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Abstract

Background: A protein family has similar and diverse functions locally conserved. An aligned pattern cluster (APC)
can reflect the conserved functionality. Discovering aligned residue associations (ARAs) in APCs can reveal subtle
inner working characteristics of conserved regions of protein families. However, ARAs corresponding to different
functionalities/subgroups/classes could be entangled because of subtle multiple entwined factors.

Methods: To discover and disentangle patterns from mixed-mode datasets, such as APCs when the residues are
replaced by their fundamental biochemical properties list, this paper presents a novel method, Extended Aligned
Residual Association Discovery and Disentanglement (E-ARADD). E-ARADD discretizes the numerical dataset to transform
the mixed-mode dataset into an event-value dataset, constructs an ARA Frequency Matrix and then converts it into an
adjusted Statistical Residual (SR) Vector Space (SRV) capturing statistical deviation from randomness. By applying Principal
Component (PC) Decomposition on SRV, PCs ranked by their variance are obtained. Finally, the disentangled ARAs are
discovered when the projections on a PC is re-projected to a vector space with the same basis vectors of SRV.

Results: Experiments on synthetic, cytochrome c and class A scavenger data have shown that E-ARADD can a) disentangle
the entwined ARAs in APCs (with residues or biochemical properties), b) reveal subtle AR clusters relating to classes, subtle
subgroups or specific functionalities.

Conclusions: E-ARADD can discover and disentangle ARs and ARAs entangled in functionality and location of protein
families to reveal functional subgroups and subgroup characteristics of biological conserved regions. Experimental results
on synthetic data provides the proof-of-concept validation on the successful disentanglement that reveals class-associated
ARAs with or without class labels as input. Experiments on cytochrome c data proved the efficacy of E-ARADD in handing
both types of residue data. Our novel methodology is not only able to discover and disentangle ARs and ARAs in specific
statistical/functional (PCs and RSRVs) spaces, but also their locations in the protein family functional domains. The success of
E-ARADD shows its great potential to proteomic research, drug discovery and precision and personalized genetic medicine.
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characteristics
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Background
Proteins and their interactions control the biological
process of a living organism. Within the same family, pro-
teins have similar functions. Thus, discovering conserved
sequence patterns from a family is crucial for revealing
domain functionality. However, due to mutations and/or
multiple functionality, even these conserved patterns may
have substantial differences in species or even functions.
Hence, identifying subgroup characteristics are of funda-
mental importance. We have developed a novel method
to obtain knowledge-rich [1] Aligned Pattern Clusters
(APC) [2–4] from protein families (Fig. 1(a) and (b)) to
represent biological conserved regions. Figures 1(b) and
(c) show its pattern space (APC) and data space (APC-D)
respectively [2–4]. When a local functional domain is
identified, and class labels are given, it is easy to see how
the ARs and ARAs are entangled among different classes
within the conserved domain (Fig. 1(c)) if the data size is
small. We may be able to disentangle their class relation.
However, if the size of data is large and more subtle clas-
ses or subgroups are present while the class labels are un-
known (Fig. 1(d)), the task of ARA disentanglement
becomes extreme difficult. To overcome this challenge, a
novel algorithm denoted as Aligned Residue Association
Discovery and Disentanglement (ARADD) [5], has been
developed by us, where ARADD is originated from our
recent best-paper-award work [6], by considering the
aligned sites in an APC as attributes and residues on a site
as attribute values. Hence, we extend AVADD to E-
ARADD (Aligned Residue Association Discovery and
Disentanglement) to obtain succinct disentangled sub-
groups of ARAs, revealing more succinct stereo physio-
chemical knowledge of the conserved regions with or
without explicit reliance of class labels. Since this know-
ledge is not obvious in the data, we refer it as deep know-
ledge discovered.

It should be noted that to discover knowledge at the
physiochemical level, we have to handle mixed-mode
data, i.e. data containing both categorical and numerical
values. This becomes an interesting challenge since
physiochemical properties in Aligned Pattern Clusters
[2–4], apart from our early work [7] have not yet been
seriously explored. In the following paragraphs, we pro-
vided a brief introduction of the related work, ranging
from association rule mining to pattern discovery in pro-
tein sequences.

Pattern discovery and association rule mining
In the field of data mining, association rule mining [8] is
common to mine itemset from relational tables. Algo-
rithms such as Apriori [9] and FP-growth [10] are used to
capture associations from relational dataset. However, the
above algorithms are extremely sensitive to parameters
and thresholds setting, such as probabilistic thresholds,
the number of clusters, distance measure and so on. Fur-
thermore, a challenging problem encountered that the
discovered patterns may be masked or obscure in the data
due to the entanglement of unknown factors in their
source environment [5, 6]. Therefore, for the real-world
applications in Bioinformatics with noise in the data, it is
important to discover patterns in a robust manner to
enhance biological comprehension and interpretation.

Protein functional regions represented by aligned pattern
clusters
Protein sequence analysis is crucial for identifying and
understanding the functional regions, as protein struc-
tures are expansive to obtain. Multiple Sequence Align-
ment (MSA) and Motif Discovery are the two major
methods. Given an entire set of protein sequences, MSA
[11–13] aligns them globally to identify the conserved
regions. However, MSA is limited as it is only suitable

Fig. 1 Pattern and Data Spaces of APC and ARAs. a A portion of protein sequence dataset with discovered high order patterns (in bold) [2] with
labels on the top row denote the aligned sites, on the first column denote the sequence ID; (b) Aligned Pattern Cluster (APC) Pattern Space
obtained [3]. c APC Data Space (APC-D). C1, C2, C3 represents three classes. d An discovered ARA Cluster contains three partitioned subgroups
and displayed in green, blue and red shade associate with class C1, C2 and C3 respectively. e Entangled ARAs. For example, in S3 S16, the AVAs
A1G and A3A in C2 are from C3 entangling with its ARAs A4A and A7E
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for globally homologous sequences with a high level of
sequence similarity [13]. Different from MSA, Motif Dis-
covery [14, 15] locates and aligns similar subsequences
locally to construct a probabilistic model for represent-
ing the aligned amino acids. However, motif discovery
makes unrealistic assumption that there is independence
between residue columns to represent the conserved se-
quence patterns, where in reality it is clearly not the case
[16, 17]. Aligned Pattern Cluster (APC) [2–4] was thus
developed to discover sequence patterns directly, and to
capture functional conserved residue association in
order to identify clusters of aligned patterns from the se-
quence data. Since APCs conserve both strong statistical
sequence associations and homologous sites, it is more
knowledge rich [2, 3] to reveal similar yet diverse func-
tional associations in protein families.

Physiochemical properties in aligned pattern clusters
In this study, we extend ARADD [5] to E-ARADD to
discover physiochemical subgroup patterns in APCs at the
residue (amino acid) level and the deeper level with
mixed-mode residue physiochemical property. Hence, the
ARPA clusters discovered can directly reveal the physio-
chemical characteristics of the APCs. We refers them as
APPC patterns. In the notations, we insert term “Prop-
erty” by adding the character “P” into AR, ARA and APC
as ARP, ARPA and APPC respectively while the theory
and the algorithm are not affected. We thus use them
interchangeably except in some specific situation.

Novelty and contributions
The novelty of this study, is the consolidation of our re-
cent work [5] and the extension of our ARADD algorithm
[5] into E-ARADD. We introduced into E-ARADD the
Aligned Residue Property (ARP), an ordered tuple for five
biochemical properties for Aligned Residue Property As-
sociation (ARPA) Pattern Discovery and Disentanglement.
Additional experimental analyses were conducted to sup-
port our proposed algorithms. Besides, we used the Ad-
justed Statistical Residual instead of standard statistical
residual to measure the significance of discovered associa-
tions so as to give a more accurate indication of how far
the observed count deviates from the expected count to
evaluate the statistical significance of ARA/ARPA.
The major contributions of our study are three-folded.

1. We extended the previous ARADD into E-ARADD
to handle the mixed-mode physiochemical protein
data with chemical properties for direct residue
biochemical association interpretation.

2. We showed that sequence patterns could be discovered
and disentangled from APCs, even if the patterns were
mixed or entangled in functionality and location.

3. We validated that E-ARADD could reveal functional
subgroups and subgroup characteristics of APCs
and locate their residing domains through the case
study on Class A Scavenger Receptor family (SR-A).
Understanding subgroup characteristics of con-
served regions in proteins could render new know-
ledge for gene therapy applications [18].

Methods
This study focuses on discovering inherent ARAs/ARPA
from APCs; clustering them into subgroups to reveal the
functionalities of proteins within conserved functional
regions and discover deep knowledge (PC/RSRVs) from
APCs. Table 1 gives an abbreviation of terms and Fig. 2
provides a schematic overview of our method.
To show that ARADD can go one level deeper to discover

and disentangle ARA at the aligned residue chemical prop-
erty level, we replace each aligned residue in an APC by its
five-tuples of chemical properties referred to as APPC.
Given a mixed-mode APC dataset, E-ARADD can accom-
plish the followings in steps as circled in Fig. 2. In addition,
Fig. 3 shows how E-ARADD could be easily shifted from
operating modes of APC and APPC via an Interactive GUI
to visualize the use of the proposed algorithm.
In the most general setting, an APC/APPC is represented

by R. Every tuple in R, denoted as A = {A1, A2, …AN}, is de-
scribed by N amino acid sites or the five chemical proper-
ties of the residues (ARP tuples) in the aligned sites.
First, to discover event (residue property) associations,

the numerical values of the source data need to be discre-
tized into intervals. Discretization can minimize the im-
pact of noisy data in the data mining process [19]. It also
can help smooth data to reduce noise [20], speed up clas-
sification process [21] and make classification result more

Table 1 Notations and terminologies

APC Aligned Pattern Cluster (with categorical amino
acid symbols)

APPC Aligned Property Pattern Cluster (with mixed-mode
chemical properties)

AR Aligned Residue (for amino acid symbols in APC
dataset)

ARP Aligned Residue Property (for mixed-mode chemical
properties in APC dataset)

ARA Aligned Residue Association (Significant co-occurrence
of two ARs in APCs)

ARPA Aligned Residue Property Association (for APPC)

ARA/ARPA
FM

ARA/ARPA Frequency Matrix

SR adjusted Statistical Residual between two ARs/ARPs

SRV ARA/ARPA adjusted Statistical Residual Vector Space

PCD Principle Component Decomposition

RSRV Re-projected SRV
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meaningful and easier-to-understand [22]. Hence, as Fig. 2
shows, in step 0, a mixed-mode APC is first converted to a
categorical APC by discretizing all the numerical (ordinal)
chemical properties of amino acid into intervals.
Equal Width and Equal Frequency are two simplest

discretization methods. However, if uncharacteristic
extreme values (outliers) exist in the data set, Equal
Width can hardly handle this situation [22]. Hence, we
transform numerical chemical properties of amino acid
into discrete value using Equal Frequency [22] algorithm.
Besides, we also implemented two other algorithms,
class-driven discretization [23], called Optimal Class-
Dependent Discretization OCDD, when class labels are
given, and equal probability maximizing the entropy [24]

when class labels are not given. As Fig. 3 shows, the ori-
ginal mixed-mode APC can be transformed into a cat-
egorical one after selecting a discretization method and
pushing the button labeled “Partition”.
Therefore, each amino acid site or chemical property

An can assume a numerical value or a categorical value.

1. For a continuous value, An is partitioned into In bins
by transforming the original numerical values of An

into interval event values, denoted as An ¼ fAi
nji ¼ 1;

2;…Ing. If the distinct value of numerical An is less
than three, we treat it as a categorical attribute.

2. For categorical attribute, An′ contains In′ values, we
denote it as An ¼ fAj

nj j ¼ 1; 2;…In0g.

Fig. 2 Schematic Overview of E-ARADD

Fig. 3 E-ARADD prototype of Interactive Decision Support GUI
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After transforming the mixed-mode dataset into an
event-value dataset, all the values of an attribute (An)
can be denoted as An ¼ fA1

n;A
2
n;…AIn

n g.
Then, we will present the methodology through the

algorithmic process with formal definitions and theoret-
ical content as below

1. Construct ARAFM In step 1 (Fig. 2) we scan
through the APC/APPC to construct an ARAFM/
ARPAFM which is obtained from the frequency
counts between two ARs/ARPs, say FM(Ai

n↔Aj
n0),

where Ai
n denotes the i

th value on the nth aligned site/
property in the APC/APPC, and Aj

n denotes the j
th

value on the n′th aligned site/property in the APC/
APPC (n≠n′). Hence ARAFM/ARPAFM is a I × I

matrix, where I =
PN

n¼1 In represents the total
number of event values of all sites in an APC/APPC.

2. Obtain SRV. In order to disentangle the statistical
residuals by Principal Component Decomposition
(PCD) [25], we first convert the ARAFM/ARPAFM
into an adjusted statistical residual (SR) matrix,
referred to as a SR Space (SRV), (Step 2 in Fig. 2)
by converting each ARA/ARPA frequency in the
ARAFM/ARPAFM into an adjusted SR value to
account for the deviation of the observed frequency

against the expected frequency if that ARA/ARPA is
a random happening.
Formally, ARAFM/ARPAFM is transformed into SRV
by converting each ARA frequency into an SR,
denoted as SR(Ai

n↔Aj
n0) = SRij =

oij−eijffiffiffi
eij

p . oij represents
the total number of occurrence when An= Ai

n and

An0 ¼ Aj
n0; eij represents the expected value of oij. SRij

measures whether oij is significantly deviating from eij
to reveal the statistical significance of an ARA/ARPA.
At the confidence level of 95%, the discovered ARA/
ARPA is positive significant or negative significant
when its SR > 1.96 or SR < − 1.96; and if the SR is
between − 1.96 and 1.96, the ARA/ARPA is
considered as irrelevant or random occurrence.
In order to disentangle the statistics in the SR
matrix, we treat it as a vector space, denoted as
SRV, where each row represents a vector
corresponding to an AR (referred to as an AR-
vector or just an a-vector) whose coordinates are
the SRs of that AR associating with other distinct
ARs (of other attributes) represented by the column
a-vectors. Then, SRV can be represented as a set of
vectors, denoted as, SRV = <SRVA1

1
;…SRVAI1

1
;…

SRVAIn
n
;…SRVA

IN
N
>, where SRVAi

n
={SR(Ai

n↔A1
1), …

SR(Ai
n↔AI1

1 ),… SR(Ai
n↔AIN

N )} and SR(Ai
n↔Ai

n) = 0.

Fig. 4 Diagrammatic Illustration of SRV, PC Plots and Their Coordinates in SRV and RSRV Subspaces. a Original data space: three a-vectors from the
experiment is display in the 3-dimensional SRV Subspace. b PCs Plots: a-vectors position after applying PCD on SRV. c The coordinates of spc11 ; spc12 and

spc13 in pc1: the projection of the transformed a-vectors on the PC (as colored crosses). d Re-projecting the Coordinates in PCs: Re-projection of a-vector
projections on the PC to RSRV subspace (as crosses on the blue axis). The colored dots are their original position in the SRV subspace
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3. Disentangle the SRV by PCD. In Step 3, we
conduct PCD to disentangle the SRV into PCs
ranked according to the descending order of their
eigenvalues. In PCD, PCs are a sets k PCs, denoted
as PC = {PC1, PC2, …PCk}, where PCn is a set of
projections of the a-vectors from SRV on it and
denoted as PCn={PCnðAi

nÞ j n ¼ 1; 2;…N ; i ¼ 1;…
In}, where N represents the total number of all
ARs/ARPs and In represents the total number of
distinct values of An.Fig. 4 (a) to (c) give a diagram-
matic illustration of applying PCD to the SRV. Con-
sidering a matrix, A (i.e. a three-dimensional
subspace of SRV) with 3 points as shown in Fig.
4(a) of the original data space. After applying PCD,
we obtain eigenvectors and eigenvalues, sorted in
descending order according to the magnitude of
their eigenvalues. Fig. 4(b) shows the PC axis
induced by their projection of the a-vectors that
maximize their variance on that PC. Fig. 4(c) shows
the coordinates of the projection of the a-vectors
on the PC.

4. Re-project the a-vector projections on each PC.
In step 4, we re-project the projections of the a-
vectors on the PC back to an SRV with the same
basis vectors of the previous SRV.We refer this new
SRV as the Re-projected SRV (denoted as RSRV)
with subscript k in RSRVk corresponding to that in
PCk. RSRVk is the SRV containing the transformed
positions of a-vector on PCk via RSRVk = SRV ∙ PCk ∙
PCk

T.
Figure 4(d) shows the new positions of the a-vectors
representing their projection on the PC to the RSRV.
In each RSRV, like SRV, each row represents an a-
vector corresponding to an AR with a new set of
coordinates accounting the statistical strength SRs of
that AR associating with other ARs captured by the
PC governed by certain specific underlying factors.

5. Identify ARAs/ARPAs and AR/ARP Clusters in
each PC. Since each row a-vector in SRV represents
an AR or their properties associating with other ARs
or properties as its coordinates, the PC transform-
ation will bring out in the PC the highest variance of
the a-vectors with high SR coordinate values and
display them at the far ends from the center (with
zero coordinate value) of the PC.We may not see the
reason why an a-vector is significant at the surface,
but when viewing it in the RSRV, we would find out
that the coordinate(s) of an a-vector of an AR/ARP
reflect the statistic strength of its ARAs/ARPAs with
another AR(s)/ARP(s) contributing to its high
variance on the PC. In general, PCD is sensitive to
the relative scaling of the original variables, often
masking their distinctiveness. However, by converting
the AR(P)AFM into SRV with uniform SR scale and

statistical weights, both ARADD and E-ARADD
utilize the statistical strength and functional decom-
position to reveal more stable, subtle yet significant
statistical associations that might be masked in the
original frequency space. Hence, in this step, the sig-
nificant AR(P)As discovered and disentangled are
more distinct, stable and specific as manifested in
separate RSRVs. Therefore, a cluster of ARs can be
generated by AR(P)s that share strong AR(P)As.
As Fig. 3 shows the GUI of E-ARADD server, for
step 1–2, when pressing the button labeled “Gener-
ated FM and SRV” on E-ARADD server, both
ARAFM and SRV are constructed for original data.
Then, for step 3–4, the set of top PCs and their cor-
responding RSRVs are generated depending on the
values of parameters (i.e. the number of PCs) are
assigned in the box. Finally, in step 5, the sub-
cluster results are highlighted according to the
assigned confidence interval in the box.

Finally, we can validate the output RSRVs and AR(P)
clusters when apply E-ARADD in specific application. We
summarize the results as below.

1. The significant disentangled AR(P)As. These can be
found from the distinct AR(P)s and the AR(P) clusters
in the PCs based on their distance from the center
(with zero value) of the PCs.When AR(P)As were
entangled, the SRV disentanglement to reveal distinct
AR(P)s in the PCs is crucial for yielding highly distinct,
stable, and specific results as manifested in the RSRVs
obtained from both datasets.

2. AR(P)s Sub-clusters. On one hand, the disentangled
PCs can reveal significant AR(P)s/AR(P)-Clusters
on a one-dimensional space; on the other hand, the
SR of the AR(P)As in RSRVs can further reveal the
significance of the AR(P)As and the AR(P)-Clusters.
The AR(P) subgroups that are obtained in different
orthogonal PC spaces may have functional meaning
leading to established or new biological
interpretation.

Results
In this study, we conducted both experiments on synthetic
data and bio-sequence data. We hereby illustrate the ex-
perimental results and their analysis in this section.

Synthetic dataset
We first generated a 300 × 6 matrix with the first column
representing class labels and the following 5 representing 5
attributes values AVs (equivalent to aligned residues ARs).
First for each entry of an attribute column, we stochastically
generated characters from a uniform distribution of the
characters via a pseudo random number generator. We
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then embedded patterns of three different classes 1, 2 and 3
(C1, C2, and C3) as shown in Table 2. To simplify the nota-
tion, from here on we represent an attribute (say A1) as-
suming a certain value (say A) by A1A.
In Table 2, we can find that the attribute values A1A,

A4H, A5N are entangled for class 1 and class 2; attribute
values A3E, A4H, A5M and A5N are entangled in class
1 and class 3; and attribute values A2D, A4H, A5M,
A5N are entangled in class 2 and class 3.

Figure 5 show the result using adjusted residual as the
measurement. In Fig. 5(a), we found that A1A is
entangled in class 1 and class 2; A2D is entangled in
class 2 and class 3; and A3E is entangled in class 2 and
class 3. Later, after the disentanglement, the AVAs re-
sults are shown in RSRVs (Fig. 5(b)-(d)). We noted that
the class patterns are disentangled. In Fig. 5(b), after dis-
entanglement, RSRV1 captured the disentangled AVA
patterns for class 1 and class 2. An interesting character-
istic of this association is that they share the same AV in
A2 but with different residues D and E. Their AV-vec-
tors are on the opposite side of the same PC. RSRV2 re-
veals another set of associations between class 2 and
class 3. Here they both involve A1 but with different
values A and B. This shows that Class 2 has two association
patterns, one associated with Class 1 and another associat-
ing with Class 3, just as what we implanted. They were dis-
entangled in different PCs and RSRVs. Fig. 5(c) and (d)

Table 2 Synthetic dataset with embedded entangled patterns

Classes Attribute Values are Significant Associated with Class Label

C1 A1A, A2C, A3E, (A4 H/G, A5M/N) where A4 and A5 are random
patterns

C2 A1A, A2D, A3F, (A4 H/G, A5M/N) where A4 and A5 are random
patterns

C3 A1B, A2D, A3E, (A4 H, A5M/N) where A4 and A5 are random
patterns

Fig. 5 Pattern entanglement and disentanglement. ARA patterns are shown in significant SR colored in yellow. a A1A is entangled in class 1 and
class 2; A2D is entangled in class 2 and class 3; and A3E is entangled in class 2 and class 3. b AR patterns disentangled in two RSRVs, pattern for
classes 1 and 2 in RSRV1 and classes 2 and 3 in RSRV2. Note the different ARAs of class 2 --- one with the same residue site A2 as Class 1 but
different ARs (A2C and A2D) while the other with site A1 with different ARs (A1A and A1B) with class 3. c and (d) show the two different sets of
ARs, one associating with classes 1 and 2 and another with classes 2 and 3

Zhou et al. BMC Medical Genomics 2018, 11(Suppl 5):103 Page 41 of 107



unveil all their disentangled patterns as implanted, with or
without class labels given --- a robust demonstration of the
deep knowledge discovered from the entangled source en-
vironment without the explicit reliance of prior knowledge
or posteriori fixing.

Bio-sequence dataset (cytochrome c protein family)
For protein study, we used three datasets. Dataset 1
and Dataset 2 are APCs obtained from two distinct lo-
calized regions from the dataset in [3] collected from
the cytochrome c protein family with taxonomic class
labels. In addition, Dataset 3 is the APC obtained from
the class A scavenger receptors (SR-A) dataset in our
previous paper [26] where we have reported some
experimental result. In this paper we just highlight the
use of address table in ARADD to track down the

locations of ARAs we discovered and disentangled as
detailed in [26].
Dataset 1 is an APC dataset (width: 27) used in [3, 7]

that contains 85 samples from four classes: Mammals,
Plants, Fungus, and Insects. To compress this dataset,
we reduced the number of aligned sites from 27 to 9 by
removing the aligned sites with low SR2 value [13].
Dataset 2 is an APC dataset (width:36) used in [3, 7] that

contains 147 samples from six classes: Mammals, Birds,
Fish, Insects, Metazoas and Plants. Like the dimensionality
reduction process in Dataset 1, we reduced the dimen-
sions from 36 to 17.
Dataset 3 is an APC dataset (width: 12) used in [26]

converting 95 protein sequences from five classes: Macro,
Sra, Scara3, Scara4, Scara5 of class A scavenger receptors
(SR-A) originally taken from a dataset with 106 sequences
used in [27], one with the highest coverage. All five

Fig. 6 Discovered ARAs by E-ARADD for Dataset 1 with Amino Acid. (a) Entangled ARAs associating with classes in SRV; (b) Disentangled ARAs
associating with Mammal and Plant in RSRV1; (c) Disentangled ARAs associating with Plant and Fungi in RSRV2; (d) Disentangled ARAs associating
with Insect in RSRV3

Fig. 7 Discovered ARAs by E-ARADD for Dataset 2 with Amino Acid. (a) Entangled ARAs associating with classes in SRV; (b-f) Disentangled ARAs
in RSRV1, RSRV3, RSRV4, RSRV5 and RSRV13
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subclasses of proteins contain domains: Cytoplasmic, Col-
lagenous, Transmembrane, a-helical and coiled-coil mo-
tifs. Macro, Sra, and Scara5 contain the Collagenous
domain. Only Sra contains the SRCR domain.
In this paper, we first reported the results when E-

ARADD was applied to the two datasets above, using
both their APCs and APPCs. Analysis I focuses on
evaluating and comparing the entangled ARAs and
disentangled ARAs results for APCs composed of amino
acid symbols for Dataset 1 and Dataset 2. Analysis II
shows how E-ARADD being applied to the mixed-mode
APPC for both datasets. Then, in the Discussion Section,
we summarized the results of our work on dataset 3
reported in [26], highlighting how ARADD is able to
reveal and locate all the significant ARs and ARAs inher-
ent in an APC obtained from the sequence data of SR-A
protein family. Since the AR and ARA ID Address Table
reported in [26] is a special module of E-ARADD, we
will include a brief summary the work in [26] in the dis-
cussion of this paper. We will briefly describe how

E-ARADD is able to unveil the crucial functional informa-
tion, of “what” and “where” of a protein family through
the APCs discovered in the data [26].

Analysis I – Cytochrome c APCs in amino acid symbols
In Analysis I, we applied E-ARADD on APCs in amino
acid symbols from data of dataset 1 and dataset 2. First,
we compared the discovered ARAs obtained in RSRVs
by using E-ARADD with those using only the adjusted
statistical residual in SRV [28] with the same threshold
1.96. Figures 6 and 7 show the result of dataset 1 and
dataset 2 respectively.
Figure 6(a) presents the results when the SRV was

used to reveal the ARs associating with classes in dataset
1. From the SRV obtained from the APC, we observed
that different species share the same ARs. For example,
both Mammal and Plant share A71L. In another word,
the ARs are entangled among different classes. However,
after the E-ARADD disentanglement, we noted that the

Fig. 8 The Result of AR Clusters captured in PCs and the corresponding ARAs reflected in RSRVs for APC Dataset 1 with amino acid. a ARA
Clustering Result with Class Label on RSRV1; (b) ARA Clustering Result without Class Labels on RSRV1 (c) ARA Clustering Result with Class Label
on RSRV2; and (d) ARA Clustering Result without Class Labels on RSRV2
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ARAs associating with class were disentangled as mani-
fested in the RSRVs (Fig. 6b-d). In Fig. 6(b), ARs associ-
ating with Mammal were disentangled with those with
Plant whereas most of them were quite mixed in the
SRV (Fig. 6(a)). For instance, A92L was entangled among
Plant, Fungi and Insect in SRV, but associates with Plant
but not Mammal in the specific statistic/functional space
RSRV1; and with Fungi in RSRV2 and Insect in RSRV3.
This indicates that 192 L play different role in three un-
correlated statistic/functional spaces (though the latter
could be weak, with SR = 2.02 and 1.44 respectively). We
also observed that in RSRV3, only A90A and A92L asso-
ciating with Insect were picked up. Note that the weak
association of A92L with Insect (SR = 1.44) will play a
strong role (SR = 5.05) in Plant in RSRV1 and a weaker
role (SR = 1.66) in RSRV2. The importance of E-ARADD
Disentanglement of ARAs with different classes were
clearly revealed in different statistical/functional spaces,
RSRV1, RSRV2 and RSRV3, as captured through their
corresponding PCs.
Similarly, Fig. 7 shows the discovered ARAs on SRV

and RSRVs from the APC in amino acid symbols from
dataset 2. Figure 7(a) shows the result in SRV. Here, we
observed that “Mammal” stands out with positive SR

associating with A84M while other ARs were entangled
with different classes. Note that from the SRV obtained
from this APC, Birds and even Plants were irrelevant.
We also noted that ARs associating with Metazoa, In-
sect and Fish were mixed. However, after the disen-
tanglement, the result of RSRVs shown in Fig. 7(b-f )
told a different story. In Fig. 7(d) Fish stands out from
Insect and Metazoa. In Fig. 7(e) Metazoa separates
from Insect and Fish. The ARA with specific classes
stood out in different disentangled spaces. More sur-
prising is that the AR missing in the Bird class ap-
peared in PC13 and RSRV13 with low SR but its ARA
values still stand out from the SRs of all the other
ARAs. This indicates the capability of ARADD in re-
vealing weak ARAs (rare events) encountered in the
imbalanced class problem that has plagued data mining
for sometimes [29].
This experimental result shows that, beside discover-

ing and disentangling the ARAs, E-ARADD can discover
AR Clusters (ARCs) and significant ARs captured in or-
thogonal PCs and their corresponding RSRVs. It demon-
strated the Explainable AI (XAI) [36] capability without
the reliance of explicit a priori knowledge and a poster-
iori processing.

Fig. 9 The Result of AR Clusters captured in PCs and the corresponding ARAs reflected in RSRVs for APC Dataset 2 with amino acid. a ARA
Clustering Result with Class Label on RSRV1; (b) ARA Clustering Result without Class Labels on RSRV1; (c) ARA Clustering Result with Class Label
on RSRV5; and (d) ARA Clustering Result without Class Labels on RSRV5
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To reveal the ARAs obtained for dataset 1 in greater
depth, we made a careful comparison of the ARs in the
PCs with the ARAs in their corresponding RSRVs to see
how the ARAs grouping reflecting the distinctness of the
AR sub-clusters in the RSRVs. Fig. 8 shows the AR clus-
ters (yellow cells) that captured on different PCs. In order
to show that such functional associations are intrinsic un-
related to class labels, we compared experimental result
on APCs with and without class labels. Figure 8 (a-d)
showed the AR clusters on the right-handed side and their
corresponding RSRV plots obtained from SRV without
class labels on the left-handed side. We observed in both
that the ARs associating to the class are almost identical.
Hence, this further indicates the explainable machine
learning capability of E-ARADD in both supervised/un-
supervised settings not relying on explicit a priori or a
posteriori knowledge. As Figs. 8 and 9 show, in all the
experiments, we see little difference in ARA results with
or without class labels given.

Analysis II – Cytochrome c APCs in aligned residue
property tuples
In Analysis II, the same protein APC datasets in Analysis
I were used, but the aligned residues are represented by
the five amino acid chemical properties: Side Chain Po-
larity, Side Chain Acidity / Basicity, Hydropathy Index,
Molecular Weight (Da), and Isoelectric Point instead.
Thus, we represent an APC in Analysis I by an Aligned
Property Pattern Cluster (APPC) and an Aligned Resi-
due (AR) by an Aligned Residue Property Tuple (ARP).
Furthermore, instead of using ARAs as our fundamental
association from the APC from Dataset 1, we used the
Aligned Residue Property Association (ARPA) obtained
from APPCs instead.
In this paper, our focus is not to conduct a thorough

bio-molecular study of a protein family but rather to
explore the performance of E-ARADD on APPCs. That
we selected the APCs from cytochrome C based on
amino acids and their chemical properties is to examine

Fig. 10 Discovered ARPAs on SRV and RSRVs by E-ARADD for APC Dataset 1 with chemical properties. a Entangled ARPAs with class on SRV; (b)
Disentangled ARPAs on RSRV1; (c) Disentangled ARPAs on RSRV2

Fig. 11 Discovered ARAPs on SRV and RSRVs by E-ARADD for APC Dataset 2 with chemical properties. a Entangled ARPAs with class on SRV; (b)
Disentangled ARPAs on RSRV1; (c) Disentangled ARPAs on RSRV3. d Disentangled ARPAs on RSRV4
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whether ARPAs can be discovered in the disentangled
spaces of PCs and RSRVs to reveal the chemical associ-
ation ARPs at a deeper level. We would also like to find
out also whether ARP clusters could be identified to
generate ARP subgroups corresponding to taxonomical
classes with or without class label provided. Thus, we
took the dataset 1 and converted the APC with a width
of 9 amino acids into a 9×5 mixed-mode APPC, from
which we constructed an SRV. We then applied PCD
on the SRV to obtain PCs and RSRVs as we did in Ana-
lysis I, ranked them after their eigenvalues. The corre-
sponding set of RSRVs then represent the coordinates of
the ARP-vector which were the SRs of each ARPA be-
tween ARPs corresponding to the row and column ARP-
vectors. Figure 10 shows the disentanglement of the ARPs
associating with class labels for dataset 1. The attribute
“721 =NonPolar_aromatic” denotes that the aligned 1st
chemical property (Side Chain Polarity) of the 72th amino
acid in the APPC is “NonPolar_aromatic”. Since chemical

properties were used, we observed more disentangled as-
sociation of the ARP with class labels were obtained in the
SRV (Fig. 10(a)). As expected, more succinct disentangle-
ment had also been observed in the RSRVs. In RSRV1
(Fig. 10(b)), we observed succinct disentanglement of
ARPAs between Mammal and Plant, and in RSRV2
(Fig. 10(c)), between Mammal and Fungi. Overall, we see
that more specific chemical associations between species
are discovered in different functional spaces. Such deeper
knowledge could help biologists to further their research.
Similarly, Fig. 11 shows the ARPAs with the class labels

in disentangled spaces for dataset 2. Figure 11(a) shows
the result of ARP Associating with classes in the SRV ob-
tained from the APPC with chemical properties of dataset
2. Note that in SRV, we noted that there are quite a num-
ber of ARP entangled with different taxonomical classes.
However, after disentanglement, we observed that disen-
tangled ARPs in RSRV1 were distinctly associating Mam-
mal and Plant. Especially for site 1043 = 3.8 (the value of

Fig. 12 PC plots results for APPC in dataset 1 with class label

Fig. 13 PC plots results for APPC in dataset 2 with class label
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the 3th properties of the 104th amino acid), and 1045 =
5.98, While ARPs of Insect and Plant are entangled in
SRV, the ARP of Insect was standing out in RSRV3 and
that of Plant was standing out in RSRV1.
We can conclude from the above experimental result

that when the class labels are included in APPCs as input,
we could disentangle the discovered associations of chem-
ical property relation between ARPs. In addition, we also
showed from the PC plots for dataset 1 and 2 how chem-
ical properties of the ARP clusters were associating with
class in the PCs as Figs. 12 and 13 show. Since each
ARP-cluster consists of a special set of ARPs, biologists
could gain significant molecular biological insight for each
specific functional space. Such ARP associating with clas-
ses were also revealed in other RSRVs.
In summary, from the results of Analysis II, we found

that E-ARADD can handle mixed-mode dataset. It can dis-
cover the statistically significant ARPAs, though entangled

in the SRV, as well as the ARP Clusters (ARPCs) captured
in orthogonal PCs to bring out their separability associating
with taxonomical classes.

Discussion
Discovering patterns from biological sequences is of
fundamental importance in unraveling the underlying
science. It is particularly true in Proteomics, where pro-
teins virtually regulate every biological process of a living
organism. A new method has been developed from us to
obtain from protein sequences Aligned Pattern Clusters
(APCs) [2–4] representing the biological conserved regions.
APCs [2–4], comparing with probabilistic methods [1],
have captured more complete statistical association of
aligned residues. As the column-wise associations are
preserved in APCs, contrasting to probabilistic models,
e.g. Position Weight Matrix (PWM) [30], we are able to
discover the Aligned Residue Associations (ARAs) [5] to

Fig. 14 An Excerpt of Experimental result of AR groups associating with different SR-A classes [28]

Fig. 15 The process of Aligned Residue Association (ARA) disentanglement in both pattern space and sequence location. a the result of disentanglement
of functional groups corresponding to classes; (b) an APC with AR groups in different bold colors corresponding to different classes with the range of
positions shown; (c) the 5 AR groups mapped onto the protein sequences with domain regions annotated [28] and class labels associated [26]
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reveal subgroup characteristics, in which, these subgroup
characteristics, regarding multiple functionalities and/or
local stereo physiochemical environments, may have been
masked or entangled. We further extended the ARADD al-
gorithm into E-ARADD to handle the mixed-mode bio-
chemical protein data to provide direct biochemical
interpretation supported by experimental results.
Experimental results on synthetic data provides the

proof-of-concept validation on the successful disentangle-
ment that reveals class-associated ARAs with or without
class labels as input, results on cytochrome c and class A
scavenger receptors sequence data render scientific valid-
ation of our method. In experimental Analysis I, after dis-
entanglement, different ARAs were revealed. They were
linked to the species class labels. We validated that the AR
results in PCs and ARAS in RSRVs remain essentially the
same with or without the inclusion of class labels in the
APCs. In experimental Analysis II, we found that different
APPAs were associated with different species. The obser-
vation, to a certain degree, is consistent to the literature
report that certain biological processes of cytochrome c
such as oxidization have homologous yet different chem-
ical characterization in different families [31].
Furthermore, in order to show the completeness of the

proposed algorithm E-ARADD, we furnish a brief sum-
mary of our recent work [26] when ARADD algorithm
[5] was applied to a very diverse protein family of class
A scavenger receptors (SR-A), dataset 3. In our recent
work [26], we showed that ARADD was able not only to
discover and disentangle ARs and ARAs in specific PCs
and RSRVs, but also their locations in the protein func-
tional domains of SR-A.
Figure 14 demonstrates an excerpt showing the results

of only two classes from a figure taken from our recent
work [26]. Note that the AR patterns are in bold brown
color fonts for Scara5 (CRM****G***V) and in violet
color fonts for Sra (CR***Y*G***V). These AR patterns
are similar in sequence and thus clustered in the same
APC. However, they are in fact in two distant domains.
This indicates that not only can ARADD disentangle
functional association in an APC, i.e. the pattern space,
but also disentangle their sequence locations relating to
different family domains [26], e.g. Scara5 and Sra. This
provides a strong support to the scientific significance of
ARA disentanglement, by revealing the information of
“what” and “where” in a protein family.
Figure 15 [26] provides an overview of the discovered

results in both pattern and data space. Figure 15(a) from
[26] demonstrates that the class labels associating with
ARs of their pertaining classes are revealed within their
associating clusters in the one-dimensional PC space. As
shown in Fig. 14, the AR groups for Scara5 and Sra are
close with only a single difference in their significant
ARs. Their closeness is also observed in RSRV2 [26].

The two groups differ from other classes significantly.
Hence, from the PCs (Fig. 15(a)) and the plots of the sig-
nificant AR clusters (color rectangular boxes), we have
observed both their similarity (i.e. Sra and Scara5 in
PC2) and their differences (i.e. scara3 and scara4 in
PC3), with statistical backing (the distance of their pro-
jection position from the mean in the PCs and their SR
magnitude in the RSRVs). From the APC data space as
shown by their sequence ID and sequence position in
Figs.14(a), 15(b) and (c), we observed that their residing
sequence positions and family domain locations of each
AR pattern were identified. Surprisingly, they are closely
correlated with the domain regions annotated.

Conclusion
In this study, we extend our previous ARADD algorithm
[5] into E-ARADD to enable it to handle mixed-mode
physiochemical property data, which contains both cat-
egorical and numerical values. By applying E-ARADD to
the entangled APC obtained from cytochrome c family
and class A scavenger receptors, this study has shown that
AR clusters (patterns in pattern space), associating with dif-
ferent functional subgroups, regions and domains of the
family obtained from an APC, could be succinctly plotted
and statistically separated in different PCs and RSRVs as
well as in different locations through their sequence ID and
sequence position in the protein family data [26].
The most significant finding of this study is that the

AR subgroups within the APCs could be found in the
disentangled PCs and RSRVS of ARA/ARPA associating
with different classes or subgroups, residing in different
functional regions or domains of the family. Biologically,
entangled ARA/ARPA in the aligned patterns within the
conserved regions APC/APPC of class A scavenger re-
ceptor, reveal biological functional patterns pertaining to
similar or different classes. It is interesting to find that
the ARAs/ARPAs within the entangled patterns in APCs
of class A scavenger receptor family can be disentangled
into subgroups pertaining to different functionality as
reflected by the disentangled PCs and RSRVs. This implies
that the strong statistical associations of multiple func-
tionalities for different classes/subgroups inherent in the
residue associations within the aligned patterns. Hence, in
summary, the successful application of ARADD algorithm
demonstrates its capability to open a new way for analyz-
ing conserved regions and their distribution, with poten-
tial to reveal new knowledge in omics for drug discovery,
genetic medicine and gene therapy applications.
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