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causal genetic element(s), and we still lack in depth
knowledge of the molecular mechanisms underlying the
vast majority of these associations [5, 6]. Similarly, tran-
scriptomics studies routinely identify hundreds to thou-
sands of differentially expressed genes between diseased
and healthy tissue samples, but disentangling the
disease-causing changes in gene expression from its
byproducts can be far more challenging [7]. Given the
limitations of each omics approach and their focuses on
different layers of the biological system, integration of
different types of omics data to identify the key bio-
logical pathways involved in disease has emerged as a
promising avenue for research [4].

One integrative study design is to obtain diverse types of
omics data from the same tissue samples or patient co-
horts. The resulting data can then be vertically integrated
(Fig.1a, top left) to identify candidate genes and pathways
involved in complex disease. Alternatively, a single type of
omics data can be collected from a variety of tissue sam-
ples or patient cohorts, facilitating their horizontal inte-
gration across many samples, which can substantially
increase the experiment’s power (Fig.1a, top right). In
both vertical and horizontal integration study designs, the
availability of diverse types of omics data from the same
samples enables the use of a variety of statistical integra-
tion approaches (Fig.1a, bottom) [8]. For example,
multi-staged integration uses multiple steps to first iden-
tify associations between different data types and then
identify associations between data types and the pheno-
type of interest [9], whereas meta-dimensional integration
combines data simultaneously based on concatenation,
transformation, or model building [10].

Although multi-omics data sets generated using vertical
and horizontal study designs are becoming increasingly
common, such data sets are lacking for many complex
diseases [11–15]. Often, heterogeneous omics data are
collected study by study, for a limited set of tissue samples
and across only one or two omics data types at a time
(Fig.1b, top). For each study, a long list of genes or gen-
omic regions with associated data is produced and sorted
based on effect size (e.g., fold change), significance (e.g.,
P-value), or some other criterion. Hard thresholds can
then be imposed onP-values, for example, to bin the
genes or genomic regions and identify significant candi-
dates for further analysis; this type of approach can then
be applied across multiple, heterogeneous omics studies.

Several problems exist with the imposition of hard
thresholds, however. Including (or excluding) genes or
genomic regions as candidates based onP-value, fold
change, expression level, and/or odds ratio cutoffs intro-
duces biases and removes information, especially when
combining multiple cutoffs from several criteria [16–18].
These cutoffs can sometimes even be arbitrary, like select-
ing the top n or n% from each data set. Additionally,

statistical significance is not always equivalent to bio-
logical significance, meaning that non-statistically signifi-
cant genes may still be involved in disease pathogenesis,
or vice versa. Moreover, while selecting the top n genes
might limit the scope of further functional analysis, the al-
ternative approach of selecting all significant hits could
mean that thousands of genes are identified as candidates.
A final consideration in analyzing heterogeneous omics
data is that we sometimes do not know any genes, path-
ways, or networks that have already been shown to be in-
volved in complex disease. Some integration methods,
especially those based on prediction (e.g., machine learn-
ing, network analysis), depend on the availability of such
knowledge for algorithm training and cannot be per-
formed in their absence [8, 9, 19–22].

Desirability functions provide a way to integrate hetero-
geneous omics data in systems where gold standards (i.e.,
genes known to be involved in the complex disease under
investigation) are not yet known (Fig.1b, bottom). Origin-
ally developed for industrial quality control, desirability
functions have been successfully used in chemoinfor-
matics to rank compounds for drug discovery and have
been proposed as a way to integrate multiple selection cri-
teria in functional genomics experiments [23–27]. In the
context of integrating diverse but heterogeneous omics
data, desirability functions allow for the ranking and pri-
oritizing of candidate genes based on cumulative evidence
across data types and their variables, rather than within-
study separation of significant and non-significant genes
based on single variables in single studies. For example, a
2015 study initially proposed the use of desirability func-
tions to integrate multiple selection criteria for ranking,
selecting, and prioritizing genes across heterogeneous bio-
logical analyses and demonstrated its use by analyzing a
set of microarray-generated gene expression data [23].

To facilitate data integration in the presence of heteroge-
neous multi-omics data and when prior biological know-
ledge is limited, we propose a desirability-based framework
to prioritize candidate genes for functional analysis. To fa-
cilitate application of our framework, we built a user-
friendly software package called integRATE, which takes
as input data sets from any omics experiment and gener-
ates a single desirability score based on all available infor-
mation. This approach is targeted towards biological
processes or diseases with particularly sparse or heteroge-
neous data, so we test integRATE on a set of 10 omics data
sets related to spontaneous preterm birth (sPTB), a com-
plex disease where heterogeneous multi-omics data are the
only omics data currently available.

Design
Variable transformation
First, relevant studies need to be identified for integra-
tion; this selection can be based on any number of
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characteristics including tissue(s) sampled, disease sub-
type, or experimental designs (Fig.2, step 1). The data in
each of these studies (e.g., gene expression data, prote-
omic data, GWAS data, etc.) are typically specific to or
can be mapped to individual genetic elements (e.g.,
genes) in the genome. Furthermore, each study’s data
contain genetic element-specific values for many differ-
ent variables (e.g.,P-value, odds ratio, fold change, etc.).
Then desirability functions are fit to the observations for
each variable within a study (e.g.,P-value, odds ratio,
fold change, etc.) according to whether low values are
most desirable (dlow, e.g.,P-value), high values are most
desirable (dhigh, e.g., odds ratio), or extreme values are
most desirable (dextreme, e.g., fold change) (Fig.2, step 2).

The desirability score for each genetic element can be
calculated by applying one of the following equations to
a given variable:

dlow ¼
0

Y−B
A−B

� �s
1

8><
>:
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A≤Y ≤B
Y < A

������ ð1Þ

dhigh ¼
0
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Y < A
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Y > B
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Fig. 1 Selecting a data integration strategy depends on the structure of accessible multi-omics data. (a, left) If multiple types of omics data
(‘multi-omics’) are available for the same cohort of patients, vertical integrative analysis can be performed to combine information across data
types. This integration can be achieved using a variety of multi-staged and meta-dimensional statistical approaches that identify disease subtypes,
regulatory networks, and driver genes. (a, right) If the opposite is true and a specific type of omics data is available across a number of different
patient cohorts, horizontal meta-analysis can be performed to increase statistical power and identify disease-associated perturbations.b In some
cases, however, experimental data are only available for different omics data types from different cohorts of patients and neither vertical nor
horizontal data integration can be performed. In these situations, integration relies on mapping data to common units (e.g., genes or
pathways) and then either integrating transformed data or simply overlapping candidate sets. The software approach presented here
(integRATE) utilizes desirability functions to transform and integrate heterogeneous data allowing for theprioritization of candidate genes
for functional analysis
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dextreme ¼
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In these equations,Y is the variable value ands is the
scale coefficient affecting the function’s rate of change
that can be customized according to user preference. Al-
ternatively, the equations could be used without any
scaling by setting the scale coefficient to 1. Fordlow and
dhigh, A is the low cut point andB is the high cut point
where the function changes. Fordextreme, A is the low
cut point, C is the intermediate cut point, andB is the
high cut point where the function changes. The user can
customize these cut points based on numerical values
(e.g.,P-value < 0.05) or percentile values (e.g., top 10%).
The resulting values, ranging from 0 to 1 (or the
minimum and maximum values specified) are trans-
formed desirability scores based on information from
each variable.

Variable integration
Next, desirability scores for each of theN variables
within a study (e.g.,P-value, odds ratio, fold change,
etc.) are combined using an arithmetic mean so that
genetic elements (e.g., genes) with desirability scores of
zero for any given variable remain in the analysis (Fig.2,
step 3). Desirability for genetic elements within a study
can be calculated by:

dstudy ¼
XN
i¼1

widi

N
ð4Þ

In this equation,wi is the weight parameter (assigned
to each variable),di is desirability score for each genetic
element based on the values of each variable derived
from Eqs. (1), (2) or (3), and N is the total number of
transformed variables. This step produces a single desir-
ability score (dstudy) for each genetic element in the
study containing information from all transformed vari-
ables. Here, the user is also able to include variable

Fig. 2 integRATE relies on three main steps to identify studies, integrate data, and rank candidate genes. (1) Relevant studies must first be
identified for integration based on any number of features including, but not limited to: phenotype, experimental design, and data availability. (2)
Data corresponding to all variables in each study are then transformed according to the appropriate desirability function. In this step, the user
assigns a function based on whether low values are most desirable (dlow), high values are most desirable (dhigh), or extreme values are most
desirable (dextreme) and can customize the shape of the function with other variables like cut points (A, B, C), scales (s), and weights (w) to better
reflect the data distributions or to align with user opinion regarding data quality and relevance. (3) These variable-based scores are integrated
(dstudy) with a straightforward arithmetic mean (where weights can also be applied) to produce a single desirability score for each gene in each
study containing information from all variables simultaneously. (4) Finally, study-based desirability scores are integrated to produce a single
desirability score for each gene (doverall) that includes information from all variables in all studies and reflects its cumulative weight of evidence
from each data set identified in step 1. These scores are normalized by the number of studies containing data for each gene and can be used to
rank and prioritize candidate genes for follow up computational and, most importantly, functional analyses
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weights (wi) when integrating their desirability scores,
which can be useful in cases where certain variables are
considered more informative or accurate than others.

Study integration
Finally, the dstudy values can be integrated using the
arithmetic mean to produce a single desirability score
(doverall) for each genetic element, representing its desir-
ability as a candidate according to the weight of evidence
from all variables in allK studies that were integrated
(Fig. 2, step 4). The overall score used to prioritize can-
didates can be calculated by:

doverall ¼
XK
j¼1

wjdstudy j

K no:studies missing dataþ 1ð Þ ð5Þ

In this equation,wj is the weight parameter (assigned
to each study),dstudy j is the desirability score for each
study, andK is the total number of studies integrated.
Importantly, the overall desirability scoredoverall is nor-
malized by the number of studies missing data for each
genetic element to account for the number of values
contributing to each overall desirability score. This
normalization factor can be used to calculate a soft cut-
off for the most desirable candidates that is equivalent
or higher than the desirability score that would be
achieved by a genetic element with a perfect desirability
score of 1 in a single study but missing from all other
studies. We call genetic elements achieving desirability
scores equal to or above this cutoff‘desirable.’

Software
The methodology described above is implemented in
our software, integRATE, available on GitHub as an R
package (https://github.com/haleyeidem/integRATE). Al-
though we focus on using desirability functions to inte-
grate heterogeneous omics data corresponding to
complex human diseases, integRATE can be applied to
data sets from any phenotype, species, and data type
(provided that the units can all be mapped to a common
set of elements, such as genes). Functionality is provided
for the application of customizable desirability functions
as well as data visualization.

Implementation
One human complex genetic disease where the omics
data available are heterogeneous is preterm birth (PTB).
Defined as birth before 37 weeks of completed gestation,
PTB is the leading cause of newborn death worldwide
[28]. Although 30% of preterm births are medically indi-
cated due to complications including preeclampsia (PE)
or intrauterine growth restriction (IUGR), the remaining
70% occur spontaneously either due to the preterm

premature rupture of membranes (PPROM) or idiopath-
ically (sPTB). Further complicating factors are that mul-
tiple maternal and fetal tissues are involved (e.g.,
placenta, fetal membranes, umbilical cord, myometrium,
decidua, etc.) as well as multiple genomes (maternal, pa-
ternal, and fetal) [29]. Evidence from family, twin, and
case-control studies suggests that genetics plays a role in
determining birth timing and a recent GWAS identified
a handful of genes linked to prematurity [30]. Neverthe-
less, the pathogenesis of PTB and its many subtypes re-
mains poorly understood [31–33].

The publicly available data for sPTB consist of several
different independently conducted omics analyses that
would be challenging to analyze with statistical ap-
proaches developed for vertical and horizontal integration
[30, 34, 35]. Although these omics data have been ana-
lyzed in isolation, integration of their information using
the desirability-based platform implemented in integRATE
may provide unique insights into the complex mecha-
nisms involved in regulating birth timing and, thus, allow
for the identification and prioritization of novel candidate
genes for further functional and targeted analyses.

Study identification
Studies were initially identified based on the PubMed
searches (up to 10/19/2017) using combinations of terms,
including “Pregnancy”, “Humans”, “Preterm birth”, “Pla-
centa”, “Decidua”, “Myometrium”, “Cervix Uteri”, “Extra-
embryonic Membranes”, “Blood”, “Plasma” and “Umbilical
Cord”. Studies that reported conducting a genome-wide
omics analysis of sPTB from a preliminary scan of the ab-
stract were downloaded for full-text assessment. Further-
more, a thorough investigation was conducted of their
associated reference lists to identify studies not captured
via PubMed. Additionally, each study had to meet the fol-
lowing inclusion criteria:

1) Experimental group consisted of sPTB cases only
and was not confounded by other pregnancy
phenotypes (e.g., preeclampsia),

2) Analysis was genome-wide and not targeted to any
specific subset of genes or pathways, and

3) Full data set was publicly available (not just top n%).

We identified 54 studies through the first phase of our lit-
erature search, but only 10 data sets that met all inclusion
criteria. All excluded studies are listed in Additional file1
with reasons for exclusion and the 10 data sets used in our
pilot analysis are outlined in Table1 [30, 34–46].

Data transformation
Each of the 10 data sets was mapped to a gene-based
format. This step was necessary because integRATE
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applies desirability functions both within and across
studies and, in order for that integration to be possible,
the genetic elements of each study have to match.

Genomics
SNP-based data containingP-values and effect sizes
were mapped to genes with MAGMA, as outlined in the
Zhang et al. supplementary methods (http://ctg.cncr.nl/
software/magma) [39, 47, 48].

Transcriptomics
Gene expression data from microarray experiments
were accessed via GEO (https://www.ncbi.nlm.nih.gov/
geo/) and re-analyzed using the GEO2R plugin (https://
www.ncbi.nlm.nih.gov/geo/info/geo2r.html) [40–43]. Raw
RNA-seq data from Ackerman et al. were analyzed in-
house with custom scripts [34].

Epigenomics
Methylation data were accessed via GEO (https://
www.ncbi.nlm.nih.gov/geo/) and re-analyzed using the
GEO2R plugin (https://www.ncbi.nlm.nih.gov/geo/info/
geo2r.html) [36, 37, 44–46].

Proteomics
Protein expression data were downloaded from supple-
mentary files associated with each publication and the
protein IDs were mapped to genes using Ensemble’s Bio-
Mart tool (https://www.ensembl.org/info/data/biomart/
index.html) [35, 38].

Application of integRATE
After mapping results from all 10 omics studies to
genes, we used integRATE to calculate desirabilities for
all genes across all variables within studies. We ran four
different sPTB analyses:

1) In the first analysis (iR-none), we ran integRATE
with no added customizations (e.g., no cut points,
no scales (i.e., scale coefficient = 1), no minimum or
maximum desirabilities, etc.) (Figs. 3, 4 and 5,
Additional file 2).

2) In the second analysis (iR-num), we ran integRATE
using numerical cut points (P = 0.0001, 0.1 and
fold change = 1.5, 0.5, − 0.5, − 1.5) and no scales
(Additional files 3, 4, 5, 6).

3) In the third analysis (iR-per), we ran integRATE
using percentile cut points (P = 5, 95%, and fold
change = 5, 50, 95%) and no scales (Additional files 7,
8, 9, 10).

4) In the fourth analysis (HardThresh), we considered
statistically significant genes from each study to
represent the results that would have been obtained
if the typical approach based on hard thresholds
and intersection of significant genes across studies
outlined earlier was applied (Additional files 11, 12).
All genes with adjusted P-values < 0.1 or unadjusted
P-values < 0.05 were deemed significant in each
study and intersected to compare with the results
from integRATE [49].

To test whether the analyses described above produced
results different from what might occur at random, we
performed a permutation test shuffling desirabilities for all
26,868 genes 1000 times.

Results
In total, our sPTB analyses integrated gene-based results
from 10 omics studies (1 genomics, 4 transcriptomics, 4
epigenomics, and 1 proteomics; Table1) and included
data sets ranging from 422 genes [35] to 20,841 genes
[42]. The null distribution generated by our random per-
mutation test had mean desirability range from 0.056 to
0.062, with an average of 0.059 (95% CI [0.058, 0.061])
(Fig.3).

Table 1 The 10 sPTB omics data sets identified for desirability-based integration

First author Year Experiment Control Tissue omics Type

Zhang 2017 sPTB term maternal blood genomics (GWAS)

Ackerman 2015 sPTB term placenta transcriptomics (RNA-seq)

Heng 2014 sPTB term maternal blood transcriptomics (microarray)

Chim 2012 sPTB term maternal blood transcriptomics (microarray)

Mayor-Lynn 2011 sPTB term placenta transcriptomics (microarray)

de Goede 2017 sPTB term cord blood epigenomics (microarray)

Fernando 2015 sPTB term cord blood epigenomics (microarray)

Parets 2015 sPTB term maternal blood epigenomics (microarray)

Cruickshank 2013 sPTB term fetal blood epigenomics (microarray)

Heng 2015 sPTB term maternal blood proteomics (mass spec)
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Fig. 3 After integration, 7977/26,868 genes were identified as highly desirable. All genes in the iR-none analysis were sorted from most desirable
(rank = 1) to least desirable (rank = 26,868) and plotted according to their overall desirability scores, ranging from 8.04E-16 to 0.46. Because this
analysis included 10 omics studies, the normalized lower bound for our set of‘desirable’ candidate genes is 0.1 (blue line) and 7977 genes achieved
scores greater than or equal to that value. Furthermore, the results of our permutation test are plotted in pink, with a mean of 0.059 (95% CI [0.058,
0.061]). All desirability scores for the entire data set are available in Additional file2 (and in Additional files3 and7 for iR-num and iR-per, respectively)

Fig. 4 The top 10 most desirable genes have a wide range of desirabilities across data types. The top 10 genes from our iR-none analysis have
overall desirabilities ranging from 0.38 (ACTN1) to 0.46 (CAPZB), but thedstudyvalues range, even when organized by data type. Some genes, like
STOM, appear to be highly ranked not because of any extremely highdstudyvalue, but rather due to a lack of lowdstudyvalues in any data type. In
other words, this gene is likely not identified as particularly important in any individual study but shows a consensus of relatively strong evidence
across all 10 studies. Contrastingly, other genes, likeCAPZB, appear to be highly ranked due to one very high desirability score in a single data
type (GWAS) that overpowers underwhelming evidence in other studies
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iR-none
First, the software was run without any added cuts, weights,
or scales, resulting in a list of 26,868 genes with data from
one or more of the 10 omics studies (Additional file2).
Normalized desirabilities for these 26,868 genes ranged
from 8.04E-16 to 0.46 (mean = 0.08 ± 0.05) (Fig.3). Further-
more, 7977 genes (29.7%) had desirabilities≥0.1 corre-
sponding to values equal to or higher than what would be
achieved if a given gene achieved maximal desirability in
one study but was absent from all others. These top 7977
genes were enriched for 70 unique GO-Slim Biological
Process categories, including pathways involved in
metabolic processes, immunity, and signal transduction
(Additional file 13) [50]. Additionally, 15,285/26,868
(56.9%) genes achieved desirabilities greater than the
permutation mean of 0.059. The top 10 genes (Figs.4
and 5) had desirabilities ranging from 0.46 (CAPZB) to
0.38 (ACTN1) and were all represented in each of the
10 omics data sets analyzed. This analysis applied inte-
gRATE without cut points, allowing for a straightfor-
ward, linear transformation of data across all variables
and studies.

iR-num
We next applied cut points based on numerical values
(Additional file 3). P-values such that values smaller than

0.0001 received the maximum desirability score of 1 and
values larger than 0.1 received the minimum desirability
score of 0. All P-values between 0.0001 and 0.1 were
transformed according to thedlow function. For dextreme

functions, 4 cut points were assigned and we chose com-
monly used values of 0.5 and 1.5 (or their equivalents if
the values were log transformed). Therefore, fold changes
below − 1.5 or above− 1.5 (or below log2(1/3) or above
log2(3)) received the maximum desirability score of 1 and
fold changes between− 0.5 and 0.5 (or between log2(1/
1.5) and log2(1.5)) received the minimum desirability
score of 0. Intermediate values were transformed accord-
ing to the dextreme function. This approach mirrors what
was applied in a previous implementation of the desirabil-
ity framework for omics data, and takes into account prior
knowledge of typicalP-value and fold change distributions
[23]. While the top most desirable genes in iR-num ap-
peared to be better candidates in each individual study
(Additional file 6), using these cut points corresponding to
standard significantP-value and fold change cut offs
greatly reduced the number of desirable genes identified
(Additional file 3). Specifically, only 1386/26,868 (5.1%)
genes achieved desirabilities greater than the permutation
mean of 0.059 and the top 10 most desirable genes
were analyzed by only 4 or 5 studies instead of all
10 (Additional file 5).

Fig. 5 The top 10 most desirable genes show a large discrepancy in their percentile ranks across studies. After ranking the genes in each study
by desirability (using the iR-none analysis) and calculating their percentiles based on the number of unique ranks, the top 10 most desirable
genes appear to show even greater variability in relative ranking across not just data type, but individual studies. All 10 genes are in the top 25%
of the (smaller) proteomics study, but their relative rankings vary significantly in all other studies. Furthermore, while none of the genes are in the
top 25% of the GWAS study [30], other studies, like one of the transcriptomics analyses [43], show a large range in relative rankings, with certain
highly desirable genes ranked very high and others ranked very low
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iR-per
Finally, we applied cut points based on percentiles
(Additional file 7). P-values were cut such that those
in the top 5% received the maximum desirability score of
1 and those in the bottom 5% received the minimum de-
sirability score of 0, with all values in between transformed
according to thedlow function. Fold changes were cut such
that those in the top 5% and bottom 5% received the max-
imum desirability score of 1 and those in the middle 50%
received the minimum desirability score of 0, with all
other values transformed according to thedextreme func-
tion. In this analysis, 16,604/26,868 (61.8%) genes achieved
desirabilities greater than the permutation mean of 0.059.

HardThresh
For comparison, we also manually selected candidate genes
by imposing a hard threshold onP-value (P-value < 0.05 if
unadjusted andP-value < 0.1 if adjusted) (Additional file11).
After binning data into ‘significant’ gene lists, we intersected
these lists to pull out genes that would have been identified
simply by selecting the intersection of all significant genes.
Although 18,727 genes were considered‘significant’ in at
least one study, no genes were identified as significant in all
10 studies. The top candidate gene (KIAA0040) was signifi-
cant in 6/10 studies and 15 other genes were identified in
5/10 studies (Additional file12). Interestingly, none of these
16 genes appear in the top 10 of our most desirable candi-
dates after integration and, even more generally, none are
specifically discussed in any of the studies, either.

Using integRATE to identify the most desirable sPTB
genes
In our sPTB pilot analyses, members of the annexin
family (ANXA3, ANXA4 and ANXA9) appear in the top
10 most desirable candidate gene sets regardless of ana-
lysis approach (e.g., without cut points as well as with
numerical and percentile cut points). This family is in-
volved in calcium-dependent phospholipid binding and
membrane-related exocytotic and endocytotic events, in-
cluding endosome aggregation mediation (ANXA6). In a
previous proteomic analysis,ANXA3 was found to be
differentially expressed in cervicovaginal fluid 26–30
days before the eventual onset of sPTB as compared to
before healthy, term deliveries [51]. Furthermore, mem-
bers of the annexin family are known to be involved in
coagulation (ANXA3, ANXA4). Coagulation has been
previously suggested to be involved in PTB and, even
though the mechanism of such involvement is still a
mystery, it is interesting that several genes involved in
coagulation or blood disorders appear in our top candi-
date lists [52]. In addition to ANXA3 and ANXA4,VWF
(or Von Willebrand Factor) is a gene encoding a glyco-
protein involved in coagulation that has been found to
be expressed significantly more in preterm infant serum

as compared to term [53, 54]. Finally, another highly de-
sirable candidate,STOM, encodes an integral membrane
protein that localizes to red blood cells, the loss of which
has been linked to anemia [55].

In addition to coagulation, another biological process
represented across our results is actin regulation and
muscle activity. The most notable gene associated with
this biological process isCAPZB, which encodes part of
an actin binding protein that regulates actin filament dy-
namics and stabilization and is present in the top 10 most
desirable candidate gene list in all three analyses. Al-
though CAPZB has never been linked to sPTB or other
pregnancy pathologies, its role in muscle function could
be linked to myometrial and uterine contractions that,
when they occur prematurely, might be directly involved
in the development of sPTB [56, 57]. Another one of our
top candidates,ACTN1, is also involved in actin regulation
and, even more interestingly, has also been linked to blood
and bleeding disorders [58, 59]. Finally, several other
highly desirable genes identified in one or more of our in-
tegrative analyses includeGPSM3, WDR1, andDYSF, are
all involved in the development and regulation of muscle
or in the pathogenesis of muscle-related diseases [60–62].

Even outside the top 10 most desirable genes across our
integrative analyses, we found genes both previously identi-
fied as being involved in pregnancy or sPTB pathology as
well as involved in pathways potentially relevant to sPTB
(Additional file 2). For example, one gene falling just out-
side the top 10 most desirable candidates in all analyses is
MMP9, a matrix metalloproteinase. Interestingly,MMP9
has been linked not only to sPTB, but also to PPROM and
PE across a number of fetal and maternal tissues and at a
variety of time points during pregnancy [63–67]. MMP9
gene expression has been observed as significantly higher
during preterm labor than during term labor in maternal
serum, placenta, and fetal membranes [68–70]. Even in the
first trimester, levels ofMMP9 in maternal serum were
higher in PE cases than in healthy controls, suggesting that
increasedMMP9 protein expression is linked to the under-
lying inflammatory processes governing PE pathogenesis
[66]. Finally, fetal plasmaMMP9 concentration has been
found to be significantly higher in fetuses with PPROM
than in early and term deliveries with intact membranes,
implicating MMP9 in the membrane rupture mechanism
controlling early delivery due to membrane rupture [67].
We see similar evidence ofMMP9 as a desirable sPTB can-
didate maintained across omics and tissue types in our inte-
gRATE analyses, raising the hypothesis that its role in
inflammation and extracellular matrix organization relates
to sPTB even in the absence of PPROM or PE.

Discussion
By using desirability functions to rank genes within stud-
ies and combine results across studies, integRATE allows

Eidemet al. BMC Medical Genomics         (2018) 11:107 Page 9 of 13



for the identification of candidate genes supported
across experimental conditions and omics data types.
This is especially important when heterogeneous sets of
omics data, like those available for sPTB, where the stat-
istical approaches developed for vertical or horizontal
integration are challenging to apply. We have shown
that integRATE can map any omics data to a common
[0, 1] scale for linear integration and produce a list of
the most desirable candidates according to their weight
of evidence across available studies. These candidates
then become promising targets for follow-up functional
testing depending on where in the data their desirability
signals come from. Analysis of 10 heterogeneous omics
data sets on sPTB showed that the gene candidates iden-
tified using desirability functions appear to be much
more broadly supported than those identified by the
intersection of all significant genes across all studies and
contain both genes that have been previously associated
with sPTB as well as novel ones (Figs.4 and 5,
Additional file 12).

integRATE identifies both known and novel candidate
genes associated with a complex disease, including ones
that are not among the top candidates in any single omics
study but are consistently (i.e., across studies) recovered
as significantly (or nearly significantly) associated. For ex-
ample, genes that are significantly differentially expressed
at an intermediate to high level acrossmany studies will
have high desirability scores. Furthermore, integRATE can
identify such genes across omics types, tissues, patient
groups, and any other variable condition. Although inte-
gRATE allows for this kind of synergistic, desirability-
based analysis, it is important to note that integRATE is
not a statistical tool nor is it intended to be the end point
of any analysis. Rather, it is a straightforward framework
for the identification of well-supported candidate genes in
any phenotype where true multi-omics data are unavail-
able and can also serve as a springboard for future func-
tional analysis, an essential next-step in testing whether
the candidates are actually involved in the biology of the
disease or phenotype at hand.

In our analyses, the genomics data set was typically
the one with the highest desirability scores for each of
the top 10 genes (Fig.4) and the proteomics data set
was typically the one in which the relative rank of the
top 10 genes was the highest (Fig.5). Both of these
trends may appear surprising considering that our ana-
lyses contained just one genomics and one proteomics
data set compared to four transcriptomics and four epi-
genomics ones (Table1). There are three reasons for
these two trends. First, there is substantial heterogeneity
among the top genes identified by the four transcrip-
tomic studies (see also [71]), as well as among the top
genes identified by the four epigenomic studies. As a
consequence, there is no common signature of the four

transcriptomic studies or the four epigenomic studies
(see Fig.4). Second, there are many more genes with
high desirability scores in the genomics data set than in
the other nine data sets (Additional file1). However, we
note that the ranking of the top 10 genes is not driven
by the genomics data set; as we discuss below (see last
paragraph of the discussion section), only one of the top
10 genes (EBF1) is among the candidate genes identified
to be significantly associated with preterm birth and ges-
tation length in the genomics data set [47]. Third, the
number of differentially expressed proteins (mapped to
genes) in the proteomics data set, and as a consequence
the number of genes with desirability scores in this data
set, was substantially lower than that of all other studies
(and included hundreds of genes vs tens of thousands of
genes). As a result, the percentile rank of the top 10
genes for the proteomics data set (Fig.5) was much
higher than their percentile rank in other data sets.
However, as shown in Fig.4, the desirability scores of
the top 10 genes in the proteomics data set were typic-
ally neither very high nor very low, and did not appear
to exert a disproportionate influence on the ranking of
our top 10 genes.

Importantly, there is no single principled strategy for
the selection of cut points. In our sPTB analyses
(iR-none, iR-num, and iR-per), we observed that the im-
position of cut points corresponding to generally agreed
upon values (e.g.,P-value < 0.0001) has the potential to
greatly affect the resulting gene prioritization. On this
basis, we propose that desirability functions are best
used to integrate highly heterogeneous omics data with-
out imposed numerical cut points forP-values, fold
changes, and other variables. Implemented this way, one
can maximize the information from the analysis of each
omics data set used in prioritizing candidate genes. But
users may also have reasons to want to put more weight
on data sets that are of higher quality or on data types
that may be more informative. In such instances, the
weight parameter can be used to reflect study quality in-
stead of imposing cut points (e.g., studies that fail to
achieveP-values as low as others in the integrative ana-
lysiscan be weighted less to reflect potentially lower ex-
perimental quality).

A recent GWAS analysis, the largest of its kind across
pregnancy research, identified several candidate genes
with SNPs linked to PTB [47]. This study linkedEBF1,
EEFSEC, and AGTR2 to preterm birth and EBF1, EEF-
SEC, AGTR2, and WNT4 to gestational duration (with
ADCY5 and RAP2C linked suggestively). By analyzing
43,568 women of European ancestry, this large study is
the first to identify variants and genes that are statisti-
cally associated with sPTB. Interestingly, our integrative
analysis identifiedEBF1 as a desirable candidate (doverall
= 0.15 [top 3%] in iR-none anddoverall = 0.23 [top 1%] in
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iR-per), suggesting that this gene, in addition to GWAS,
might also be functionally linked to sPTB pathogenesis
across transcriptomics, epigenomics, and proteomics
studies. Even when analyzing the 9 other omics studies
without this GWAS data set,EBF1 still achieved adoverall
score of 0.17, placing it in the top 2% of all genes (Add-
itional file 14). While our integrative analysis supports
the identification of EBF1 as an interesting candidate
gene for follow up, the lack of signal for any of the other
GWAS-identified hits also reinforces the need to ap-
proach complex phenotypes like sPTB from a variety of
omics perspectives, since sequenced-based changes may
impact the phenotype in indirect and complicated func-
tional ways.

Conclusions
Desirability-based data integration (and our integRATE
software) is a solution most applicable in biological re-
search areas where omics data is especially heteroge-
neous and sparse. Our approach combines information
from all variables across all related studies to calculate
the total weight of evidence for any given gene as a can-
didate involved in disease pathogenesis, for example. Al-
though not a statistical approach, this method of data
integration allows for the prioritization of candidate
genes based on information from heterogeneous omics
data even without known‘gold standard’ genes to test
against and can be used to inform more targeted down-
stream functional analyses.

Additional files

Additional file 1: Results of meta-analysis to identify studies for integration.
We outline the 10 studies meeting all inclusion criteria for integrative analysis.
Furthermore, we list the other 44 studies that we identified through
our literature search but we excluded from the data analysis as well
as reasons for their exclusion. (XLSX 42 kb)

Additional file 2: All results from iR-none. All desirability scores across
all variables in all studies as well as overall desirabilities and normalized
overall desirabilities are presented. (XLSX 3762 kb)

Additional file 3: All results from iR-num. All desirability scores across all
variables in all studies as well as overall desirabilities and normalized
overall desirabilities are presented. (XLSX 1988 kb)

Additional file 4: Results from iR-num. All genes in the analysis including
numerical cut points were sorted from most desirable (rank = 1) to least
desirable (rank = 26,869) and plotted according to their overall desirability
scores. (EPS 611 kb)

Additional file 5: Top 10 genes from iR-num by data type. Desirability
scores for the top 10 most desirable genes are plotted according to the
type of omics analysis. (EPS 761 kb)

Additional file 6: Top 10 genes from iR-num by study. Desirability scores
for the top 10 most desirable genes are plotted according to individual
study. (EPS 784 kb)

Additional file 7: All results from iR-per. All desirability scores across all
variables in all studies as well as overall desirabilities and normalized
overall desirabilities are presented. (XLSX 3512 kb)

Additional file 8: Results from iR-per. All genes in the iR-per analysis
were sorted from most desirable (rank = 1) to least desirable (rank = 26,869)
and plotted according to their overall desirability scores. (EPS 618 kb)

Additional file 9: Top 10 genes from iR-per by data type. Desirability
scores for the top 10 most desirable genes are plotted according to the
type of omics analysis. (EPS 764 kb)

Additional file 10: Top 10 genes from iR-per by study. Desirability scores
for the top 10 most desirable genes are plotted according to individual
study. (EPS 789 kb)

Additional file 11: Raw data for manual overlap based on significance
dichotomization. All 18,727 genes identified as significant in at least 1
study and overlap across the entire data set. (XLSX 769 kb)

Additional file 12: Genes binned as significant in 4 or more omics
studies. Upset plot showing intersections of significant genes across all
10 omics studies. (EPS 12 kb)

Additional file 13: GO-Slim gene set enrichment results. The PANTHER
output for gene set functional enrichment is provided, including 37
statistically enriched biological pathways. (XLSX 13 kb)

Additional file 14: All resultswithout including the Zhang 2017 data set
[30]. All desirability scores across all variables in all studies as well as
overall desirabilities and normalized overall desirabilities are
presented. (XLSX 2908 kb)
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