotide polymorphisms, which is an alternative
technique of high-throughput sequencing. The Vanderbilt
University Medical Center and Center for Quantitative
Sciences developed an exome chip–processing protocols
for this techinique [23].

Machine learning has already been applied to human
diseases and genomic pattern predictions [30–32]. Based
on our knowledge, only limited types of traditional
machine learning techniques have been used in human
DS studies [27, 33]. Most of them are performed on mice
DS models [23, 27, 34]. Zhao et al. used hierarchical
constrained regional model and independent component
analysis to detect Human Down syndrome of pediatric
patients [35]. Cao et al. used a Naive Bayes model to
predict locomotor activities in mice models Ts65Dn and
Ts1Cje under the treatments of N-methyl-D-aspartate
receptor [34]. Clara et al. designed an unsupervised self-
organizing map model to identify biological differences in
mice model Ts65Dn [27]. Recently, deep neural networks,
especially convolutional and recurrent neural networks,
have achieved impressive performances in disease screen-
ing, predictions and diagnosis studies [30, 36–38].

In this study, we used convolutional neural networks to
construct human Down Syndrome screening/prediction
models based on Illumina genotyping array data. Firstly,
we built image input data by converting the intensities
of SNP sites into chromosome SNP maps. Then we pro-
posed a bi-stream convolutional neural network architec-
ture with nine layers and two branch CNN models, which
took two input chromosome SNP maps simultaneously.
We also constructed another two single-stream CNN
models, which took one chromosome SNP map as input
image using the same dataset. Next, we used three tradi-
tional machine learning algorithms Random Forest, SVM,
and Decision Trees to construct DS screening/prediction
models with the same dataset. We evaluated, compared,
and analyzed the performance metrics for all models men-
tioned above. We concluded that our bi-stream CNN
model had best performances in all evaluation metrics
when compared with other models. At last, we visualized
feature maps and learned filters from intermediate layers
to study the genomic patterns and correlated gene and
SNP variations. We also analyzed and discussed the char-
acteristics and strengths of the bi-stream CNN model.

Result
Building human chromosome SNP maps
The genotyping dataset used in this study was Illumina
exome genotyping array data, which targeted rare single-
nucleotide polymorphisms. The dataset contained 378
samples, including 63 DS samples and 315 control sam-
ples. Each sample contained the intensity information
of 5458 SNPs sites from 321 Hsa21 coding genes. The
SNP intensities were normalized to the interval [0,1]. As
shown in Fig. 1, we built two chromosome SNP maps
to represent the intensities of all SNP site for two Hsa21
chromosomes. Each column of chromosome SNP map
represented one single gene. Each row represented adja-
cent SNP sites within the same gene. Therefore, each
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Fig. 1 Chromosome SNP maps to represent the intensities of all SNP site on HSA21. Each column represents the information of one single gene
located on the chromosome. Each row represents adjacent SNP sites within the same gene. Therefore, each pixel of of the chromosome SNP map is
used to represent the intensity of each SNP site of genes

pixel could be used to represent the intensity of each SNP
site. In this study, we used chromosome SNP maps as
input images to construct and evaluated CNN models.
For traditional machine learning algorithms, we used orig-
inal Illumina genotyping array dataset to construct and
evaluate the models. For each model construction and
evaluation, we did ten parallel experiments with ten sam-
ple datasets by randomly sampling the original dataset ten
times. Each sample dataset randomly selected 75% data
for training and the rest 25% for testing. We calculated
average evaluating metrics to provide reliable evaluations.

Bi-stream convolutional neural network architecture
Figure 2 showed the architecture of the bi-stream CNN
model used in this study, which was merged from two
branch CNN models. Each branch model had one input
layer, three convolutional layers, and one max-pooling
layer. Therefore, our bi-stream CNN model could take
two chromosome SNP maps as input images simultane-
ously. We merged two branch CNN models into one CNN
model in the fourth convolutional layer, which was fol-
lowed by a max-pooling layer. Next, we had another three
fully connected layers and one output layer. We added

Fig. 2 Bi-stream CNN architecture taking two chromosome SNP maps as inputs The upper CNN branch model and the lower CNN branch model
both take one chromosome SNP map as input image. We merged two branch CNN models into one CNN model in the fourth convolutional layer
C4, which was also followed by a max-pooling layer. Detailed CNN architecture construction and configurations are available in the Method section



Feng et al. BMC Medical Genomics 2018, 11(Suppl 5):105 Page 28 of 107

dropouts for each hidden layer for reducing over-fitting.
Detailed CNN architecture and configurations were avail-
able in the Method section.

Bi-stream CNN DS screening/prediction model
We first constructed human DS screening/prediction
model using bi-stream CNN architecture proposed in the
last section. To provide reliable and confidence evaluation,
we ran ten parallel experiments on ten randomly sam-
pled dataset and calculated average performance metrics.
As shown in Table 1, our bi-stream CNN model achieved
99.3% average accuracy in ten parallel experiments. The
average precision, recall, and F-score were 99.2, 98.4, and
99.3%. It was worth to notice that the bi-stream CNN
model had very low false-positive and false-negative rates,
which were 0.6 and 1.1%. We only mis-predicted five non-
DS samples and two DS samples in all ten experiments.
Our results showed that the bi-stream CNN architec-
ture could construct very accurate and robust human DS
screening/prediction models.

Comparing with traditional machine learning DS
screening/screening models
We further applied three different traditional supervised
learning algorithms to construct human DS prediction
models using the original Illumina genotyping array data
with total 5458 SNP features. We also ran ten parallel
experiments and further compared the performances with
our bi-stream CNN model. Table 1 showed that Random
Forest, SVM, and Decision Tree models could achieve
very high average accuracies, which were all above 96%.
The model built from Random Forest achieved the best
performance in all evaluation metrics among all three tra-
ditional learning algorithms. Nevertheless, Table 1 also
showed that the bi-stream CNN model produced higher
accuracy, precisions, recalls, and F-scores when compared
with traditional machine learning algorithms. Further-
more, the false negative rates of Random Forest, SVM,
and Decision Tree models were very high, which were
8.1, 5.3, and 8.0% respectively. Models with such high
false-negative rate were impractical to be applied in real-
life clinical prediction and medical practice. However, the
bi-stream CNN models achieved significantly better per-
formances in false-positive and false-negative rates, which

were only 0.6 and 1.1%. The result above demonstrated
that the bi-stream CNN model achieved better perfor-
mances when compared with the traditional machine
learning algorithms. It was more suitable for human DS
screening.

Comparing with single-stream CNN model
Here we built two new single-stream CNN models using
the same configurations and datasets with our bi-stream
CNN model proposed above. The only difference between
bi-stream and single-stream CNN models was that sin-
gle stream model only had one CNN branch and took
one chromosome SNP map as the input image. We fur-
ther compared and evaluated the performances of two
single-stream CNN models. As Table 2 shown, our bi-
stream CNN model achieved the best performance over
all three models in all evolutionary metrics. The other two
single-stream CNN model also achieved over 96% accura-
cies. However, the recall of the first single-stream model
and the precision of the second single-stream model were
very low, which were 84.0% and 88.7% respectively. Fur-
thermore, the false positive and false negative rate of
the single-stream CNN models were significantly higher
than the bi-stream CNN model. In general, our bi-stream
CNN model had significantly better performances than
the single-stream CNN models. The single-stream mod-
els could only extract the genome features from one single
chromosome, which completely neglected the genomic
patterns from the other one. Therefore, they were not
as accurate as the bi-stream CNN model. The bi-stream
CNN model was more comprehensive, accurate, and reli-
able when compared with the single-stream DS prediction
models.

Visualization of feature maps and trained filters of
bi-stream model
In this section, we visualized the trained filters and fea-
ture maps from intermediate convolutional hidden lay-
ers of our trained bi-stream CNN model. The bi-stream
CNN model had a few advantages when compared with
traditional machine learning algorithms. First of all, we
used chromosome maps to represent the genotyping array
information, which converted one-dimensional genome
data to images. Secondly, We used 16 convolutional 3x3

Table 1 Evaluation metrics of bi-stream CNN and conventional machine learning models

Models Evaluation metrics of different models

Accuracy Precision Recall F-score False-positive rate False-negative rate

Decision tree 96.9(+-1.0)% 94.1% 95.4% 94.6% 2.2% 8.0%

Random forest 97.1(+-0.7)% 94.4% 94.9% 94.7% 1.9% 8.1%

SVM 96.7(+-0.9)% 92.7% 95.9% 94.2% 2.9% 5.3%

Bi-Stream CNN 99.3(+-0.4)% 99.2% 98.4% 99.3% 0.6% 1.1%
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Table 2 Evaluation metrics of different CNN models

Models Evaluation metrics of different CNN models

Accuracy Precision Recall F-score False-positive rate False-negative rate

Bi-Stream CNN 99.3(+-0.4)% 99.2% 98.4% 99.3% 0.6% 1.1%

Single-stream CNN (ChrA) 96.4(+-0.5)% 94.7% 84.0% 96.4% 5.2% 3.2%

Single-stream CNN (ChrB) 96.6(+-0.6)% 88.7% 92.9% 96.6% 11.2% 4.3%

size kernels to capture local genomic features and detect
patterns from adjacent genes and SNP sites from two
chromosome SNP maps. Thirdly, two branch CNN model
could capture the genomic features from two chromo-
somes at the same time. Figure 3a and b showed the out-
put feature maps and their corresponding trained filters
from convolutional layer C1 of each branch CNN mod-
els. Some trained filters could highlight the most impor-
tant and informative SNP sites from the chromosome
SNP maps, and neglect less informative ones (marked as
yellow squares). The green rectangles showed that our
trained filters could sharpen input images and capture
local motifs, which represented the correlated variations
patterns in genome regions. The bi-stream model could
also detect continuous gene and SNP intensity variations
by capturing adjacent variation patterns in line(marked as
white rectangles). Our bi-stream CNN model could detect
the simultaneous or causal SNPs variations in human
genomes. These genome characterizations and extracted
genomic patterns provided signals to classify DS and
normal samples. However, traditional machine learning
algorithms tended to build models with a global view

from all available features and treated each feature inde-
pendently. Therefore they were hard to extract signals
from regional genomic patterns and correlations between
adjacent genes and SNPs sites.

Discussion
Previous studies illustrated that gene expressions and SNP
variations were highly correlated within local genome
regions [39–41]. Genome-wide association studies also
demonstrated that human DS was usually associated with
many gene copy number and SNPs variations, and many
unidentified genomic abnormalities [23, 42, 43]. In this
study, our bi-stream CNN model could learn the genomic
features and associated variations among adjacent genes
and SNP sites from chromosome SNP maps. Currently,
human DS treatments only have limited effects and can
not cure DS fundamentally. There isn’t any clear effect
or benefit on human DS treatments using traditional
drugs either [44–47]. The feature maps and extracted
genome features could identify DS related markers and
pathway components. These genome features explained
thegenomic characteristics and pathological mechanisms

Fig. 3 Visualization of feature maps and trained filter weights from convolutional layer C1(shown in Fig. 2). Figure a, b, c and d in figure (a) represent
four feature maps from convolutional layer C1 of lower branch CNN model (shown in Fig. 2). Figure e, f, g and h in figure (a) are the corresponding
3x3 filters weights of Figure a, b c and d. Figure a, b, c and d in Figure (b) represent four feature maps from convolutional layer C1 of the upper
branch CNN model. Figure e, f, g and h in figure (b) are the corresponding 3x3 filters weights for Figure a, b, c and d
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of human DS, which could be further be applied in gene
therapy and genetic medicine developments.

An accurate non-invasive DS screening method offers
a low-risk way to screen human DS. It helps low-
risk patients avoid taking further invasive diagnostic
procedures, which might result in fetal loss. Nowadays,
genotyping array analyses on fetal genomes could be per-
formed on the trophoblast cells with non-invasive pro-
cedures after the fifth week gestation [42, 43]. In this
study, we developed a novel method to construct accu-
rate DS screening model by using bi-stream CNN and
genotyping array data. The results showed that our bi-
stream CNN model had the best performance in every
evaluation metric when compared with two single-stream
CNN models and three traditional machine learning mod-
els. The CNN model achieved over 99.3% accuracies,
as well as very low false positive and false negative
rates. It was very important to disease prediction and
medical practice. Even though traditional machine learn-
ing algorithms obtained over 96% accuracies, their high
false-negative rates are not suitable for clinical screen-
ing tests. Traditional machine learning algorithms treated
each SNP sites as single feature independently. They
were hard to extract signals from regional genomic pat-
terns and variation correlations between adjacent genes
and SNPs sites. Although the single-stream models could
extract features and patterns from local genome features
and adjacent SNP sites, they could only learn these fea-
tures from one single chromosome, which completely
neglected the genomic patterns of the other one. In
deep learning studies, large datasets were great obsta-
cles in the model construction and optimization. We used
each pixel to represent the intensities of SNP site, and
used chromosome SNP maps to represent the genome
information, which significantly reduced data and model
complexity. Furthermore, our bi-stream CNN architec-
ture could learn local genomic patterns and extracted
regional features, which could also be applied to building
prediction models from genotyping array data for more
diseases.

Method
Data
In this study, the rare single-nucleotide polymorphisms
were measured by newly introduced Illumina exome
genotyping array technique. Illumina exome genotyp-
ing array could identify rare single-nucleotide poly-
morphisms, which was an alternative technique of
high-throughput sequencing. The Vanderbilt University
Medical Center and Center for Quantitative Sciences had
developed an exome chip–processing protocols for this
techinique [23], and provided us the experiment data. The
dataset contained the intensity information of total 5458
SNP sites from 321 coding genes on Hsa21 [48]. There

were total of 378 samples, including 63 DS samples and
315 control samples.

Bi-stream CNN architecture
Our bi-stream CNN model was merged from two branch
CNN models. Each branch CNN model had one input
layer, three convolutional hidden layers, and one max
pooling layer. We fed two input chromosome SNP maps
to the two branch CNN models at the same time. Two
branch CNN models were further merged into one CNN
model in the sixth layer, which was also a convolutional
hidden layer. Figure 4 showed the detailed deep neu-
ral network structure and configurations for each layer.
Detailed information and configurations were shown as
below:

Each branch model contained five layers: Layer 1, the
input layer took one size 642×642 grey chromosome SNP
map image as input. Layer 2, one convolutional layer with
16 3*3 filters and ReLu activation. Layer 3, one max pool-
ing layer with 2*2 pool size to down-sample the data,
followed by a dropout (0.25) to reduce over-fitting. Layer
4, one convolutional layer with 16 3*3 filters and ReLu
activations, followed by dropout (0.25). Layer 5, one con-
volutional layer with 16 3*3 filters and ReLu activations,
followed by dropout (0.25). Next, in layer 6, we merged
two branch CNN models into one convolutional layer
with 16 3*3 filters and ReLU activations. Layer 7 was
another max pooling layer with 2*2 pool scale, followed
by dropout (0.25). Layer 8 was a fully connected layer
to flatten all features into one-dimension. Layer 9 was a
fully connected layer with 512 nodes and ReLU activation.
Layer 10 was the output layer with two nodes and Softmax
activation. We used stochastic gradient descent optimizer
(SGD) and binary cross-entropy as loss function, with a
learning rate of 0.01, 1e-6 decay and 0.9 nesterov momen-
tum. We used Tensor-flow and Keras construct all CNN
models that used in this study. We use a NVIDIA GeForce
GTX TITAN X GPU to build our model on a Ubuntu
14.04.5 LTS machine[48].

Conventional machine-learning algorithms
In this study, we used Python and Scikit Learn package
[49] to implement and construct models for tradi-
tional machine learning algorithms SVM, Random For-
est, and Decision Tree[49]. SVM was implemented using
C-Support Vector Classification algorithm, which used
“one-vs-one” scheme. Random Forest and Decision Tree
used entropy and Gini impurity to measure features’ split-
ting qualities. There was no maximum depth limit for
Random Forest sub-trees, unless there were less than two
samples or all leaves were pruned. We used Classification
and Regression Trees algorithm to implement the Deci-
sion Tree models. We constructed binary tree with the
largest information gains on each splitting node, which
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Fig. 4 Detailed configurations and structures for each layer of the bi-stream CNN DS prediction/screening model
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was very similar to C4.5 decision tree algorithm. No depth
limit was preset before training decision tree models. The
maximum features used in model building was set to the
total number of features [48].

Conclusion
In this study, we proposed bi-stream convolutional neu-
ral network architecture to construct accurate and robust
human Down Syndrome screening and prediction model
using Illumina genotyping array data. Our bi-stream
CNN model was merged from two branch CNN mod-
els, which used two chromosome SNP maps as input
images simultaneously. Two branch CNN models were
further merged into one CNN model in a deeper con-
volutional layer. The comparison results showed that the
bi-stream CNN model achieved the best performances in
all evaluation metrics when compared with other three
traditional machine learning algorithms and two single-
stream CNN models. The CNN model could achieve
99.3% accuracies with very low false-positive and false-
negative rates. Even though the conventional learning
algorithms also obtained over 96% accuracies, their high
false negative-rates made them hard to be applied in real
life clinical screening test. Our bi-stream model used
two branch CNN models to learn the local genomic pat-
tern and regional correlations of the adjacent genes and
SNPs from two chromosomes simultaneously. However,
the single-stream CNN models only learn genomic fea-
tures from one single chromosome, which completely
neglected the genomic patterns of the other chromo-
some. The genomic patterns, correlated genes and SNPs
variation identified by our CNN model provided opportu-
nities to study the genomic markers and pathway compo-
nents associated with human DS, which could be further
applied in gene therapy and genomic medicine develop-
ments. Therefore, our method could learn local genomic
patterns and extracted regional features from chromo-
some SNP maps, which could be applied to building
prediction models from genotyping array data for more
diseases.
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