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Abstract

Background: Breast cancer is the most common type of invasive cancer in woman. It accounts for approximately
18% of all cancer deaths worldwide. It is well known that somatic mutation plays an essential role in cancer
development. Hence, we propose that a prognostic prediction model that integrates somatic mutations with gene
expression can improve survival prediction for cancer patients and also be able to reveal the genetic mutations
associated with survival.

Method: Differential expression analysis was used to identify breast cancer related genes. Genetic algorithm (GA)
and univariate Cox regression analysis were applied to filter out survival related genes. DAVID was used for
enrichment analysis on somatic mutated gene set. The performance of survival predictors were assessed by Cox
regression model and concordance index(C-index).

Results: We investigated the genome-wide gene expression profile and somatic mutations of 1091 breast invasive
carcinoma cases from The Cancer Genome Atlas (TCGA). We identified 118 genes with high hazard ratios as breast
cancer survival risk gene candidates (log rank p < 0.0001 and c-index = 0.636). Multiple breast cancer survival
related genes were found in this gene set, including FOXR2, FOXD1, MTNR1B and SDC1. Further genetic algorithm
(GA) revealed an optimal gene set consisted of 88 genes with higher c-index (log rank p < 0.0001 and c-index = 0.
656). We validated this gene set on an independent breast cancer data set and achieved a similar performance (log
rank p < 0.0001 and c-index = 0.614). Moreover, we revealed 25 functional annotations, 15 gene ontology terms
and 14 pathways that were significantly enriched in the genes that showed distinct mutation patterns in the
different survival risk groups. These functional gene sets were used as new features for the survival prediction
model. In particular, our results suggested that the Fanconi anemia pathway had an important role in breast cancer
prognosis.

(Continued on next page)

* Correspondence: mqyang@ualr.edu
1MidSouth Bioinformatics Center and Joint Bioinformatics Ph.D. Program of
University of Arkansas at Little Rock and Univ. of Arkansas Medical Sciences,
2801 S. Univ. Ave, Little Rock 72204, USA
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Zhang et al. BMC Medical Genomics 2018, 11(Suppl 5):104
https://doi.org/10.1186/s12920-018-0419-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-018-0419-x&domain=pdf
mailto:mqyang@ualr.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


(Continued from previous page)

Conclusions: Our study indicated that the expression levels of the gene signatures remain the effective indicators
for breast cancer survival prediction. Combining the gene expression information with other types of features
derived from somatic mutations can further improve the performance of survival prediction. The pathways that
were associated with survival risk suggested by our study can be further investigated for improving cancer patient
survival.

Keywords: Breast Cancer, Somatic mutations, Whole genome-wide expression, Survival analysis, Precision survival
prediction

Background
Breast cancer is the most commonly occurring female
cancer in developed countries. Over 40,000 breast can-
cer deaths and approximately 250,000 new cases were
reported in 2016 [1]. The survival rate in HER2+ breast
cancer patients [2] has been remarkably increased
through targeted therapies including tyrosine kinase in-
hibitors. Adjuvant treatments such as chemotherapy also
improved the 5-year survival rate of the breast patients
[3, 4]. However, the significant side effects of chemother-
apy can shorten the lifespan of cancer patients in some
cases [5]. Additionally, due to potential metastasis and
invasion of cancer, the overall outcome for breast cancer
patients remains bleak. An effective survival predictor,
which is capable of helping cancer treatment and fore-
seeing the clinical outcomes, can improve life quality
and lifespan of cancer patients. Thus, better prognostic
biomarkers of survival risk prediction are needed.
In clinical practice, clinicopathological prognostic indi-

cators, such as tumor size, lymph node (LN) status and
pathological grade [6, 7] have been widely used in prog-
nostic analysis models. However, in some cases, the treat-
ment responses vary greatly even with similar prognoses.
Recently, single cell genomics analysis have shown that os-
tensibly similar tumor defined by traditional pathological
analysis could be distinct diseases at the cell levels [8–10].
Due to the highly heterogeneous nature of cancer cells,
the predictive ability of some traditional indicators can be
less effective for over 50% of patients [11].
Multiple survival analysis models have developed mainly

based on gene expression profiles. The cox regression
model and machine learning algorithms have been widely
used to reveal molecular signatures related to survival.
Bair et al. [12] used semi-supervised methods to cluster
patients with different survival risk based on gene expres-
sion profiles and clinical data. Sun et al. [13] applied uni-
variate Cox regression analysis and identified nine long
noncoding RNAs (lncRNAs) that were highly associated
with their metastasis-free survival for breast cancer pa-
tients. Zhang et al. [14] developed a two-stage method,
using Bayesian hierarchical Cox model and the penalized
Cox model, and incorporated pathway information with
gene expression profiles to predict survival.

Most survival prediction methods mainly utilize gene
expression profiles. Somatic mutations are involved in
the cancer development [15]. Several studies showed
that genetic mutations are associated with cancer sur-
vival, such as BRCA1- and BRCA2-related mutations,
and HER2 somatic mutations [16, 17]. Thus, identifying
survival related mutations are meaningful for prognosis
and treatment. However, it is difficult to detect mutation
patterns in a patient cohort for survival analysis since
most commonly mutated genes are found in less than
10% of patients. Consequently, using common mutations
alone to predict survival is less effective. To address this
issue, we integrated somatic mutations with pathway,
function annotation and gene ontology (GO) analysis.
We then synergistically used the significantly mutated
gene sets as predictors coupled with gene expression for
survival analysis. Our results suggested that combining
somatic mutations improved the performance of survival
risk prediction.

Results
Gene differential expression and survival risk detection
We identified 4327 differentially expressed genes (adjust
P-value < 0.01 and |logFC| > 2) based on the gene ex-
pression profile for 1091 breast cancer patients (151 de-
ceased and 940 living) and 113 normal tissue samples,
using the software tools developed in our laboratory
(http://mqyang.net) along with other existing tools.
Next, we applied univariate cox regression analysis to se-
lect the differential expressed genes that were also asso-
ciated with survival. Out of 4327 genes, 330 were
significantly associated with survival time (P-value <
0.05). The patients were clustered into two distinct

groups, high survival risk and low survival risk, using
k-means according to the expression levels of 330
survival-related genes. Then, a Cox proportional hazards
model was fitted to the patient survival data for the two
groups (Fig. 1a). We calculated the Concordance index
(C-index) to assess the predictive ability of our survival
model. The C-index measures the concordance between
the observed survival times and predicted survival times.
The C-index of 330 gene signature-based model was
0.584 (P-value = 0.0011).
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Out of the 330 genes, we further selected 118 genes with
hazard ratio > 1.221. The resulting new prediction model
yielded a higher C-index, 0.636.(P-value < 0.001). Accord-
ing to Kaplan–Meier curve (Fig. 1b), the survival rate of
1500 days (4 years and 1 month) was 63.2% and 12.5% for
patients in the low risk group and high risk group, re-
spectively (Fig. 1b). The 118 genes contained several
well-known breast cancer survival related genes or onco-
genes, including FOXR2, FOXD1, MTNR1B and SDC1
[18–24]. Additionally, PANTHER [25] pathway analysis
revealed 17 biological processes that were significantly
enriched in the 118 genes (Additional file 1). Some are
known biological process related to cancer, such as: DNA
replication (P-value = 0.037), structural molecule activity
(P-value = 0.00035), system development (P-value
=0.00047), and cytoskeleton (P-value 0.000062) [26–28],
while some others have not been well studied (Additional
file 1), such as peptide cross-linking (P-value=0.00027).

Survival-related genes selected by genetic algorithm
We developed a genetic algorithm (GA)-based method
to further optimize gene selection from original 330 sig-
nificant univariate genes. The method is able to as-
sess the combinatorial effects of multiple genes on
survival. As a result, 88 genes were revealed as the opti-
mal gene set which maximized the C-index. Using this
gene set, we conducted survival analysis (Fig. 1c) and
achieved a better c-index 0.656 compared to 0.636
yielded by the model constructed based on the 118

genes selected by hazard ratio. We found that 67 of 88
(75.3%) genes were overlapped with the 118-gene set.
Hence, hazard ratio from the univariate test may not be
the only factor that determines the prediction accuracy.
Nevertheless, genes with higher hazard ratio tend to
have higher possibility to generate more accurate sur-
vival prediction. (Fig. 2a).
We obtained an independent data set from Molecular

Taxonomy of Breast Cancer International Consortium
(METABRIC) [29] to validate our models. This dataset
includes the expression profile and clinical data for 2509
breast cancer tissue samples. We found 61 genes in the
88-gene set and 64 genes in the 118-gene set shown in
the expression profile of this patient cohort. Similar data
normalization and survival analysis were performed. The
models based on both gene sets were able to separate
the high-risk and low-risk survival groups (P-value <
0.0001, Fig. 2b and Additional file 2). The C-index was
0.614 and 0.6004 for the models based on 61
GA-selected genes and 64 hazard-ratio-selected genes,
respectively. Consistent with the result for the TCGA
dataset, the gene set that was identified by GA searching
yielded higher prediction accuracy.

Survival-related somatic mutations
A total of 105,425 single-nucleotide variances (SNVs)
were identified in 1044 breast cancer patient samples
(1044 of 1091 patients have mutation data). The max-
imum and median SNV mutation rate was 10.4% and

A B

C D

Fig. 1 The survival analysis using different type of features. The Kaplan–Meier curves for 330 significant univariate genes (a), 118 significant
univariate genes with hazard ratios higher than 1.221(b), 88 genes that select by GA (c). d showed the C-index for these three models
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0.095%, respectively (Fig. 3a), while the maximum and
median gene mutation rate was 32.95% and 0.48%, re-
spectively. rs121913279 was the most frequent SNP,
which was located at the PIK3CA gene. TP53, PIK3CA,
TTN, CDH1, GATA3, MUC16, KMT2C and MAP3K1
were the top frequently mutated genes (Fig. 3a). The
gene pairs consisting of these eight genes have differen-
tial mutation patterns, four pairs tend to mutual exclu-
sively, while six pairs tend to be co-occurred (P-adjust
<= 0.008) (Table 1). The C-index and P-value of the sur-
vival model based on these eight top mutated genes were
0.539 and 0.085. We expanded the mutated gene list to
88, 118, 330, which matched the number of differential
genes used in the survival models. The resulting c-index
for these different gene signature set was 0.565, 0.522

and 0.567, and corresponding P-value was 0.035, 0.23
and 0.028. Thus, the top mutated genes were not neces-
sarily effective gene signatures for survival prediction;
the correlation coefficient of gene mutation rates and
P-values of the univariate tests was − 0.22 (Fig. 3b).
To combine gene expression and mutation for survival

analysis, we first clustered the breast cancer patients into
two groups (high survival risk and low survival risk) based
on the expression levels of 118 genes. Then we analyzed
the corresponding somatic mutation profiles for the pa-
tients in the distinct groups. We found that 48,404 and
57,024 SNVs were found for the patients in the high-risk
group and the low risk group, respectively.
We compared the percentage of different types of SNVs

in the two groups (Fig. 4a). The C- > G and G- > C SNVs
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Fig. 2 The hazard ratio values and the Kaplan–Meier estimator for an independent patient dataset. a The hazard ratios of 330 significant
univariate genes (yellow) and 88 genes (blue) selected by GA. b The Kaplan–Meier curve using 61 of 88 GA selected genes for a METABRIC breast
cancer patient dataset
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Fig. 3 Distribution of mutation rates and the correlation with univariate P-values. a The distribution of mutation rates for genes and SNPs in the
TCGA breast cancer patients. b The correlation between univariate P-value and mutation rate for top 35 mutated genes
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frequencies in the high-risk group were significantly
higher than these SNVs (13.1% versus 8.31%, 12.6% versus
7.82%) in the low risk group (t-test, P-value = 5.5e-14,
P-value = 1.3e-14). We thus used C- > G and G- > C SNP
frequencies as the two features to perform survival ana-
lysis. The survival risk curves showed a noticeable yet in-
significant difference ( P-value= 0.36). Combining the 118
gene expression with C- > G and G- > C SNP frequencies,
we conduct another survival analysis. We obtained similar
prediction accuracy as using the gene expression
alone (Fig. 4b). Our results suggested that GC SNV fre-
quencies were weaker features for survival prediction.
We also calculated the mutation rates of all genes in

the high-risk and low-risk groups. The mutation rate
here refers to the percentage of the patients who har-
bored somatic mutation(s) in a specific gene in the pa-
tient group. Then we computed the mutation rate
differential scores (MRDS)(Method) for each individual
genes.

Some genes showed quite distinct mutation rates in
the different groups. For example, the mutation rates of
TP53 in the high and low risk group were 0.634 and
0.208, respectively. We selected the top 2000 genes
ranked by MRDS. Multiples genes in this list present in
breast cancer related pathways. For example, ATM, ATR,
TP53, PTEN, CASP8, and IGFBP3 participate in p53 sig-
nal pathway, while MMP, EGFR, CREP, PLC, and RAS
participate in estrogen signaling pathway.
Based on DAVID analysis [30, 31], we identified 30

pathways, 114 functional annotations and 38 Gene
Ontology (GO) terms that were significantly enriched of
the 2000 mutated genes (P-value < 0.05). We then build
new features using these molecular function gene sets. If
a patient carried mutation(s) in at least one gene of indi-
vidual enriched function gene sets, we set the corre-
sponding feature value as 1; otherwise we set the value
as 0. Then we performed a univariate Cox regression
analysis for each of new features. As a result, we

Table 1 The top mutated genes in the TCGA 1044 breast cancer dataset

Gene A Gene B A Not B B Not A Both Log Odds Ratio Adjusted p-Value Tendency

TP53 CDH1 338 125 9 −2.067 < 0.001 Mutual exclusivity

TP53 GATA3 336 116 11 −1.771 < 0.001 Mutual exclusivity

TP53 MAP3K1 336 79 11 −1.327 < 0.001 Mutual exclusivity

TP53 PIK3CA 265 266 82 −0.641 < 0.001 Mutual exclusivity

PIK3CA CDH1 284 70 64 0.735 0.002 Co-occurrence

TP53 TTN 264 104 83 0.62 0.004 Co-occurrence

PIK3CA KMT2C 296 55 52 0.75 0.006 Co-occurrence

TTN KMT2C 154 74 33 0.846 0.007 Co-occurrence

PIK3CA MAP3K1 303 45 45 0.798 0.008 Co-occurrence

TTN MUC16 146 68 41 1.209 < 0.001 Co-occurrence

A B

Fig. 4 The mutation of different SNP types. a The frequencies of different SNP types in the high and low risk groups. b The Kaplan–Meier curve
for using C→ G and G→ C SNP frequency combine with 118 gene expression as indicators
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identified 15 function annotations (FA), 15 GO terms and
14 pathways that were significant in the univariate test
(P-value < 0.05 and hazard ratio > 1.221). Using a total of
54 mutated functional gene set, the C-index survival
model was 0.591 (P-value = 0.0016). The C-index of the
models that utilized different type of gene set (Table 2)
showed that integrating gene expression and mutation
analysis generated a survival model with better accuracy
(Table 2) (Fig. 4b).

Discussion
The gene signatures derived from expression profiles have
commonly been used in survival analysis [18–21, 24]. The
survival-related genes are often selected through the uni-
variate regression model. The resulting P-value and/or
hazard ratio were used as criteria for gene selection. How-
ever, the gene list composed of the gene selected from the
univariate tests may not be necessary the optimal gene set
for the survival prediction. To address this limitation, we
employed a GA searching algorithm to optimize gene set
selection for accurate survival prediction. The GA search-
ing enables the assessment of the combinatorial effect of a
gene set on the survival analysis. As expected, we identi-
fied a set of genes that yielded higher prediction accuracy
than the gene list obtained from the univariate regression
model. In this study, the GA only searched for the best
gene combination of 330 univariate genes, which was the
length of initial chromosome. The pre-filtered gene candi-
date set can reduce the searching space of the GA algo-
rithm and save the computation time, however, the
optimal gene set could be overlooked by this strategy.
The cancer survival analysis merely using the gene ex-

pression levels shows the limited ability for accurate sur-
vival risk prediction [32]. The genetic mutations have an
important role in cancer development. Hence, the gen-
etic mutation profiles can provide additional values for
survival analysis and lead to uncover genetic variations
that are associated with patient survival [27]. We found
that the most frequently mutated genes were not neces-
sarily significant in survival analysis. The correlation co-
efficient of the top eight mutated genes and the P-values

from the univariate regression model is − 0.22 in the
breast cancer dataset that we studied. The mutated
genes selected by the univariate regression test often re-
sulted in very unbalanced survival risked groups (Add-
itional file 3). In addition, it is commonly known that
the drive gene mutations in a pathway tend to be mutu-
ally exclusive. Here, we proposed a system biology
method: first projected the somatic mutations onto the
pathways and gene function sets, then used significantly
mutated pathways or function gene sets as additional
signatures for survival analysis. For example, we found
14 pathways were significant abundance of the mutated
genes as well as showed significance in the univariate re-
gression test (Fig. 5). The mutated rates of these
pathway-genes were relatively low (Additional file 4).
Despite of low mutation rate of pathway-gene, they

tended to be more effective for survival prediction. In
the Cox univariate regression, the 14 pathways consist-
ently demonstrated lower P-values than the top mutated
genes set (Additional file 5). Here, the number of top
mutated genes set is the same as the number of mutated
genes in the corresponding pathways. We also per-
formed multivariate regression test. In the multivariate
test, each individual mutated gene in the pathways or the
top mutated genes was considered a feature. We found
most pathway-genes tend to have high P-value than the
individual top mutated genes, excepting the Fanconi
anemia pathway and ECM-receptor interaction pathways.
Specially, the Fanconi anemia pathway performed well in
both univariate regression and multivariate regression
models (Additional file 5), suggest this pathway has an es-
sential role in the breast cancer survival.
In this study, we integrated somatic mutations with

gene expression in our survival analysis and built an im-
proved model for survival risk prediction. Further im-
provement could be achieved when several related issues
are solved. First, previous studies showed that somatic
mutation identification remains inaccurate [33, 34]. The
mutations identified by different mutation callers often
have relatively low overlap. Better mutation caller can po-
tentially improve survival prediction accuracy. Second,

Table 2 C-index of the Cox proportional hazards models based on different features

Feature type Features C-index P-value

Gene expression 330 significant univariate genes 0.584 0.0011

118 significant univariate genes with hazard ratio > 1.221 0.636 < 0.0001

88 significant univariate genes selected by GA 0.656 < 0.0001

Somatic mutation 25 functional annotations 0.603 0.0012

15 gene ontology terms 0.567 0.0013

14 pathways 0.548 0.0037

54 functional gene sets combining functional annotations, GO terms and pathways 0.591 0.0016

Gene expression & somatic mutation All 142 features (88 significant univariate genes and 54 functional gene sets) 0.658 < 0.0001
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somatic mutations are highly heterogeneous among pa-
tients. Identifying survival driver genes could be valuable
for survival prediction. In addition, allele frequency, the
mutation positions and the other mutation information can
be further incorporated into the survival model for survival
model enhancement. Unlike gene expression, the quantita-
tive relationship between somatic mutation and phenotypic
characteristics are unknown. With better understanding of
somatic mutation roles in the patient survival, we can build
a better prognosis model for survival analysis.

Conclusions
Our study suggested that expressions of genes were the ef-
fective indicators for breast cancer survival prediction. By
coupling with somatic mutations, we were able to improve
the survival predict model, however, the improvement was
marginal. Also, we found that some genes demonstrated
significantly distinct mutation rates between high risk and
low risk breast cancer patients. Better utilizing the muta-
tion difference for cancer prognostic analysis can be fur-
ther investigated.

Methods
Breast cancer datasets
We obtained RNAseq datasets including raw counts and
FPKM (Fragments Per Kilobase of transcript per Mil-
lion) counts from TCGA (The Cancer Genome Atlas)
project. The RNAseq datasets were generated from 1091
breast tumor tissue samples. We downloaded the som-
atic mutation profile generated by MuTect2 workflow,
for 1044 tumor tissue samples. Out of 1044 cases in the
somatic mutation file, 980 were common cases with
gene expression profiles. Survival information was

obtained from the metadata for each individual cases.
All TCGA datasets used in the study are publicly avail-
able at the GDC Portal website (https://portal.gdc.can-
cer.gov/).
An independent breast cancer datasets including the

patient clinical information and the expression profile
for 2509 breast cancer patients were downloaded from
cBioportal (www.cbioportal.org/). The data was gener-
ated by the Molecular Taxonomy of Breast Cancer Inter-
national Consortium (METABRIC).
An R-package ‘edgeR’ was applied for differential ex-

pression analysis. We used adjusted P-value lower than
0.01 and absolute log fold change larger than 2 to define
significantly differentially expressed genes.

Feature selection
We first used the univariate Cox regression analysis to
choose features for survival analysis. The output of the re-
gression analysis includes three important statistics: statis-
tical significance (p), regression coefficients (coef) (Eq. 1),
and hazard ratios (HR) (Eq. 2). These statistics were used
to select the significant survival-related features.

coef ¼ n
P

xyð Þ−P
x
P

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

x2−
P

xð Þ2� �
n
P

y2−
P

yð Þ2� �q ð1Þ

HR ¼ exp coefð Þ ð2Þ

where x and y are two vectors that represent the sur-
vival time and one predictor variable. Base on C-index

Fig. 5 The 14 pathways enriched by differential mutated genes. The 14 pathways were significantly enriched by the top 2000 differentially
mutated genes with higher MRDS (blue bar). These pathways also showed significance in the Cox univariate regression test (yellow bar)
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statistics, we chose the thresholds P-value < 0.05 and
hazard ratios > 1.221 for selecting survival-related genes.

Survival analysis
We normalized each feature gene-wisely using the follow-
ing equation:

gi; j− min
j∈N

gi; j

max
j∈N

gi; j− min
j∈N

gi; j
i ¼ 1; 2;…;M ð3Þ

where gi, j represent the value of feature i in the
sample j. N is the total number patient samples and
M is the total number of features. Then, we used
k-means algorithm to identify high survival risk and
low survival risk groups. Subsequently, each individual
samples were labeled accordingly. Using R package
“survival”, the Cox proportional hazards model was
fitted with the data and the corresponding C-index
was calculated. The R package ‘survminer’ was used
to plot the Kaplan–Meier curve.

Genetic algorithm identifies survival indicators
The genetic algorithm (GA) is a heuristic method for
searching the global optimum. We employed the GA
to reveal a gene set that yields the best survival pre-
diction accuracy. An R package “Genalg” was used for
GA searching. [35]. We set the population size as 200.
The chromosome is a 0/1 vector with the length of 330.
Here, 330 is the total number of significant univariate
genes, 1 means the corresponding gene is selected while 0
refer to the unselected gene. Mutate rate was set to 0.01.
The fitness score was calculated by (1 - C-index) of each
candidate gene set. The number of generation is set to 100.

Building somatic mutation and functional gene set based
features
Based on the gene signatures derived from the ex-
pression profiles, we divided the patients into high
and low survival risk groups. Then, the somatic muta-
tion profiles for patients in each group were extracted
from the annotated somatic mutation file accordingly.
For SNPs, we calculated and compared the percentage
of various types of SNPs in the two groups. The
t-test was applied to assess whether a type of SNPs
demonstrated significantly different mutation rate be-
tween the two survival risk groups.
For mutated genes, we compared the mutation rate

of each gene (i) in the two groups. Mutation rate
(R) was calculated using the number of the samples
containing the mutated gene divided by the total
number of samples in the individual groups. Then,
we calculated a mutation rate differential score
(MRDS) for each gene (Eq. 4). The top 2000 genes

with higher MRDS were selected for enrichment
analysis.

MRDSi ¼
R high;ið Þ
R low;ið Þ

� eR high;ið Þ−R low;ið Þ ð4Þ

The DAVID [30, 31] analysis was used to identify func-
tional annotation sets, gene ontology terms and path-
ways that were enriched by the top differentially
mutated genes.
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