Campbell et al. BMC Medical Genomics (2018) 11:110
https://doi.org/10.1186/512920-018-0439-6 BMC Medlcal Genomlcs

RESEARCH ARTICLE Open Access

“Omics” data integration and functional ® e
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Abstract

Background: Large-scale “omics” datasets have not been leveraged and integrated with functional analyses to
discover potential drivers of cardiomyopathy. This study addresses the knowledge gap.

Methods: We coupled RNA sequence (RNA-Seq) variant detection and transcriptome profiling with pathway analysis to
model drug refractory dilated cardiomyopathy (drDCM) using the BaseSpace sequencing hub and Ingenuity Pathway
Analysis. We used RNA-Seq case-control datasets (n = 6 cases, n =4 controls), exome sequence familial DCM datasets

(n =3 ltalians, n =5 ltalians, n =5 Chinese), and controls from the HapMap project (n =5 Caucasians, and n=5 Asians) for
disease modeling and putative mutation discovery. Variant replication datasets: n = 128 cases and n = 15 controls. Source
of datasets: NCBI Sequence Read Archive. Statistics: Pairwise differential expression analyses to determine differentially
expressed genes and t-tests to calculate p-values. We adjusted for false discovery rates and reported g-values. We used
chi-square tests to assess independence among variables, the Fisher's Exact Tests and overlap p-values for the pathways
and p-scores to rank network.
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Results: Data revealed that ECHS1(enoyl-CoA hydratase, short chain 1(log,(foldchange) = 1.63329) hosts a mirtron,
MIR3944 expressed in drDCM (FPKM = 5.2857) and not in controls (FPKM = 0). Has-miR3944-3p is a putative target of
BAGT (BCL2 associated athanogene 1(log,(foldchange) = 1.31978) and has-miR3944-5p of ITGAV (integrin subunit
alpha V(log,(foldchange) = 1.46107) and RHOD (ras homolog family member D(log,(foldchange) = 1.28851). There is
an association between FCHST:11 V/A(rs10466126) and drDCM (p = 0.02496). The interaction (p = 2.82E-07) between
ECHS1:75T/I(rs1049951) and ECHST:rs10466126 is associated with drDCM (p < 2.2e-16). ECHS1:rs10466126 and ECHST:
rs1049951 are in linkage disequilibrium (D'= 1). The interaction (p = 7.84E-08) between ECHST:rs1049951 and the
novel ECHST:c41insT variant is associated with drDCM (p < 2.2e-16). The interaction (p = 0.001096) between DBT
(Dihydrolipoamide branched chain transacylase E2):384G/S(rs12021720) and ECHST:rs10466126 is associated with
drDCM (p < 2.2e-16). At the mRNA level, there is an association between ECHS1 (log,(foldchange) = 1.63329;
q=0.013927) and DBT (log,(foldchange) = 0.955072; g = 0.0368792) with drDCM. ECHST1 is involved in valine (~log
(p = 3.39E00)), isoleucine degradation (p = 0.00457), fatty acid 3-oxidation (—log(p) = 2.83E00), and drug metabolism:
cytochrome P450 (z-score = 2.07985196) pathways. The mitochondria (—log(p) = 8.73E00), oxidative phosphorylation
(—log(p) = 5.35E00) and TCA-cycle Il (—log(p) = 2.70EQ0) are dysfunctional.

Conclusions: We introduce an integrative data strategy that considers the interplay between the DNA, mRNA, and

associated pathways, which represents a possible diagnostic, prognostic, biomarker, and personalized treatment
discovery approach in genomically heterogeneous diseases.
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Background

At present, biventricular or left ventricular dilation and
systolic dysfunction with no abnormal hypertension and
valve disease or coronary artery disease enough to
produce global systolic malfunction characterize dilated
cardiomyopathy (DCM: OMIM 115200). Causative fac-
tors can be genetic or non-genetic, and, sometimes, gen-
etic predispositions can interact with environmental
factors to trigger DCM. On the other hand, non-genetic
causes include drugs and toxins, myocarditis, and peri-
partum cardiomyopathy. However, a combination of the
factors mentioned above can also cause DCM [1-4].
Dissecting the molecular mechanisms underlying the
disease remains a challenge and regrettably, the end-
point is usually end-stage drug-refractory heart failure
and heart transplantation [5]. Advances in technology
have expanded the availability of omics data. The goal of
these data is to determine models that predict outcomes
and the phenotype, which expose biomarkers and give
insight into the genomic foundation of how complex
traits are inherited. However, robust strategies to tie to-
gether and use these data to discover valid connections
are lacking [6]. Approaches that integrate “omics” data
link the gap between assessing variation at only one
stage of regulation of the central dogma and understand-
ing the underlying complexity within biological systems.
Understanding such complexity requires intricate
models, which consider variation across various stages
of biological regulation. Data coupling identifies import-
ant genomic factors and connections that elucidate or
predict risk factors for disease and other biological out-
comes. It provides an avenue to making sense of and

appreciating the greater complexity that underlies hu-
man disease [6].

Accomplishments in revealing the genomic and genetic
pathogenic architecture of complex traits have been meek,
in part because of limited investigations that consider vari-
ation interplay across each stage of the central dogma [6].
In their 2017 review, Hang et al. presented three methods
used to integrate multiple omics data. They outlined how
comprehensive tools and multi-omic data integration have
advanced. They discuss three main algorithms used,
unsupervised, supervised and semi-supervised data inte-
gration methods [7].

Briefly, unsupervised data integration draws inferences
from unlabeled response variable input datasets. It uses
several methods to investigate their biological profiles to
allocate objects into various clusters or subgroups. Con-
versely, the supervised integrative approach considers the
subject phenotype, diseased or healthy and uses machine
training omics datasets in their analyses. This approach
uses the biological information of the labeled objects to
get patterns for diverse phenotypes and allocate labels to
unlabeled data by comparing the models. Semi-supervised
integrative methods, interface unsupervised and super-
vised approaches. They incorporate labeled and unlabeled
samples to create learning algorithms. They mostly build
object-wise similarity networks by gathering omics data
and assigning labels to unknown objects through their
associations to the labeled objects [7].

In our integrative approach, one does not use unlabeled
response variables, training datasets, or create learning al-
gorithms to draw inferences. Here, we present our con-
ceptual and analytical models used in our integrative
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method, based on both the dominant and alternative para-
digms, [6] and approaches coined by Vanderweele and
Robins [8].

In this report, we aimed to use our methods to provide
strategies and insight that can be exploited to reveal mu-
tations, modifier genes, pathogenic pathways, and to
model complex traits. We posited that our omics inte-
grative method would be able to model molecular pro-
cesses that lead to drug refractory DCM (drDCM) and
discriminate mutations from modifiers, pathogenic path-
ways from those that alter the outcome. We report a
novel approach for omics data integration that considers
the interplay between DNA, mRNA and pathway ana-
lyses. The methods can be used to model complex traits
while illuminating genomic biomarkers and targets for
therapeutic intervention. Our technique revealed that
the ECHSI gene harbors a V11A (rs10466126) putative
mutation in the first exon, and two presumed modifiers,
T75I (rs1049951) and a novel variant ECHSI:c.41insT in
the second exon. Additionally, the ECHSI gene hosts a
mirtron, MIR3944 in the first intron that is only
expressed in drDCM cases and not controls. This micro-
RNA is a putative target of BAG1, ITGAV, and RHOD.
Patients with drDCM have genomic insults in the mito-
chondria that are intertwined with environmental fac-
tors, branched-chain amino acids (BCAAs), and long
and very long chained fatty acids (LVLCFAs) in the
pathogenesis of drDCM. Interactions between errors in
the patients’ genomic makeup and breakdown of BCAAs
and LVLCFAs lead to cardiotoxicity, dysfunction of the
mitochondria, oxidative phosphorylation and the TCA
(tricarboxylic acid) cycle.

Methods

Conceptual framework

Our conceptual model (Fig. 1) utilizes the dominant
paradigm that dissimilarity at the genomic step will lead
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to changes in gene expression. Changed gene expression
would, in turn, lead to protein alterations, followed by
disease. However, the model also considers the alterna-
tive probability that many levels of molecular and envir-
onmental dissimilarities add to disease risk in a
convoluted nonlinear, and interactive fashion [6].

We defined data integration as merging genomics and
transcriptome data, pathway, functional, and association
analyses. The data are the predictor variables that make
it possible for one to have a more systematic and
complete modeling of a complex trait. The complex
phenotype, here drDCM, might arise because of interac-
tions among biological variations at many stages of gen-
omic control. However, the disease might also occur
because of one’s environment.

Analytical model

Statistical measures

The term effect modification is used by epidemiologists
to infer that the effect of one variable on another change
across the strata of a third. There are numerous ways to
measure the effect and several processes by which
variables can be effect modifiers for the association be-
tween cause and an effect. Assessment of effect alter-
ation is determined by the odds ratio, which measures
relationships between exposure and an outcome in a
case-control study. The risk difference estimates depar-
tures from the additivity of effects. The risk ratio also
called a relative risk evaluates the quotient of the chance
of an event happening in a group that is exposed to the
probability of the incident arising in an entity that is not
exposed [8-11].

We have constructed our analytical model, in part on
the causal risk difference or causal odds ratio, as a meas-
ure of choice measures introduced by Vanderweele and
Robins in 2007 [8] although, in our model, we have used
the chi-square statistic to assess independence or
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associations. By doing so, the relationships an effect
modifier may have on the variable creating the cause
and the variable generating the effect are explicit. The
model also operates under the knowledge that effect
modification evaluated on the causal risk difference scale
falls under the bigger picture of interaction [8]. In con-
sidering variables that may be confounders (ie., condi-
tioning on variables that are in between the exposure
(mutation) and the outcome variable (DCM)), we con-
sider effect modifiers that are not a result of the expos-
ure variable under study. The effect modifier is a
differentially expressed gene carrying a variant that its
interaction with other variations is statistically associated
with the outcome.

Statistical associations

One can demonstrate mathematical relations on causal
directed acyclic graphs in numerous ways. Two variables
can be statistically connected if one (e.g., mutation) is a
direct or indirect cause of the other (e.g., DCM) or vice
versa. However, even though neither is the cause of the
other, there can be a statistically significant connection
between the mutation and DCM if they have some com-
mon trigger. There can also be an association between a
variation and DCM if they have a common outcome (for
example heart failure) and if the relationship is assessed
within the strata of heart failure. In other words, a muta-
tion and DCM will, in general, be statistically associated
given heart failure, if heart failure is a shared result of
the variation and DCM [12].

Thus, statistical associations between variables can be
determined by blocked and unblocked nodes in a series
that are linked by edges regardless of arrowhead direc-
tion (a path). A direct route follows the edges in the path
denoted by the graph’s arrows. A collider is a type of a
node found on a path that both the edge from and to
that node have arrowheads into the node. A path be-
tween a mutation and DCM, for example, is said to be
blocked given some set of variables, say C, if either there
is a variable in C on the path that is not a collider. One
can also say that the route is impassable if there is a col-
lider on the way such that neither the collider itself nor
any of its progenies are in C. If all paths between a mu-
tation and DCM are blocked given C, then the variation
and DCM are conditionally independent given C [13].

Effect modification, a structural classification

To consider what type of associations effect modifiers
may show concerning the variable creating the cause
and the variable generating the effect, we use causal di-
rected acyclic graphs. Using this approach produces a
classification of the diverse kinds of effect modification
[8]. For example, Fig. 2 shows no shared causes of the
mutation (exposure) and the environmental risk factor
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Fig. 2 Direct Effect Modification

(effect modifier). Since both the variation and the envir-
onmental risk factor influence DCM, the causal relation-
ship between these variables can be illustrated in the
context of a causal directed acyclic graph (Fig. 2). Under
this model, the environmental risk factor is a direct
modifier of the causal effect of the mutation on DCM
because the environmental risk factor is an immediate
cause of DCM [8].

In the next model, we assume information is available
for the subject’s diet. We also find that the diet affects
the environmental risk factor but does not affect
whether the subject gets DCM directly (Fig. 3) [8]. In
this case, the patient’s diet will serve as a modifier that
alters the effect on the causal risk difference scale for
the consequence of the mutation on DCM. This is be-
cause conditioning on a diet affects the environmental
risk factor, which serves as an effect modifier for the
causal effect of the variation on DCM. Diet is then an
indirect effect modifier for the causal effect of the muta-
tion on DCM since the diet affects DCM directly
through the environmental risk factor [8]. Now suppose
the environmental risk factor also determines mitochon-
drial dysfunction in the patient (Fig. 4). Under this
model, mitochondrial dysfunction may serve as an effect
modifier on the causal risk difference scale for the effect
of the mutation on DCM because conditioning on mito-
chondrial dysfunction gives information on the environ-
mental risk factor, which acts as an effect modifier for
the causal effect of the mutation on DCM. However,
since mitochondrial dysfunction is not a direct cause of
DCM one would say that mitochondrial dysfunction is
an effect modifier of the causal effect of the mutation on
DCM by proxy [8].

> DCM |

Mutation

Environmental

Diet = risk factor

Fig. 3 Indirect Effect Modification
.
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Fig. 4 Effect Modification by Proxy

Finally, suppose additional information on diabetes an-
other disease the subject has existed. The causal connec-
tions among the variables could be denoted by the
causal directed acyclic graph given in Fig. 5 [8]. Diabetes
might act as an effect modifier of the causal risk differ-
ence of the mutation on DCM because conditioning on
diabetes provides information on the subject’s diet,
which affects the environmental risk factor, which acts
as an effect modifier for the causal effect of the mutation
on DCM. Because the diet is a common cause of the en-
vironmental risk factor (that is a direct cause of DCM)
and diabetes, which we are conditioning on, one might
refer to diabetes as an effect modifier by a common
cause of the consequence of the variation on DCM [8].

Vanderweele and Robins, 2007 showed that many if
not all cases of effect modification can fit into one of the
four models presented above. One can distinguish these
four models in many ways. The effect modifiers intro-
duced in Figs. 4 and 5, for the effect of a mutation on
DCM might not themselves have a causal impact on
DCM. However, in the direct and indirect effect modifi-
cation, the effect modifier does have a causal effect on
DCM. Conversely, in the case of effect modification by
proxy and by a common cause, the effect modifier does
not. In this case, the unblocked path from a set of
non-descendants (say N) to the environmental risk fac-
tor that gives rise to the required relationship between N
and the ecological risk factor will be a backdoor path
from N to the environmental risk factor [8].

Additionally, one might also differentiate direct effect
modification from the other three kinds. If one is
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conditioning on many variables, which include all the
direct effect modifiers (say M), then no other variable on
the network will continue to act as an effect modifier for
the causal effect of the mutation on DCM. The reason is
that M blocks all paths from any other potential effect
modifier N to DCM. Direct effect modifiers take prece-
dence over different kinds [8].

In their second Theorem, Vanderweele, and Robins,
state that if the exposure “is the only variable on the di-
rected acyclic graph which is a direct cause of the out-
come, then there can be no variable on the directed
acyclic chart which acts as an effect modifier for the re-
lationship between exposure and outcome” [8]. This is
because another variable, which could influence the out-
come must do so through the exposure. Intervening in
the exposure will displace any effect this other variable
might otherwise have had [8].

Our analytical model introduces the novel idea that
there are variables on the directed acyclic chart, which
act as molecular effect modifiers for the causal associ-
ation between the exposure and the outcome. In our
model (Fig. 6), we hypothesized that within a pathogenic
pathway there is at least one mutation within a differen-
tially expressed gene whose causal effect on the outcome
is altered by an effect modifier. In this model, there is no
direct statistical association between the effect modifiers
(i.e., a variant) with the outcome. However, there is a
statistical association between interactions among the
exposure variables and the effect modifiers, with the
outcome.

Study design

This study is a quantitative case-control design. We cal-
culated associations between genomic variations and
genes over-expressed in pathways to DCM. We used
data sets from the left ventricles of hearts from six
drDCM cases and four controls without heart disease.
We replicated variants shared by all patients, confirmed
in exome sequence data sets and discovered in a gene
that was differentially expressed and found in an
over-represented pathway in 15 controls and 128 DCM
cases. We employed the chi-square test of independence
to discover interactions and relationships between

diabetes < DL

Fig. 5 Effect Modification by Common Cause

Type 2 Environmental
risk factor

Mutation » DCM
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Molecular
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Fig. 6 Analytical Model

drDCM and variations or whether there were interac-
tions among the variants (Fig. 7).

To discover putative pathogenic pathways, mutations
and effect modifiers, we examined pathways with variants
directly associated with drDCM. We defined such path-
ways as putative pathogenic pathways and the variants as
suspected mutations. We described variants that inter-
acted with other variants and whose interactions were
linked to drDCM as suspected effect modifiers (Fig. 7).

Data sets and source
Data source

We got all data sets from the sequence read archive
(SRA) database [14].

Case-control RNA-Seq data sets
The ribonucleic acid sequence (RNA-Seq) data sets for
the main study consisted of data from the left ventricles of

four heart organs donated for heart transplantation (SRA
study accession # SRP052978; at https://www.ncbi.nlm.-
nih.gov/Traces/study/?acc=SRP052978). The hearts were
not suitable for implantation but appropriate for controls.
We got six data sets from the left ventricles of patients
with drDCM who had a heart transplant [14].

Exome sequence data sets from Italian pedigrees

We got three data sets from members of a family from
Italy with familial DCM. [15] We collected data from five
other individuals of another family with familial DCM
from Italy. [15] One subject, in this family was included in
our analyses as a control since she did not have DCM.
Family members from both datasets were from the
Familial Cardiomyopathy Registry (SRA study number:
SRP022855; at https://www.ncbi.nlm.nih.gov/Traces/study
/?acc=SRP022855) [16]. These two families carried a
¢.517 T C> T, Argl73Trp TNNT2 mutation [15].

Exposed
drDCM eocaionand
Cases J eplication analyses
N=6 Exposed 128 DCM cases 15 controls
Non-exposed —
chi-square test ,| Putative
of independence pathways
Exposed Exposed
Controls Replication analyses
N=4 128 DCM cases 15 controls
L, Non-exposed Non-exposed
Fig. 7 Study design
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Exome sequence data sets from a Chinese pedigree

We obtained data sets from five patients with familial
DCM from China (SRA study #SRP066837; at <https://
www.ncbinlm.nih.gov/Traces/study/?acc=SRP066837&go
=go). The samples used were from the Heart Failure Cen-
ter, Department of Cardiology, Beijing Chao-Yang Hos-
pital, Capital Medical University, 8# Gong-Ti South Road,
Beijing, 100,023, in China. The DNA was from blood tis-
sue [14].

Control data sets from the HapMap project

We got nine data sets from the HapMap project
(Additional file 1: Table S1). Four datasets were from un-
related Caucasians from Utah, and five Asians from China.
The Han Chinese were used to match the ethnicity of the
Chinese pedigree with drDCM. We used the UTAH/
MORMON population because evidence showed inbreed-
ing within families [17] like the breeding patterns seen in
one of the Italian pedigree [15].

Variant replication RNA-Seq data sets

We utilized a data set generated from 15 controls (SRA
Study: SRP041706, SRA Study: SRP093240, SRA Study:
SRP021193, and SRA Study: ERP003613) and 128 DCM
patients (SRA Study: ERP009437) for the variant detec-
tion investigates. The datasets included 798 differentially
expressed genes, and the variant list had 408 variants at
the intersection of all 128 DCM cases.

Measures

Outcome and exposure variables

The primary outcome variable was drDCM, affected or nor-
mal. We described variants in pathways associated with
drDCM as exposure variables. These included variations dir-
ectly related to the outcome. DNA changes that were indir-
ectly related to interactions with other variants were defined
as putative effect modifiers. Collectively, these variations
were classified as the genetic risk factors of dArDCM.

Inclusion standards for pedigree data sets

We included data from subjects with familial DCM that
were sequenced with an Illumina high throughput-sequen-
cing instrument. We included data sets from the Hap Map
project to match race (Italy: Caucasian (Utah) and China:
Asian)), breeding styles (Italy: inbreeding), and sample sizes
(FAMOO01: 3; FAMO027: 5; Chinese: 5) of the pedigree data
sets.

Inclusion standards for case-control study design data sets

We included data sets sequenced with an Illumina se-
quencing instrument from unrelated subjects with DCM
or drDCM. Control data sets used in the transcriptome
analyses originated from the left ventricle of the heart
muscle, assessed as healthy and not having heart disease.
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Data sets from patients were from the left ventricles of
the heart. We included data sets from other regions
other than the left ventricles of the heart in the variant
detection investigations as additional controls.

Diagnostic standards for exome sequence pedigree data sets
We utilized the diagnostic criterion for the Italian families
set by the original authors [18]. We established the diagnos-
tic measures for the patients from Chinese on information
given in the SRA database (https://www.ncbi.nlm.nih.gov/
Traces/study/?acc=SRP066837&go=go), saying that the pa-
tients had DCM.

Diagnostic criteria for subjects in RNA-Seq case-control
data sets

We used the diagnostic measures set by the primary in-
vestigators to classify the controls. They defined subjects
as having healthy hearts (https://www.ncbi.nlm.nih.gov/
Traces/study/?acc=SRP052978). The diagnostic or med-
ical criteria or phenotype information for data sets from
the Hap Map project was not revealed [19]. We set the
diagnostic standards as unknown.

Clinical status evaluation

We cataloged data sets from subjects as unknown if we
did not have medical or phenotype data and affected
when individuals had drDCM or DCM. We categorized
data sets from individuals as controls when they did not
have heart disease or were described as having healthy
hearts by the original researchers.

Bioinformatics

RNA-Seq data analysis

We used apps in the BaseSpace sequencing hub for all
bioinformatics analyses (basespace.illumina.com). We
imported FASTQ files from the SRA to BaseSpace using
the SRA import App. We used the RNA-Seq alignment
App for quality control using built-in Apps that include,
TopHat version 2.1.0 aligned reads to the reference gen-
ome (hgl9) and Bowtie aligner version 0.12.9 producing
BAM output files. We used the BAM files as input in the
Isaac Variant Caller App. The Isaac Variant Caller created
VCEF files. The RNA-Seq alignment App filters reads that
do not pass all the quality checks. It identifies indels and
SNPs and computes probabilities of each probable geno-
type [20]. We used cufflinks to generate the Fragments
Per Kilobase of sequence per Million mapped reads
(FPKM) output files. (basespace.illumina.com).

We also utilized the Cufflinks Assembly & DE v2.0 App
to create DIFF tab-delimited files containing differential
gene expression testing between controls and cases. We
used pairwise differential expression analyses to determine
differentially expressed genes. We used cuffquant/cufflinks
to perform fragment bias and multi-read corrections and
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cuffquant/cufflinks/cuftdiff to correct for read length. Pa-
rameters were set to detect microRNAs. We used Cuffdiff
to calculate the log, (Ratio) statistic (Log2 fold change of
the comparison over control groups) as log2 (FPK
M_DCM_cases/FPKM_controls). The test statistics T was
computed as E[log(y)]/Var[log(y)] where y=ratio of the
normalized counts (FPKM_DCM_cases/ FPKM_controls)
between controls and DCM cases. Cuffdiff used a t-test to
compute the probability value (p-value) for genes that
were differentially expressed. We reported the g-value (q)
((FDR (false discovery rate) adjusted p-value) for differen-
tial expression (a significance filter). We classified the sig-
nificance statistic as “True” if the g-value (q <0.05) was
less than the false discovery rate (default: 0.05).
(basespace.illumina.com).

Missing data

We defined data that were missing according to Cuf-
flinks as “LOWDATA” (having inadequate sequenced
reads), “HIDATA” (having numerous fragments in a
locus) and “FAIL” (if the software was not able to suc-
cessfully test the data). We reported data that were clas-
sified as “OK” signifying that the test was successful
(basespace.illumina.com).

RNA-Seq variant annotation

We used VCEF files in the EDGC (Eone-Dianomics Gen-
ome Center) Annotator App (version 1.0. EDGC) to an-
notate the called RNA-Seq variations.

Exome sequence variant analyses

We uploaded data from the NCBI SRA website to Base-
Space using the SRA (Sequence Read Archive) Import
App. We used the Fastq Toolkit App to filter the data
for quality and read length. We set the target Phred
quality score at 30, which is standard. We set the mini-
mum read length at 32bp (the default value). We
aligned reads to the human genome (hg19), and variants
were called using the BWA or Isaac Enrichment soft-
ware. The EDGC (Eone-Dianomics Genome Center) An-
notator App, version 1.0 was used to annotate the data.

Pathway analyses

Canonical pathway analyses

We uploaded genes that were differentially expressed and
statistically significant at a q <0.05, to Ingenuity Pathway
Analysis (IPA) to identify functional relationships. We
used the Fisher’s exact test to discover relationships be-
tween sets of genes, pathways, and functions. (Ingenuity
Systems, http://www.ingenuity.com)

Network analysis
We used core analyses to uncover direct and indirect in-
teractions between putative modifiers and mutations in
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the network and applied p-scores to rank networks. (In-
genuity Systems, http://www.ingenuity.com)

Diseases and functions

We used these IPA analyses to discover diseases and
functions in which genes that are differentially expressed
in our data set played a role. We used the p-value (p) to
assessment the likelihood that the association between a
set of genes in our data set and a process is due to ran-
dom chance. We set the alpha level of significant path-
ways at p < 0.05, indicating non-random association. IPA
uses the right-tailed Fisher’s Exact test to is compute the
p-value. (Ingenuity Systems, http://www.ingenuity.com).

Data integration

We created a list of differentially expressed genes (q <
0.05) between drDCM cases and controls and used it to
discover pathways related to our experimental data set
(Fig. 8).

We overlapped the variant lists for the six drDCM pa-
tients and used the intersection to generate one list with
variants discovered in all cases. To integrate the “omics”
data and pathways, we overlapped genes found in signifi-
cant pathways with the variant list found at the intersec-
tion of all cases (Fig. 8).

We stratified variants stratified by genotype and phys-
ically examined the quality at the respective loci. We
inspected variants that passed the genotype quality filters
in all drDCM cases and controls and considered variants
that were still found in all cases for verification in the
exome sequence data sets and ranked for reproduction
analyses. We examined drDCM variations in the data
sets of cases with DCM (DCM pedigrees), the Hap Map
Project, and one Italian control. Variants that were
found in some members of at least one DCM pedigree
and not found in controls were deemed to be possible
putative mutations. If they were found in controls as
well, they were considered potential putative effect mod-
ifiers and prioritized for the replication analyses.

Replication analyses

We performed association analyses to confirm findings
in the drDCM data set. We assumed that a subset of pa-
tients with DCM would have drDCM. We performed
chi-square tests using R-Studio (version 0.99.473—
2009-2015) to determine whether variants were inde-
pendent of drDCM or associated with each other. We
identified associations among variations as interactions.
For these analyses, we set the alpha level at <0.05. We
defined DNA changes with a direct association with
drDCM (considering the subject’s genotype) as putative
mutations. We described variants as putative effect
modifiers if their interaction with other variations was
associated with drDCM.


http://illumina.com
http://illumina.com
http://www.ingenuity.com
http://www.ingenuity.com
http://www.ingenuity.com
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Fig. 8 Pathway and “omics” data integration
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Putative mutations
Putative modifier genes
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Differentially expressed genes
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P — N —

Significant DE list uploaded to IPA:
Canonical pathway identification

Pathway and gene prioritization

We based the putative effect modifier and pathogenic
pathway prioritization criteria on how connected the
putative mutations were to other pathways. We pre-
sumed that the more pathways a putative mutation
contributed to, the more important the influence it
would have on the disease pathology. A gene contrib-
uting to several pathways was regarded a hub and
selected for disease modeling. Pathways associated
with our data set carrying at least one hub were con-
sidered alleged pathogenic pathways and selected for
further evaluations.

Results

RNA-Seq drDCM data quality

The total number of reads generated from each sample
ranged from 43,647,720 to 75,213,034 with a mean of
58,884,453 across all samples. The average total number
of reads passing filter for controls was 65,016,348 and
for cases, 54,796,523. We have presented the percentage
and number of reads mapped before, and after filtering
for each subject in Additional file 1: Table S2 Data
produced an average value of 58,884,453 reads per sam-
ple, which meets the criteria for sequence coverage for
transcriptome profiling [21].

Exome re-sequence data coverage

We have presented coverage data for exome sequence
data sets for the Italian (SRA Study # SRP022855) (Add-
itional file 1: Table S3) and Chinese (SRA Study #
SRP066837) families in Additional file 1: Table S4. We
have also given coverage data from the Hap Map project

for the Asian population (SRA Study #SRP004364), and
the Caucasian population (SRA Study # SRP004078) in
Additional file 1: Table S5.

Transcriptome profiling

There were 85,897 novel and known transcripts in the an-
notation. Of these, the annotation gene count was 37,744,
of which 19, 096 genes were present for analyses. Of the
19, 096 genes, 3215 had a statistically significant differen-
tial expression (q < 0.05). We have presented a heat map
to profile the expressed genes in drDCM cases versus
controls in Fig. 9. The heat map indicates that in general
there were more genes down-regulated in the drDCM pa-
tients compared to the controls.

RNA-Seq drDCM variant list

The number of variants each patient carried ranged
from 6506 to 15,717 on average; each patient carried
13,251 variations. The variant list created from the inter-
section of the six drDCM cases contained 650 variants
(Fig. 10), of which 638 were found in dbSNP. Data re-
vealed 134 (131 shown) differentially expressed genes
carrying at least one variant, of which 48 variants were
rare (Additional file 1: Table S6).

Data integration

IPA generated 455 pathways of which 200 were statisti-
cally significant and associated with the drDCM data set
(Additional file 1: Table S7). We overlapped the 650 var-
iants found in all drDCM with the significant differen-
tially expressed genes located in the 200 overrepresented
pathways (Fig. 11).
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Data showed that 49 (46 shown) differentially Pathway and gene prioritization

expressed genes carried at least one possible putative
mutation or effect modifier. In all, there were 18 poten-
tial putative mutations or effect modifiers found in a
possible putative pathogenic pathway or effect modifier
pathway (Additional file 1: Table S8).

Using the gene prioritization filter, we classified eleven
genes as hubs and in this paper, we report results for the
ECHS]1 (enoyl-CoA hydratase, short chain, 1, mitochon-
drial), also known as SCEH and ECHSI1D) [https://
www.ncbi.nlm.nih.gov/gene/1892]. This hub mediates

Variants shared among all DCM
cases
650

v

Variants in doSNP
638

Differentially expressed

Differentially expressed
genes carrying a variant
(putative mutations or modifiers)
134

Significant differentially
expressed genes: FDR < 0.05
3215

Differentially expressed

genes carrying a rare <
variant
48

Fig. 10 Gene and variant filtration work flow

v

genes carrying a common
variant
86
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at least one variant
(putative pathogenic pathways or modifier pathways)
49

v

Putative mutations or modifiers found
in a canonical pathway
18

v

Putative mutations or modifiers
defined as hubs
11

Fig. 11 Pathway, Transcriptome, and Variant Integration

cross-talk among three pathways associated with the
mitochondria.

Variants associated with BCAAs and LVLFAs

Results show that there is an association between
ECHSI1, DBT, and MCCC1 with branched-chain amino
acid and fatty acid catabolism (Table 1).

ECHSI1 is up-regulated (log, (fold change) = 1.63329) and
associated with drDCM (q = 0.013927). It carries two com-
mon missense variants, V11A (ECHSI1:rs10466126) in the
first exon, and T751 (ECHS1:rs1049951) in the second exon
(Table 1). DBT is also up-regulated (log, (fold change) =

Table 1 Variants in the mitochondria associated with drDCM
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0.955072) and associated with drDCM (q = 0.0368792). It
also carries a common missense variant 384G/S (DBT'rs
12021720) (Table 1). An additional common missense vari-
ant was found in the MCCC1:rs2270968. This gene codes
the subunit of 3-methylcrotonyl-CoA carboxylase, an en-
zyme that catalyzes the carboxylation of 3-methylcrotonyl--
CoA to form 3-methylglutaconyl-CoA. [22] It is
up-regulated (log, (fold change) = 1.61882) and associated
with degradation of the branched-chain amino acid,
leucine. It is also associated with drDCM (q = 0.00205554)
(Table 1).

drDCM patient genotypes

Results show that all cases are homozygous for the
ECHSI1:rs10466126 and ECHS1:rs1049951 variants (Add-
itional file 1: Table S9). One control is heterozygous for
ECHSI:rs10466126. One unaffected is homozygous and
another heterozygous for the ECHS1:rs1049951 variant.
For the DBT'rs12021720 variant, cases are either homo-
zygous or heterozygous, and one control is heterozygous
(Additional file 1: Table S9).

ECHS1 variant verification in FAM001 and FAM027

After scanning the additional exome sequence data sets,
results show that there are no patients from FAM001 who
are recessive for the ECHS1:rs10466126 variant. Three out
of four patients from FAMO027 are heterozygous. However,
two out of the five Chinese patients are homozygous (G/
G). All patients in families FAM001 and FAMO027 who
carried the ECHS1:rs1049951 SNP are homozygous. Two
of the three who carried the ECHSI:rs1049951 variant are
heterozygous, and one is homozygous in the Chinese
family. Two patients in the Chinese family did not have
the SNP (Additional file 1: Table S10).

Gene_Chr. POS s # AA Change log2 (fold  p-value  g-value MAF/ MinorAlleleCount Functional Consequence
change)
ECHS1_chr10: rs10466126 1MV/AV 1.63329 0.00135 0.013927 A =0.2448 (ExAC), A=0.3241 missense, upstream
135186806 GIC=>GCC  [Vall = A[Ala) (1000 Genomes), A=0.3952 variant 2 KB
(GO-ESP)
ECHS1: chri0: rs1049951 75T/ T [Thr] 1.63329 0.00135 0.013927 G=0.0869/10314 (ExAQ), missense
135184126 ACC=>ATC  =11lle] G=0.1787/895
(1000 Genomes),
G=0.1987/2583 (GO-ESP)
DBT chri: 1512021720 384G/SG [Gly] 0.955072 0.00545 0.0368792 T =0.0862/10470 (ExAQ), missense
100672060 GGT=AGT =S [Ser] T =0.1082/542
(1000 Genomes),
T =0.1408/1831 (GO-ESP)
MCCC1 chr3: 152270968 329H/P H [His] 161882 0.0001 0.00205554 T =0.3752/45346 (EXAC), intron variant, missense,
183037421 CAC=CCC =P [Pro] G=04649/2328 nc transcript variant

(1000 Genomes),
T =04152/5400 (GO-ESP)

Legend: ECHST enoyl-CoA hydratase, short chain, 1, mitochondrial, DBT Dihydrolipoamide branched chain transacylase E2, and MCCC1 methyl crotonoyl-CoA
carboxylase 1. AA Amino acid. P-value probability value. Q-value p-value adjusted for the false discovery rate
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Variant verification in FAM001, FAM027, and Chinese

Cases in all families are homozygous for the 384S/G
(DBTirs12021720) variant apart from one Chinese
member (SRR2968053) who do not carry the variant
(Additional file 1: Table S10). All cases apart from one
in FAMO001 and 027 are either homozygous or heterozy-
gous for the MCCC1:rs2270968 variant. We did not find
this variant in family members from China (Additional
file 1: Table S10).

Variant verification in the hap map project

Results from scanning subjects from the Hap Map pro-
ject (with unknown phenotype) and Italy (healthy con-
trol) show that no subject in this population carries the
ECHS1:rs10466126 (G/G) recessive genotype. The three
Caucasian subjects used to match Fam027 are heterozy-
gous (A/G). However, it is necessary for one to note that
the data had insufficient quality for these three individ-
uals. Subjects are either recessive or heterozygous for
the other variants (Additional file 1: Table S11). From
these results, we determined that the ECHS1:rs10466126
(G/G genotype) variant is a possible putative mutation.
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It is found in some other patients with familial DCM
and is found only in cases and no controls.

ECHS1:rs10466126 population genetics

We used Ensemble (1000 Genome Project Phase 3 [23])
to evaluate the frequency of the ECHS1:rs10466126 (G/
@) variant in different world populations. Results reveal
that the allele frequencies vary widely. For example, the
frequency in the 1000 genome project is A: 0.324 (count
=1623) and G: 0.676 (count=3385). However, in the
African population the allele frequency for the A: 0.717
(count = 948) and G: 0.283 (count =373) is very differ-
ent. In the Han Chinese in Beijing, China population it
is A: 0.058 (count=12) and G: 0.942 (count=194). In
the British in England and Scotland it is A: 0.236 (count
=43) G: 0.764 (count = 139). We have presented popula-
tion allele frequencies from the additional 1000 Genome
project populations in Additional file 1: Table S12.

Novel variant in the ECHS1 gene

We scanned the ECHS1 gene for novel variants after ob-
serving that apart from carrying two variants, one in the
first exon and the other in the second exon, ECHSI also

chri0

CT s N e 1
PISZ pld  pi3  pl23l pi2l pil2z pill

< ] W NN N W Do D TR e W |

ait22 Qi g2 a1l a3 a2 q2333 2431 q251 4253 q26i3  q263
L 41bp

50| nsmanm 135,184,220 bp 135184230 bp 135,184,200 bp 1

354 1 1 1 | | L 1 |
CCACGGTGTTATTCTTCCCTICITTTTTTCTGCG TGATGT c
ccaAaCGGEGTGTTATTCTTCCECT!CITTTTTTCTGECGATGATGTATC
CCACGGTGTTATTCTTCCCTICITTTTTTCTGCGATGATGTAGC
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ccAaCGGTGTTATTCTTCCECT!ICITTTTTTCTGECGATGATGTAC
cc €CG66TGTTATTCTTCCCTICITTTTTTCTGCGATGATGTAGC
cc s Cc 66T TTATTCTTCCECT!CIT TTTTTCTGECGATGATGTATC
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6GG6TGTTATTCTTCCCTICITTTTTTCTGCECGATGATGTATC
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CACGGTGTTATTCTTCCCTICITTTTTTCTGCGATGATGTAC

CCACGGTGTTATTCTTCCCTICITTTTTTCTGCGATGATGTAC
CCACGGTGTTATTCTTCCCTICITTTTTTCTGCGATGATGTAC
GGETGETTATTCTTCCCTICITTTTTTCTGCGATGATGTAC

TTCT CCCTICITTTTTTCTGCGATGATGTAC

SRR1272186_GSM1380718-P0 CCACG ATTCTTCCCTICITTTTTTCTGCGATGATGTAC
ailing-Left-Ventride-Homo-sap ccarcc CCCTICITTTTTTCTGCGATGATGTAC
iens-RNA alignments.bam C C CGGT TCCCTICITTTTTTCTGCGATGATGTATC
T s e s s

CCACGGTG CTICITTTTTTCTGCGATGATGTAC
CCACGGTGT CTICITTTTTTCTGCGATGATGTAC
CCCTICITTTTTTCTGCGATGATGTAC

ccarcCcece CCCTICITTTTTTCTGCGATGATGTAC
CCACGGTGT CCCTICITTTTTTCTGCGATGATGTAC

Fig. 12 Novel ECHST c41insT
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hosts a microRNA, MIR3944 in the first intron. After
scanning ECHSI for novel variants, we found an indel,
ECHSI:cAlinsT that causes a frameshift and elongation
on chromosome 10, position 135,184,228, of the second
exon (Fig. 12). This variant is found in five of the six
drDCM cases and is absent in all controls (Additional
file 1: Table S13).

Evaluation of ECHS1:rs10466126 and ECHS1:rs1049951
The ECHS1:rs10466126 is found in exon 1 and ECHSI:
rs1049951 in exon 2. These variants are both missense
variants. ECHS1:rs10466126 changes the amino acid
from Valine to Alanine and ECHSI: rs1049951 from
Threonine to Isoleucine. Both variants are common in
the general population (Table 1). We used the Ensembl
Variant Effect Predictor (connected to UCSC database
hg38) at <https://genome.ucsc.edu/cgi-bin/hgVai> to
evaluate the effect of the variants on the gene at the pro-
tein level. Results show that as exonic variants, both are
tolerated, SIFT =T (0.494) for ECHSI:rs10466126, and
SIFT =T (0.149) for ECHS1: rs1049951.

The next step of the analyses was to determine
whether the ECHSI:rs10466126 (G/G) variant is con-
served among species and if it is found in a region of the
gene where it would interfere with gene regulation. We
used Multiz in UCSC genome browser comparative gen-
omics alignment pipeline at < genome.ucsc.edu > to gen-
erate the multiple comparison alignments and determine
which ECHSI:rs10466126 allele is conserved among
species. Results show that the ancestral allele (A) is con-
served (Fig. 13).

We used the JASPAR database [24] to evaluate
ECHSI1:rs10466126 putative mutation as an upstream
gene variant and whether it effects the gene’s regulation.
We wanted to assess whether ECHS1:rs10466126 (G/QG) is
in a regulatory region and if so what transcription factors
bind to the locus. The analyses revealed that the
ECHSI:rs10466126 (G/G) variant is located in a regulatory
motif 5-GCG(T/G)GGGCG-3'(EGR-site DNA sequence)
and that four EGR (early growth response protein 1, 2, 3
and 4) transcription regulators bind to it (Fig. 14).

Interestingly, data showed that the EGR transcription fac-
tors all bind to the G allele (EGR1 frequency: 10154, EGR2
frequency: 1468, EGR3 frequency: 1823 and EGR4 fre-
quency: 4403). The binding of EGR transcription factors to
the alternative G allele occurs more often than to the an-
cestral A allele (EGR1 frequency: 1491, EGR2 frequency:
277, EGR3 frequency: 80, and EGR4 frequency: 131)
(Fig. 14). Results suggest that ECHSI:V11A (rs10466126) is
in a regulatory motif of four EGR (early growth response
protein 1, 2, 3 and 4)-transcription regulators.

To establish consistency, we used the University of Cali-
fornia, Santa Cruz (UCSC) genome browser at https://gen-
ome.ucsc.edu/index.html to determine what transcription
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A-1639G
|

Human (Alternative) GGGCGCAGGACAG
Human (Ancestral) GGACGCAGGACAG
Chimp GGACGCAGGACAG
Bonobo  GGACGCAGGACAG
Gorilla  GGACGCAGGACAG
Gibbon  GGACGCAGGAGAG
Rhesus  GGAGCCGGGGCAG
Crab-eating macaque GGAGCCGGGGCAG
macNeml  GGAGCCGGGGCAG
cerAtyl  GGAGCCGGGGCAG
papAnu3  GGAGCCGGGGCAG
Green monkey GGAGCCGGGGCAG
Proboscis monkey  GGAGCCGGGGCAG
Golden snub-nosed monkey GGAGCCGGGGCAG
Marmoset  GGACGCGGGGCAG
Tarsier GGAAGCCGGGCAG
eulMacl GGACGCGGGACAG
eulFlal GGACGCGGGACAG
Bushbaby GGCCGAGGGGCAG
Mouse AGGCTCTGGGCAG
Armadillo GCAGCGCGAGCAG
Fig. 13 Conservation of A-1639G (ECHST:rs10466126 (A/A)) among species

factors bind to ECHSI1. Results showed that several tran-
scription factors bind to ECHS1. Further inquiry of regula-
tors that attach to the first exon from UCSC revealed three
transcription factors, MITF (melanogenesis associated tran-
scription factor), ETS1 (ETS proto-oncogene 1, transcrip-
tion factor) including EGR1 (Additional file 2:Figure S1).

After finding that the EGRs transcription regulators
bind to the ECHS1:rs10466126 (G/G) locus located in the
5-GCG(T/G)GGGCG-3'(EGR-site) DNA sequence, we
scanned the transcriptome data set and found that EGR1
(g-value = 0.0281271; log, (fold change)=-1.29395),
EGR2 (qg-value =0.0494839; log, (fold change)=-
1.23546), and EGR3 (q-value =0.00891741; log, (fold
change) = — 2.06029) transcription factors were all
down-regulated in cases versus controls (Additional file 1:
Table S14). We also found that EGR1 and EGR3 transcrip-
tion factors were significantly associated with cardiovascu-
lar system development and function, development of
endothelial tissue (p-value =7.43E-12; z-score = — 3.140)
(Additional file 1: Table S15). This function is also
decreased in drDCM. Together, these findings suggest that
ECHSI1:rs10466126 (G/G) might be adversely affecting
gene regulation associated with EGR1 through the regula-
tion of transcription. Thus, even though both exonic vari-
ants are tolerated, the putative mutation, ECHS1:rs10466126
(G/Q) also found upstream of the gene lies in a regulatory
region and appears to affect gene regulation.


https://genome.ucsc.edu/cgi-bin/hgVai%3e
http://genome.ucsc.edu
https://genome.ucsc.edu/index.html
https://genome.ucsc.edu/index.html
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Fig. 14 JASPAR prediction analysis. Legend: Figure shows the 5-GCG(T/G)GGGCG-3'(EGR-site DNA sequence) and the ECHS1:rs10466126 (G/G)
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the DNA pattern. The numbers in cells indicate the number of sequences having base x in column y [23]

ECHS1 is a host for miRNA3944
ECHSI is found on chromosome 10. It has eight exons
and has seven introns (Fig. 15, Panel 1). In the previous
section, data revealed a “hot spot” in ECHSI spanning
the first exon, intron, and the second exon. Data showed
that the ECHSI1:rs10466126 is in an EGR regulatory
motif of the first exon. The other two variants, the
ECHS1:rs1049951, and ECHSI:c41insT are both in the
second exon. Interestingly in the first intron, the gene
hosts a mirtron, the MIR3944 (Fig. 15, Panel 1).
Investigations into the nature of MIR3944 using miR-
IAD, (an intragenic miRNA database) (https://www.bioin-
fo.mochsl.org.br/?q=tools) revealed that the precursor
sequence of MIR3944 has a functional passenger strand,

the has-miR-3944-5p and a functional guide strand,
the has-miR-3944-3p. The length of has-miR-3944 is
107 bp. Color-coded in red is the seed sites for
has-miR-3944-3p and has-miR-3944-5p (Fig. 15,
Panel 2).

The miRIAD database also revealed that ECHSI1 is
expressed in the healthy heart (Additional file 3: Figure
S2, Panel 1). However, MIR3944 is not expressed in the
healthy heart (Additional file 3: Figure S2, Panel 2). Add-
itionally, the miRIAD database revealed expression cor-
relations between has-mir-3944-5p and the host gene.
Data show that when ECHS1 is expressed in the heart
(green dot), has-mir-3944-5p is not (Additional file 3:
Figure S2, Panel 3).
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Fig. 15 Schematic of ECHS1 and MIR3944 using miRIAD. Legend: Panel 1: Summarized transcript annotation indicating the exons, introns, position of
the MIR3944, and the variants examined in the study. Panel 2: Schematic of has-mir-3944 indicating the seed sites for the guide, has-miR-3944-3p and
passenger strand, has-miR-3944-5p microRNAs. Highlighted in red are the seed sites

In this study, data show that MIR3944 is expressed in
patients with drDCM (case FPKM =5.2944) but not in
the controls (FPKM = 0) (Fig. 16).

RHOD is a putative target for has-miR-3944-5p

We used TargetScanHuman: prediction of microRNA
targets (release 7.1: June 16) [25] to determine what
genes hsa-mir-3944 might target. TargetScanHuman
predicted that hsa-mir-3944-5p binds to position 301—
312 of RHOD 3'UTR. The projected consequential
pairing of the target region and the seed site in the
miRNA is 100% (Fig. 17, Panel 1A). The table in Fig. 17,
Panel 2 shows putative gene targets predicted by seed
match (8mer,7mer-m8,7mer-1A) according to TargetS-
can 6.2. RHOD is a 7mer-m8, suggesting that there is an
exact match to positions 2—8 of the mature microRNA
(i.e., the seed site plus the 8th position) (http://www.tar-
getscan.org/docs/7mer.html).

ITGAV is a putative target for has-miR-3944-5p

TargetScanHuman also predicted that has-miR-3944-5p
(seed site (GUGCAGC) bids position 900-906 of ITGAV
3UTR (Fig. 17 Panel 1B). There is 100% predicted

consequential pairing of the target region and the miRNA
seed site (Fig. 17 Panel 1B). The Table in Fig. 17, Panel 2
shows putative gene targets predicted by seed match
(8mer,7mer-m8,7mer-1A) according to TargetScan 6.2.
ITGAYV is a 7mer-m8, suggesting that there is an exact
match to positions 2—8 of the mature microRNA (i.e., the
seed site plus the 8th position) (http://www.targetsca-
n.org/docs/7mer.html).

BAG1 is a putative target for has-miR-3944-3p
TargetScanHuman also predicted that the guide strand,
has-miR-3944-3p (seed site sequence (UCGGGCU) bids
position 2094-2100 of BAG1 3'UTR with 100% pre-
dicted consequential pairing with the miRNA seed site
(Fig. 17 Panel 1C). The Table in Fig. 17, Panel 2 shows
putative gene targets predicted by seed match (8mer,7-
mer-m8,7mer-1A) according to TargetScan 6.2. BAGLI is
also a 7mer-m8, suggesting that there is an exact match
to positions 2—8 of the mature microRNA (i.e., the seed
site plus the 8th position) (http://www.targetscan.org/
docs/7mer.html).

Prediction analyses for RHOD indicate that only a seg-
ment (UGCA) of the target site is conserved among
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Fig. 16 Expression profiles of MIR3944 in drDCM

species (Additional file 4: Figure S3A). For ITGAYV, the
target site appears to be conserved among species
(Additional file 4: Figure S3B). The BAGL1 target site is
conserved among human, Chimp, and Rhesus (Add-
itional file 4: Figure 3c).

The next step in modeling drDCM was to determine
which variants were putative mutations or effect modi-
fiers. To do this, we replicated the variant detection ana-
lyses in a more extensive and independent sample of
patients with DCM and subjects without DCM.

Panel 1

Posiion 306312 of RHOD 3 UTR 5" - - - GUGGCUGCUCCCAGGGCUGCACC...
i
hsa-miR-3944-5p 3 AGAGCCAACCGGACGACGUGU

Position 900-906 of TGA53' UTR 3 - - - GGGUUCUGCCUGCCAGCUGCACU. . .
[EEEEE
hsa-miR-3944-5p 32 AGAGCCAACCGGACGACGUGU

Position 2094-2100 of BAG1 3'UTR 5" - - - CAUUUUCUUUAGAGCAGCCCGAG. .

med.uni-muenchen.de/miriad/miRNA/human/hsa-mir-3944/
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hsa-miR-3944-5p ITGAS 7mer-m8 -19.0 -20.3519
hsa-miR-3944-3p BAG1 7mer-m8 -19.2 -19.9917

Fig. 17 TargetScan predicted seed sites pairing with target region. Legend: Panel 1: Predicted consequential pairing of the target region and
mircoRNA. Panel 2: The table shows gene targets predicted by seed match (8mer,7mer-m8,7mer-1A) according to TargetScan 6.2 http://bmi.ana.
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Variant detection replication analyses
Association analyses showed that there is dependency of
the ECHS1:rs10466126 variant (considering genotype) on
DCM (x-squared = 7.7434, p = 0.02082). After finding this
association, we stratified by genotype and found that the
ECHS1:1s10466126 (G/G) recessive genotype is associated
with DCM (p =0.02496) and not the ECHS1:rs10466126
(A/Q) heterozygote genotype (p = 0.209) (Table 2). Results
suggest that ECHS1:rs10466126 (G/G) is the putative mu-
tation when one considers the genotype of the subjects.
Interestingly, when we analyzed the association of
ECHSI:rs1049951 with DCM, results showed that
rs1049951 is highly dependent on DCM (p < 2.2e-16).
However, when we took subject genotype into consider-
ation, there was no longer an association and results
showed that ECHS1:rs1049951 is independent of DCM
(p =1). However, there is an association between
ECHSI: rs1049951 (genotype) and ECHSI:rs10466126

Table 2 Variant detection replication analyses
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(genotype) (p =2.82E-07) and this interaction is associ-
ated with DCM (p < 2.2e-16) (Table 2).

Linkage disequilibrium evaluation of ECHS1:rs10466126
and ECHS1:rs1049951

After finding that there is a statistically significant associ-
ation between ECHSI:rs10466126 and ECHS1:rs1049951
we used Ensembl to perform pairwise linkage disequilib-
rium analyses to determine whether these two variants are
independent or co-inherited. Results show that these two
variants are in strong linkage disequilibrium in the Han
Chinese in Beijing, China population (1000 Genomes:
phase_3: CHB) (D’=1). This population matches the
ethnicity of our drDCM Chinese dataset. Additional link-
age disequilibrium evaluations of ECHS1:rs10466126 and
ECHS1:rs1049951 in other populations can be found in
Additional file 1: Table S16.

Pearson’s Chi-squared tests with Yates' X-squared df
continuity correction: p-value

ECHS1 main effects

Exon 1: 1510466126 and Exon 2: rs1049951

Exon 1: 1510466126 SNP and disease state 0.1718 1.8674 1

Exon 2: 151049951 SNP and disease state *<22e-16 88.338 1

Exon 1:rs10466126 (genotype level) and disease state 0.02082 7.7434 2

Exon 2: 151049951 (genotype) and disease state 1 0 1

*rs10466126 (G/G) and disease state 0.02496 5.0269 1

1s10466126 (A/G) and disease state 0.209 15782 1
Interactions

Exon 1: 1510466126 SNP and Exon 2: rs1049951 SNP *<22e-16 101.4085 1

*Exon 2: 151049951 (genotype) and Exon 1: 1510466126 (genotype) *2.82E-07 30.1636 7

*1s10466126 (genotype), rs1049951 (genotype) and disease state *<22e-16 3824507 Ihl
Exon 2: ECHS1 c41insT main effects

Exon 2: ECHST c41insT (genotype) and disease state 03218 09816 1
Interactions

Exon 2: rs1049951, Exon 1: 1510466126 and Exon 2: ECHS1T c41insT *<22e-16 147.8592 3

Exon 1: 1510466126 and Exon 2: ECHST c41insT 0.714 0.1343 1

*Exon 2: 151049951 and Exon 2: ECHS1 c41insT *7.84E-08 28.8451 1

*Exon 2: 151049951 and Exon 2: ECHST cA41insT and disease state *<22e-16 129.6056 3
DBT main effects

rs12021720 and DCM 1 0 1

rs12021720 (genotype) and DCM *0.3232 2.2589 2
Interactions

DBT rs12021720 and ECHST rs10466126 0.005657 7.6566 1

*DBT rs12021720 (genotype) and ECHS1 rs10466126 (genotype) *0.001096 18.2641 4

DBT 1512021720, ECHS1 rs10466126, and DCM *<22e-16 653.831 7

*DBT rs12021720 (genotype) and ECHS1 rs10466126 (genotype) and DCM *<22e-16 4279155 17

Legend: *Indicates Chi-squared test for probabilities p-values
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Replication analyses for ECHS1:C.41insT

Data show that 39 subjects out of 143 carried the
ECHSI:cAlinsT genotype, two of whom were controls
(frequency in case = 0.258741, and in study population =
0.272727). In our study population, the frequency of
ECHSI:cAlinsT is 0.273, and the chi-square test showed
that the ECHSI:c.41insT(CT) genotype is independent
of DCM (p =0.3218). However, there is significant de-
pendence or interaction between the ECHSI1:rs1049951
and the ECHSI:c4linsT variant (p =7.841e-08), which
are both in the second exon. Additionally, there is an
association between this interaction and disease state (p
<2.2e-16). Because there is no direct relationship
between ECHSI:c.41insT and disease state, we defined it
as a putative effect modifier (Table 2).

Replication analyses for DBT

Results from the chi-square test showed that
DBTrs12021720 is not directly related to DCM (p =
0.3232). However, interaction analyses showed that there
is an association between DBT:rs12021720 (genotypes)
and ECHSI:rs10466126 (genotypes) (p =0.001096). We
defined DBT as a putative effect modifier.

Results show that there is an association between
ECHS1:rs10466126 (G/Q) genotype and drDCM and that
it is a putative mutation, as data showed in the primary
study. Collectively, these results suggest that individuals
carrying the ECHSI:rs10466126 (G/G) genotype have a
high chance of developing drDCM. Those who carry both
ECHS1:rs10466126 (G/G) and the ECHS1:rs1049951 SNP
and ECHSI:c4linsT are double and triple mutants,
respectively, and have an even higher chance of develop-
ing drDCM. The risk of developing drDCM could even be
more significant in patients who also carry the
DBTrs12021720 variant. The next step was to determine
the putative pathogenic pathways associated with ECHSI1.

Putative pathogenic pathways related to ECHS1

Results show that three different metabolic pathways
carry ECHS1 and DBT, the valine (-log (p) =3.39) and
isoleucine degradation 1 pathways (-log (p) =2.34), and
the fatty acid B-oxidation pathways (-log (p)=2.83),
which are all associated with the drDCM data set

Table 3 Putative pathways carrying the ECHS1 and DBT
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(Table 3). Because these pathways carry the ECHS1 gene,
we defined them as putative pathogenic pathways.

Enzymes and products generated in the valine, and iso-
leucine degradation 1 pathways and the fatty acid
B-oxidation pathway are similar. The pathways all produce
NADH (nicotinamide adenine dinucleotide) and H*
(proton). Fatty acid B-oxidation (Additional file 5: Figure
S4.1) and isoleucine degradation 1 pathways (Additional
file 5: Figure S4.2) also generate acetyl-CoA (Acetyl coen-
zyme A). Additionally, both the valine (Additional file 5:
Figure S4.3) and isoleucine degradation 1 pathways also
produce propionyl coenzyme A (propionyl-CoA). In
addition to the production of propionyl-CoA, the valine
degradation pathway also creates 2-oxoglutarate, and
(S)-3-amino-2-methylpropanoate. Results also show up-
regulation of critical enzymes in the degradation processes
of the two amino acid pathways in drDCM cases com-
pared to controls (Table 4).

Data suggests that the rate of production for NADH,
H+, acetyl-CoA, propionyl-CoA, 2-oxoglutarate, and
(S)-3-amino-2-methylpropanoatemay may be increased
leading to an accumulation in the mitochondria of the
myocardium (Additional file 6: Figure S5). In the isoleu-
cine (Table 4) and valine degradation 1 pathways, DBT
carried the DBTrs12021720 variant, a putative effect
modifier. This gene encodes a protein that forms the
critical homo-24-meric dihydrolipoyl transacylase (E2)
subunit of the branched-chain alpha-keto acid dehydro-
genase complex (BCKD), an enzyme complex inside the
mitochondria (https://www.ncbi.nlm.nih.gov/gene/1629).

In this study, there is an up-regulation and association
of the other subunits of BCKD with drDCM. The sub-
units include BCKDHA (branched chain keto acid de-
hydrogenase E1, alpha polypeptide), log, (fold change) =
1.17513; q =0.0240843, BCKDHB (branched chain keto
acid dehydrogenase E1, beta polypeptide), log, (fold
change) = 1.25182; q=0.0354139, and DLD (dihydroli-
poamide dehydrogenase), log, (fold change) = 1.28677; q
=0.0346444 (Additional file 1: Table S14). Results indi-
cate that the BCKD enzyme complex is up-regulated
and that the rate at which both isoleucine and valine are
being broken down is increased.

Interestingly, in the fatty acid [-oxidation pathway
(Table 5), ACSL5 (acyl-CoA synthetase long-chain family

Canonical Pathways DCM pathway: -log(p-value)

Molecules in DCM pathways

Isoleucine Degradation | 234
Fatty Acid 3-oxidation | 283
Valine Degradation | 339

HSD17B10, AUH, DLD, ACADSB, BCAT2, ACAT1, HADHA, EHHADH,
ECHS1, DBT

ACAA2, HSD17B10, HADHA, EHHADH, ECI1, AUH, ACSL5, SLC27A3,
HSD17B8, ECI2, IVD, ECHST, SLC27A6

HIBCH, BCKDHA, AUH, DLD, ACADSB, ALDH6AT1, BCAT2, BCKDHB,
HADHA, EHHADH, ABAT, ECHS1, DBT
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Table 4 Genes found in the isoleucine degradation 1 pathways
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Isoleucine Degradation 1 Pathways

Symbol Entrez Gene Name log; (fold Change) Type(s)
ACADSB acyl-CoA dehydrogenase, short/branched chain 1615 enzyme
ACAT1 acetyl-CoA acetyltransferase 1 1.755 enzyme
AUH AU RNA binding protein/enoyl-CoA hydratase 1.373 enzyme
BCAT2 branched chain amino acid transaminase 2 1417 enzyme
DBT dihydrolipoamide branched chain transacylase E2 0.955 enzyme
DLD dihydrolipoamide dehydrogenase 1.287 enzyme
ECHS1 enoyl-CoA hydratase, short chain, 1, mitochondrial 1633 enzyme
EHHADH enoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase 1.776 enzyme
HADHA hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA 147 enzyme

hydratase (trifunctional protein), alpha subunit
HSD17B10 hydroxysteroid (17-beta) dehydrogenase 10 1.784 enzyme

Valine Degradation 1 Pathway

Symbol Entrez Gene Name log2(fold Change) Type(s)
ABAT 4-aminobutyrate aminotransferase 2218 enzyme
ACADSB acyl-CoA dehydrogenase, short/branched chain 1615 enzyme
ALDH6A1 aldehyde dehydrogenase 6 family member A1 1.534 enzyme
AUH AU RNA binding protein/enoyl-CoA hydratase 1.373 enzyme
BCAT2 branched chain amino acid transaminase 2 1417 enzyme
BCKDHA branched chain keto acid dehydrogenase E1, alpha polypeptide 1.175 enzyme
BCKDHB branched chain keto acid dehydrogenase E1, beta polypeptide 1.252 enzyme
DBT dihydrolipoamide branched chain transacylase E2 0.955 enzyme
DLD dihydrolipoamide dehydrogenase 1.287 enzyme
ECHS1 enoyl-CoA hydratase, short chain, 1, mitochondrial 1.633 enzyme

member 5), (log, (fold change)=-1.91822; q=0.001
18756), an enzyme that activates long-chain fatty acids in
the cytoplasm before transport to the mitochondria, is
down-regulated.

Results suggest that there is a reduction in the rate of
activation of long-chain fatty acids. Additionally,
SLC27A3 (solute carrier family 27 member 3) (log, (fold
change) = - 1.35713; q =0.00347516), a very long-chain
fatty acid acyl-CoA synthetase is also down-regulated.
Downregulation of SLC27A3 suggests that there is a re-
duction in the rate of activation of very-long-chain fatty
acids as well (Additional file 1: Table S14). Results indi-
cate that there is an accumulation of long and very long
chain fatty acids in the cytoplasm.

To understand the full biological implication for the sig-
nificant results, we explored supporting evidence from
other canonical pathways and transcripts in the data set.
Interestingly, there is an association between the leucine
degradation 1 pathway with the data set. We defined this
pathway as a putative effect-modifying pathway because it
carried the DBTirs12021720 putative effect modifier.

Further pathway investigations revealed two more
pathways related to catabolism of fatty acids. These

included the fatty acid p-oxidation III (Unsaturated, Odd
Number) (-log (p)=1.61E00) and the fatty acid
a-oxidation (-log (p) =3.14E00) that were associated
with the drDCM data set. However, these pathways did
not carry the ECHSI:rs10466126 or DBT:rs12021720
variants (Additional file 1: Table S7). Data also showed
that mitochondrial (-log (p) = 8.73E00), oxidative phos-
phorylation (-log (p) = 5.35E00) and TCA cycle II (-log
(p) =2.70E00) dysfunction were associated with the ex-
perimental data set (Additional file 1: Table S7).

Network analyses
To gain insight into the multidimensional interactions
among genes, we performed network analyses.

Mitochondria and cytoskeleton crosstalk

Network analyses show that BCKDK binds to EPS8 local-
ized in the actin filaments, and actin stress fibers of the
sarcomere (Fig. 18). Additionally, EPS8 binds to PALLD
(palladin, cytoskeletal associated protein) that localizes in
the Z line, actin bundles, actin cytoskeleton, actin
filaments, actin stress fibers, intercalated disks of the
sarcomere (Additional file 1: Table S17). Results obtained
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Table 5 Genes in the fatty acid $-oxidation pathway
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Symbol Entrez Gene Name log,(fold Change) Type(s)
ACAA2 acetyl-CoA acyltransferase 2 1673 enzyme
ACSLS acyl-CoA synthetase long-chain family member 5 -1.918 enzyme
AUH AU RNA binding protein/enoyl-CoA hydratase 1.373 enzyme
ECHS1 enoyl-CoA hydratase, short chain, 1, mitochondrial 1.633 enzyme
ECI enoyl-CoA delta isomerase 1 1.282 enzyme
ECI2 enoyl-CoA delta isomerase 2 1457 enzyme
EHHADH enoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase 1.776 enzyme
HADHA hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA 1470 enzyme

hydratase (trifunctional protein), alpha subunit
HSD17B8 hydroxysteroid (17-beta) dehydrogenase 8 1475 enzyme
HSD17B10 hydroxysteroid (17-beta) dehydrogenase 10 1.784 enzyme
VD isovaleryl-CoA dehydrogenase 1.263 enzyme
SLC27A3 solute carrier family 27 member 3 —-1.357 transporter
SLC27A6 solute carrier family 27 member 6 1.646 transporter

suggest that there is crosstalk between the sarcomere and
the mitochondria.

Evaluations of the ECHS1 gene

We used two different databases, Harmonizome [26]
and the all RNA-seq and ChIP-seq sample and signature
search (ARCHS?*) [27] databases to evaluate the ECHS1
gene in the context of its association to diseases, func-
tional associations with biological entities, human phe-
notypes, and pathways.

Association of ECHS1 with diseases

We used the Harmonizome database [26] which employs
the standardized values related to the empirical p-value as
abs(standardized value) = —log;o(p-value) to determine as-
sociations between disorders and the ECHSI gene. To fur-
ther assess whether there is a link between the ECHS1
gene and the cardiovascular disease phenotypes, a dataset
with 2684 genes was used. This dataset was produced
through text-mining GWAS publications from the HuGE
Navigator Gene-Phenotype Associations dataset. Data
showed that the relative strength of association between
the ECHS1 gene and cardiovascular diseases was
-logio(p-value) = 2.03394. The complete table can be
found at <http://amp.pharm.mssm.edu/Harmonizome/
gene_set/Cardiovascular+Diseases/CTD+Gene-Disease+A
ssociations>.

A dataset containing 2756 genes/proteins associated with
cardiomyopathies from the curated CTD (Comparative
Toxicogenomics Database) Gene-Disease Associations
dataset was used to evaluate the link between the ECHS1
gene and cardiomyopathy. Data showed that the relative
strength of association between the ECHS1 gene and car-
diomyopathy was -log;o(p-value) = 1.62423. The complete
table can be found at <http://amp.pharm.mssm.edu/Har

monizome/gene_set/Cardiomyopathies/CTD+Gene-Disea
se+Associations>.

To evaluate whether there is a relationship between the
ECHS1 gene and heart failure 2994 genes/proteins associ-
ated with Heart Failure from the curated CTD
Gene-Disease Associations dataset was used. Results
showed that the relative strength of association had a
-log1o(p-value) = 1.60734. The complete table can be found
at  <http://amp.pharm.mssm.edu/Harmonizome/gene_set/
Heart+Failure/CTD+Gene-Disease+Associations>.

We also wanted to see if the ECHS1 gene was associ-
ated with other drug-induced conditions. Data from a
dataset of 13,896 genes/proteins from the curated CTD
Gene-Disease Associations showed that there is a rela-
tionship between the ECHS1 and drug-induced liver In-
jury (-logio(p-value) = 2.45226). The complete table can
be found at < http://amp.pharm.mssm.edu/Harmoni-
zome/gene_set/Drug-Induced+Liver+Injury/CTD+Gene-
Disease+Associations>.

Results from the curated CTD Gene-Disease Associa-
tions dataset containing 7152 genes/proteins showed an
association between the ECHS1 gene with Drug-Related
Side Effects and Adverse Reactions (-log;o(p-value) =
2.13125). Complete results can be obtained at < http://
amp.pharm.mssm.edu/Harmonizome/gene_set/Drug-Re-
lated+Side+Effects+and+Adverse+Reactions/CTD+Gen-
e-Disease+Associations>.

Relationships between ECHS1 with drugs

We used the comparative toxicogenomics database at
<http://ctdbase.org/detail.go?type=gene&acc=1892&view
http://ctdbase.org/detail.go?acc=1892&view=che
m&page=2&type=gene>, and <http://ctdbase.org/detail.-
go?acc=1892&view=disease&sort=networkScore&type=-

gene&dir=asc> to evaluate if and how chemical interactions

=ixn>,
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with the ECHS1 gene affect its expression and to assess
chemical interference in the contexts of diseases associ-
ated with the ECHS1 gene. Data showed additional
evidence that the ECHS1 gene not only interacts with
different chemicals (Additional file 1: Tables S18 and
S19) but also interferes with many (Additional file 1:
Table S20).

ECHS1 functional predictions

We used the All RNA-seq and ChIP-seq Sample and
Signature Search (ARCHS") database to evaluate
ECHSI1 functional associations with biological entities.
[27] Data showed that there is a relationship between
the ECHS1 gene with known members of the
branched-chain amino acid catabolic process gene set
(z-score = 4.74044801), fatty acid beta-oxidation (GO:0
006635) (z-score = 4.69401918), mitochondrial ATP
synthesis coupled proton transport (GO:0042776) (z-s
core =4.58179795), short-chain fatty acid metabolic
process (GO:0046459) (z-score = 4.48892724), fatty aci
d oxidation (GO:0019395) (z-score = 4.39638234), lipid
oxidation (GO:0034440) (z-score = 4.32665875), valine
metabolic  process (GO:0006573) (z-score = 4.325
24268), branched-chain amino acid metabolic process
(GO:0009081) (z-score =4.27657735), organic acid
catabolic process (GO:0016054) (z-score = 3.93805682),
energy coupled proton transport, down electrochemical

gradient (GO:0015985) (z-score =3.90139956), ATP syn-
thesis coupled proton transport (GO:0015986) (z-score =
3.90139956), respiratory electron transport chain (GO:00
22904) (z-score = 3.63663297), very long-chain fatty acid
metabolic process (GO:0000038) (z-score = 3.33068462),
oxidative phosphorylation (GO:0006119) (z-score = 3.327
20532), and drug metabolic process (GO:0017144) (z-sc
ore = 3.25059831), and drug catabolic process (GO:0
042737) (z-score = 3.57297358). The complete table can
be found at <https://amp.pharm.mssm.edu/archs4/gene/
ECHS1>.

Results also show that the ECHSI1 gene is extensively
annotated with an AUC =0.977, indicating how known
annotations could be retrieved by the ARCHS* algo-
rithm (Fig. 19). In these analyses, gene set membership
is calculated using membership by association. If a gene
shares large associations with identified members of a
gene set, it will receive a high z-score during the mem-
bership calculation. If a gene already has known func-
tions/gene set memberships, they are printed in green
and if a gene is widely annotated a ROC curve is
generated.

ECHS1 predicted human phenotypes

Results also show that there is an association between
the ECHS1 gene and Ketosis (HP:0001946) (z-score =
4.61091909), Ketoacidosis (HP:0001993) (z-score =
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3.97801970), abnormality of long-chain fatty-acid metab-
olism (HP:0010964) (z-score =3.92120687), metabolic
acidosis (HP:0001942) (z-score = 3.21681082), and ab-
normality of fatty-acid metabolism (HP:0004359)
(z-score = 4.67735644). Data also showed a relationship
between the ECHS1 gene and abnormal activity of the
mitochondrial respiratory chain (HP:0011922) (z-score =
2.83543187) and decreased activity of mitochondrial
respiratory chain (HP:0008972) (z-score =2.83543187).
Evaluations of the ECHS1 gene also showed that the
gene is associated with increased muscle lipid content
(HP:0009058) (z-score = 2.59355360), and abnormal
mitochondria in muscle tissue (HP:0008316) (z-score =
2.43905932). Further evaluations showed that the
ECHSI1 gene is related with right ventricular cardiomy-
opathy (HP:0011663) (z-score = 2.04008448), cardiovas-
cular calcification (HP:0011915) (z-score = 2.05269516),
sudden death (HP:0001699) (z-score = 2.05545235), pro-
gressive muscle weakness (HP:0003323) (z-score =1.83
832924), ragged-red muscle fibers (HP:0003200) (z-sco
re =2.36338320), and increased muscle lipid content
(HP:0009058) (z-score = 2.59355360). The complete
table can be found at <https://amp.pharm.mssm.edu/
archs4/gene/ECHS1>.

ECHS1 predicted pathways (KEGG)

Results also show that there is an association between the
ECHS1 gene with valine, leucine and isoleucine degrada-
tion_Homo sapiens_hsa00280 (z-score = 3.1786154), fatty
acid degradation_Homo sapiens_hsa00071 (z-score =
3.04847658), and fatty acid metabolism_Homo sap
iens_hsa01212 (z-score =2.51812360). Interestingly, re-
sults also show that there is a relationship between the
ECHS1 gene with drug metabolism - cytochrome P4
50_Homo sapiens_hsa00982 (z-score =2.07985196). The
complete table can be found at <https://amp.pharm.mss-
m.edu/archs4/gene/ECHS1>. Additionally, results again
show that the ECHS1 gene is extensively annotated with
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an AUC = 0.927, indicating how known annotations could
be retrieved by the ARCHS® algorithm (Fig. 20).

Discussion

We report an innovative filtering method that integrates
RNA-Seq variant detection and transcriptome analysis,
with pathway analysis that is useful in identifying puta-
tive pathogenic and modifying pathways, mutations, and
effect modifier genes that may be involved in triggering
drDCM in patients who are not related. The most
significant findings are that there is a strong association
between drDCM with fatty acid and branched-chain
amino acid metabolism and that this relationship may
arise from an interplay between the putative mutation
ECHS1:11 V/A(rs10466126), modifiers ECHS1:75 T/I(rs1
049951), ECHSI:c.41insT, and DBT:384G/S(rs12021720),
upregulation of ECHS1, the MIR3944 mirtron, and DBT,
and the involvement of ECHS1 in the drug metabolism:
cytochrome P450 pathway.

Huang et al. 2011 wondered whether “branched-chain
amino acid metabolism in heart disease” was an “epiphe-
nomenon or a real culprit.” [28] Authors make state-
ments that intermediates that take part in the
breakdown of branched-chain amino acids (BCAAs)
may initiate cardiac dysfunction. Others have reported
genetic disorders that arise when there are defects in the
BCAA catabolic pathways. These conditions include
propionic acidemia, methylmalonic acidemia, and Maple
syrup urine disease. The clinical symptom associations
with these disorders are mostly mental retardation and
seizure [28-30] although others have already connected
methylmalonic and propionic academia to hypertrophic
and dilated cardiomyopathy [23, 29, 31-34]. In the dis-
ease state, flaws in the use of glucose and the inhibition
of fatty acid oxidation in myocytes lead to the insuffi-
cient delivery of energy to the heart muscle [35, 36].
Hence, it is evident, that there is a high probability that
pathways associated with fatty acid f-oxidation, and the
branched chain amino acids and their intermediate sub-
strates contribute to the pathogenesis of heart disease.
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Fig. 20 ECHS1 and predicted KEGG pathway ROC curve
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Association between drDCM and ECHS1

The ECHS1 gene (cytogenetic position: 10q26.3; OMIM
*602292; GenBank accession number: NM_004092.3)
produces the Short-chain enoyl-CoA hydratase (SCEH,
synonym: crotonase, EC 4.2.1.17). It is an enzyme found
in the mitochondrial matrix that catalyzes the second
step in the mitochondrial fatty acid beta-oxidation. [37]
It also takes part in the valine and isoleucine catabolic
pathways. For instance, in valine catabolism, it functions
upstream HIBCH (3-Hydroxyisobutyryl-CoA Hydrolase)
and converts acryloyl-CoA and methacrylyl-CoA to
(S)-3-hydroxyisobutyryl-CoA to 3-hydroxypropionyl-C
oA [38]. ECHS1 catalyzes fatty acids that are saturated
and have single bonds. It catalyzes the addition of H,O
(water) to the trans bond of the A2-enoyl-CoA created
during B-oxidation [39].

ECHS1:rs10466126 and ECHS1:rs1049951

In this study, there is an association between ECHSI1
and drDCM and carries two common missense variants,
ECHSI:rs10466126, a putative mutation and the ECHS
1:rs1049951 and the ECHSI:c.41linsT putative effect
modifiers. Some might argue that our methods are link-
ing common variants to drDCM since DCM is not com-
mon in the general population. However, in our data
subjects carry at least two variants that interact. Further
linkage disequilibrium evaluations of ECHS1:rs10466126
and ECHSI:rs1049951 reveal that these two genes do
not just interact, they are also co-inherited. Thus, the
frequency of having at least two variations in the ECHS1
gene in the general population would be much lower
than having only one.

Additionally, data offered by Chen et al. 2015 demon-
strated an association between the rs7597774 mutation
in the ADD2 (Beta-adducin) gene, a common variant (A
=0.3928 (1000 Genomes)) and DCM [40]. Accordingly,
our data augment such results and suggest that not only
are rare variants associated with DCM, SNPs that are
common also play a significant role. Moreover, transcrip-
tome analyses show that the EGR1 transcription factor is
down-regulated, suggesting that the rate at which it is
binding to the 5-GCG(T/G)GGGCG-3'(EGR-site) DNA
sequence to regulate ECHSI is also reduced. According to
JASPAR prediction analyses, when these transcription reg-
ulators bind the GCG(T/G)GGGCG-3'(EGR-site) motif,
they bind more frequently to the alternative allele (G) (Fig.
8). Interestingly, our data not only show variation at the
DNA and mRNA level, but there are also perturbations at
the function level associated with the EGR1 transcription
regulator. Cardiovascular system development and func-
tion and development of endothelial tissue is decreased.
Together, these findings indicate that ECHS1:rs10466126
(G/G), even though it may be tolerated as an exonic
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variant, as an upstream variant, it might be interfering
with the transcriptional regulation of ECHSI by EGR1.

As mentioned above, our findings show that the
alternative allele is the (G) for the ECHSI:rs10466126
missense, upstream variant 2 KB, putative mutation.
However, this allele is currently the more frequent in the
general population, and the ancestral allele (A), which is
conserved among species is less common (Fig. 7). How-
ever, when one stratifies by population it is evident that
this allele is less frequent in certain regions like Africa
(Additional file 1: Table S12).

When one considers disease selection and allele fre-
quency from a genetic perspective, one can characterize
evolution as a change in allele frequencies over a period
because of genetic drift, natural selection, migration, or
mutation [41]. Recent shifts in the direction of selection
could contribute to segregation of disease alleles at mod-
erate or high frequencies. For example, the popular
thrifty-genotype hypothesis [42] states that selection has
formerly worked to take advantage of metabolic effect-
iveness, particularly in people that frequently run into a
shortage of food. Dietary changes could reverse the dir-
ection of selection as well, which could cause common
alleles that are currently associated with metabolic dis-
eases and diabetes to be selected against. Genetic hitch-
hiking [43]. during a selective sweep, for example, could
result in disease genes to be associated with a positive
selection [44].

It appears some evolutionary force has occurred that has
changed the allele frequency of the ECHS1:rs10466126 vari-
ants in some populations. This observation parallels current
studies showing over 40% of U.S. citizens ages 60 and older
have metabolic syndrome. [45, 46] This syndrome is
characterized by a collection of metabolic aberrations that
increase the chance of developing the atherosclerotic car-
diovascular disease and Type 2 diabetes [47]. The marked
rise in the prevalence of the metabolic syndrome in the past
two decades matches the global epidemic of diabetes and
obesity, as well [48]. In their report, Weiss et al. indicated
that the prevalence of the metabolic syndrome in the
U.S.A. rose with how severe obesity was and reached 50%
in adolescents who were severely obese [49].

The ECHS1 gene

In this study, the ECHS1 gene is the main drDCM
driver, and we evaluate its involvement in diseases, bio-
logical functions, and pathways in multiple datasets from
the ARCHS* and Harmonizome databases. Among the
diseases, the ECHS1 gene contributes are cardiovascular
diseases, cardiomyopathies, and heart failure. Interest-
ingly, data also show that there is an association between
the ECHS1 with drug-related side effects and adverse re-
actions  (<http://amp.pharm.mssm.edu/Harmonizome/
gene_set/Cardiomyopathies/CTD+Gene-Disease
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+Associations>, <http://amp.pharm.mssm.edu/Harmoni-
zome/gene_set/Heart+Failure/CTD+Gene-Disease+As-
sociations>, < http://amp.pharm.mssm.edu/Harmonizom
e/gene_set/Drug-Induced+Liver+Injury/CTD+Gene-Di-
sease+Associations>, < http://amp.pharm.mssm.edu/Har
monizome/gene_set/Drug-Related+Side+Effects+and+A
dverse+Reactions/CTD+Gene-Disease+Associations>).
These findings are remarkable because there is a rela-
tionship between drDCM with one’s reaction to drugs
and heart disease.

Further evaluations of ECHSI, revealed that this gene
has functional relations with branched-chain amino acid
catabolic processes, fatty acid beta-oxidation, valine
metabolic process, branched-chain amino acid metabolic
process, very long-chain fatty acid metabolic process,
oxidative phosphorylation, and mitochondrial ATP syn-
thesis coupled proton transport. Remarkably, results also
show that there is an association between the ECHSI1
gene with drug metabolic processes. These findings are
noteworthy because, in our drDCM dataset, we found
similar processes associated with the ECHS1 gene. How-
ever, in the ARCHS* and Harmonizome databases, re-
sults show that there is also an association between the
ECHS]1 gene and processes related to drug metabolism.

When we evaluated the ECHS1 gene in the contexts of
human phenotypes, we found that it is associated with
ketoacidosis, abnormality of long-chain fatty-acid metab-
olism, abnormal activity of mitochondrial respiratory
chain, increased muscle lipid content, abnormal mito-
chondria in muscle tissue, progressive muscle weakness,
and cardiovascular calcification (<https://amp.pharm.mss-
m.edu/archs4/gene/ECHS1>). These findings again are
similar to results from the drDCM dataset.

Further assessment of the ECHSI1 gene in the frame-
work of pathways (KEGG) revealed that this gene partic-
ipates in valine, leucine, isoleucine, and fatty acid
degradation, the same results obtained from the drDCM
dataset. Consistent with the other results from the more
extensive datasets, findings showed that the ECHS1 gene
is also related to drug metabolism: cytochrome P450
(<https://amp.pharm.mssm.edu/archs4/gene/ECHS1>).

These additional assessments of the ECHS1 gene are in-
triguing and strengthen the findings from our drDCM data-
set. They provide additional information and insight about
why patients with mutations in this gene can be refractory
to drugs. For example, our data show that the ECHS1 gene
is related to the drug metabolism: cytochromes P450 path-
way. Others have reported that cytochromes P450 comprise
the key family of chemical modifications of the majority of
drugs and other lipophilic xenobiotics in the body. [50—52]

Association between ECHS1, BCAAs and LVLFAs
Using our integrative method, we show that the valine,
isoleucine degradation 1 pathways, and the fatty acid
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B-oxidation pathways all carry ECHS1, which are all as-
sociated with the drDCM data set. Data suggest that
ECHS1 is a hub that mediates pathogenic crosstalk
amongst the three pathways. Isoleucine and valine are
branched chain amino acids degraded and oxidized as
fuel in extra-hepatic tissue that includes brain, kidney,
adipose, and muscle. Other types of amino acids are
broken down in the liver. Extrahepatic tissues have
amino-transferase, an enzyme not found in liver. It cata-
lyzes valine, isoleucine, and leucine to make the product
a-keto acid. [39] Valine and isoleucine go through a se-
quence of reactions to generate propionyl-CoA for val-
ine, and propionyl-CoA and acetyl-CoA for isoleucine.
Interestingly, parts of the valine and isoleucine pathways
closely parallel steps in the fatty acid p-oxidation path-
way. [39]

Fatty acids and related lipids play an essential role in
cardiomyocyte function and structure. In post-natal and
adult mammalian heart, fatty acid p-oxidation is the fa-
vored pathway used to generate the energy needed for
efficient pumping of the heart. Acquired or inherited de-
fects in the mitochondrial fatty acid metabolism may re-
sult in arrhythmias and cardiomyopathy that predisposes
patients to heart failure. [39] Their effect on the stability
and fluidity of the structure of membranes affects their
function as transporters of ions and substrates. It also af-
fects the electrophysiology that is fundamental to heart
function and heart excitation. Additionally, there are im-
plications that fatty acids and related lipids regulate cell
signaling, are effectors in apoptosis and responses to is-
chemic and oxidative damage and are second messengers
in transduction. [39] In the process of fatty acid oxidation,
B-oxidation takes place during the subsequent removal of
carbons at the B-carbon site of the fatty acyl-CoA mol-
ecule producing NADH, FADH?2 (flavin adenine dinucleo-
tide), and acetyl-CoA downstream. This process generates
more energy per carbon atom and uses more oxygen com-
pared with the oxidation of carbohydrates. Thus, oxygen
plays an essential role in ATP (adenosine triphosphate)
utilization by the myocardium. [53]

As mentioned above, key enzymes in the degradation
processes of the two amino acid pathways are up-regulated,
suggesting that production of NADH, H+, acetyl-CoA,
propionyl-CoA, 2-oxoglutarate, and (S)-3-amino-2--
methyl-propanoate is increased and would accumulate in
the mitochondria of the myocardium. The buildup of acet-
yl-CoA and propionyl-CoA may lead to a buildup of
acetoacetate (a keto-acid) and propionic acid in the
myocardium, respectively. In turn, accumulation of
acetoacetate results in ketoacidosis, and accumulation
of propionic acid may lead to propionic acidemia.
[54-56] Accumulation of 2-oxoglutarate and (S)-3-
amino-2-methyl-propanoate may very well be toxic to
the myocardium (Additional file 6: Fig. S5).
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We also report that ACSL5 (acyl-CoA synthetase long
chain family member 5) and SLC27A3 (Solute carrier
family 27 member 3) are down-regulated suggesting that
there is no activation of long and very long chain fatty
acids. Data indicates that there is a possible accumula-
tion of long and very long chain fatty acids in the cyto-
plasm that could lead to toxicities in the myocardium
leading to muscle damage.

DBT and drDCM

In the valine, leucine, and isoleucine degradation 1 path-
way DBT carries the rs12021720 variant, which interacts
with the rs10466126 variant in the ECHS1 gene (Table 2).
DBT encodes a protein that forms the critical homo-
24-meric dihydrolipoyl transacylase (E2) subunit of the
branched-chain alpha-keto acid dehydrogenase complex
(BCKD), an enzyme complex that is on the inside of the
mitochondria. This compound is known to catalyze the
oxidative decarboxylation of branched-chain a-keto acids
(BCKAs). It is not only the rate-limiting step, but is also
an irreversible step of valine, isoleucine, and leucine catab-
olism [54]. The other subunits of the BCKD complex in-
clude the associated decarboxylase (E1) and the dehyd
rogenase (E3) regulatory subunits. Interestingly, the phos-
phorylation status of the Ela regulatory subunit of BCKD
determines whether BCKD is active or not. When there is
a depletion of BCAAs, a BCKD kinase hyper-phosphory-
lates BCKD resulting in inhibition of BCKD activity and
conservation of free BCAA. However, when the levels of
BCAA are high, a BCKD phosphatase dephosphorylates
Ela resulting in the activation of BCKD and a reduction
in total BCAA [54].

Mutations in DBT are known to cause Maple syrup
urine disease, type 2. Mutations interrupt the normal
function of the E2 subunit, which in turn prevents the
BCKD enzyme complex from breaking down the amino
acids efficiently. These results lead to the accumulation
of BCAA and their byproducts, which end up poisoning
the cells and tissues, and impairing vital organs, includ-
ing the heart [54-56].

We report that there is an up-regulation of DBT and
the other subunits of the BCKD enzyme complex and
that there is an association between drDCM and DBT
(Additional file 6: Fig. S5) at the mRNA levels. These re-
sults suggest that perturbations to DBT contribute to in-
creased rates at which the branched chain amino acids
are being broken down and the subsequent accumula-
tion of organic acid products in the mitochondria.

MCCC1 and drDCM

The MCCCI gene produces the alpha subunit of the
3-methylcrotonoyl-CoA carboxylase complex (3-MCC)
found in the mitochondria. It interacts with the beta
subunits made from the MCCC2 gene and the B-vitamin
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biotin to form a functioning enzyme. [56] The 3-MCC
compound converts one 3-methylcrotonyl-CoA to
3-methylglutaconyl-CoA in the fourth step of leucine deg-
radation (Additional file 6: Figure S5). There is an activa-
tion of the 3-MCC complex caused by upregulation of
MCCC1 and MCCC2 in cases vs. controls. Interestingly,
in the cytoplasm, HMGCLL1 (3-hydroxymethyl-3-methyl-
glutaryl-CoA lyase like 1) is down-regulated (Additional
file 1: Table S14). This enzyme converts (S)-3-hydroxy-3--
methylglutaryl-CoA into acetyl- CoA and acetoacetate, in
the cytoplasm. Down-regulation of this enzyme in our
data set suggests that the rate at which (S)-3-hydroxy-3--
methylglutaryl-CoA is converted into acetyl-CoA, and
acetoacetate is reduced and that there could be an accu-
mulation of (S)-3-hydroxy-3-methylglutaryl-CoA in the
cytoplasm. Interestingly, there is also up regulation of a re-
lated molecule, HMGCL (Hydroxymethylglutaryl-CoA
Lyase) in the mitochondria that catalyze a similar reaction.
Thus, there would be a possible accumulation of
(S)-3-hydroxy-3-methylglutaryl-CoA in the cytoplasm and
buildup of acetyl- CoA and acetoacetate in the mitochon-
dria (Additional file 6:Figure S5).

ECHS1 and mitochondrial dysfunction and actin
cytoskeleton

Perturbations in the fatty acid B-oxidation, isoleucine,
and valine pathways are associated with ECHSI:r
$10466126(G/G) at the DNA, mRNA and pathway levels.
Association of ECHS1 with drDCM is modified by the
presence of DBT leading to mitochondrial, oxidative
phosphorylation and TCA cycle dysfunction through or-
ganic acid toxicity in the mitochondria and lipotoxicity
in the cytoplasm of the myocardium (Additional file 1:
Figure S5). Furthermore, signals from the 26s prote-
asome and NFkB complexes act on the mitochondrial,
and through interactions with EPS8 (Epidermal growth
factor receptor kinase substrate 8), a signaling adapter
and PALLD (Palladin), a cytoskeletal protein, deleterious
signals reach the actin cytoskeleton, which affects the
optimum function of the heart.

Proposed molecular pathogenesis of drDCM

We proposed that patients with drDCM have disrup-
tions to fatty acid and BCAA catabolism arising from
genomic errors in ECHSI1, which is modified by DBT.
Perturbations in these pathways lead to the buildup of
protons, NADH, acetyl-CoA, propionyl-CoA and leu-
cine, valine, fatty acid, and isoleucine intermediates in
the mitochondria, giving rise to ketoacidosis and propio-
nic acidemia, and additional organic acid toxicity. The
buildup of long and very long chain fatty acids and
leucine intermediates in the cytoplasm may lead to lipo-
toxicity and organic acid toxicity. These physiological
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conditions lead to mitochondrial, oxidative phosphoryl-
ation and TCA cycle II dysfunction.

Interestingly, in another study we found that BAG1 in-
directly interacts with ECHS1 through the 26s Prote-
asome and the NFkB complex. Dysfunction in the
mitochondria recruits BAGI1:Glucocorticoids, which
translocate to the mitochondria, where the Glucocorti-
coids interact with and regulate the E2 subunit, where
other BCKAD subunits assemble at the transcriptional
level. On the other hand, crosstalk between a dysfunc-
tional mitochondria and cytoskeleton through PALLD
contributes to insufficient supply of ATP to the actin
cytoskeleton leading to muscle atrophy and sarcomere
dysfunction (Fig. 21).

Study strengths and limitations

We began our investigations by analyzing free open
source secondary RNA-Seq and exome sequence data sets
from the SRA using Apps from BaseSpace. We generated
variant lists and gene lists with differentially expressed
genes. We then integrated variants, differentially expres
sed genes and pathways, followed by variant replication
and association analyses. The aim was to provide a novel
approach for data integration that considers the interplay
between DNA, mRNA and pathway analyses that can
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reveal mutations, effect modifiers, and pathogenic path-
ways. Another aim was to provide a method that can be
used to model complex traits while uncovering genomic
biomarkers and targets for early diagnosis, prognosis, and
personalized therapeutic intervention.

Strengths

Our study casts light on the possibility that one gene in
concert with effect modifier genes can mediate patho-
genic crosstalk among multiple pathways. It also demon-
strates that integrating RNA-Seq gene profiling and
variant detection is a versatile approach to tease out
genes that are causal from those that are effect modi-
fiers. Discovery of an already known pathogenic variant
in DBT, a differentially expressed gene provides added
confidence that my filtering approach is efficient and
that it holds real biological significance. Our study is ro-
bust. We used exome sequence data sets to determine
whether the RNA-Seq variants of interest did not arise
from RNA sequencing errors and that they are also
found in other patients with DCM. Replicating the
variant analyses in an independent and much larger
sample size also strengthens this study, by establishing
consistency. However, some issues stay unexplored by
our research.

TECHS1:11VIA
MIR3944

TDBT:384G/S

Mitochondria TBCKDK

|
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Cellular abnormalities
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Limitations

Our results are limited by a small sample size and may
not have detected small differences between cases and
controls. While the case replication sample size is large
(n =128), the control replication sample size is only n =
15. Such a small size may have affected the power to de-
tect small effects between the two groups.

By using RNA-Seq data, differentially expressed genes
(q<0.05), variants found in differentially expressed
genes that are statistically associated with the outcome
(p <0.05) and located in pathways and biological func-
tions associated with the data sets (-log (p)>1.3), we
have increased the biological power significantly. It is
also important to note that DCM is rare in the popula-
tion. To study the condition using RNA-Seq involves
extracting tissue samples from the heart, an invasive
procedure. Thus, finding cases and the proper controls
would be a limitation in many similar studies.

Moreover, we were unable to control for potential con-
founders that might have contributed to some of the ob-
served differently expressed transcripts among cases and
controls. For example, drugs might have interfered with
gene expression. Additionally, RNA-Seq variant detec-
tion is biased towards coded regions, which do not em-
body the location of all causative mutations. This
restriction also exists in present exome sequence DCM-
gene panels, suggesting that both current and surfacing
genome-targeted approaches that do not investigate the
whole genome will not attain 100% sensitivity to diag-
nose all genomic forms of DCM [15].

Conclusion

We conclude that patients with drDCM carry the
ECHSI:11 V/A (rs10466126) putative mutation that in-
teracts with the ECHSI:75T/I (rs1049951) and DBT:
384G/S (rs12021720) putative modifiers, which are asso-
ciated with drDCM. ECHSI:11 V/A (rs10466126) and
ECHSI1:75T/T (rs1049951) are also co-inherited. The
ECHS1 gene hosts a mirtron, MIR3944 that is expressed
in drDCM patients and not in controls. The ECHS1
gene is not only associated with heart disease, it is also
associated with drug metabolism. We also present the
first use of an integrative “omics” data approach that
considers the interplay between the DNA, mRNA, and
drDCM related pathways. Our method can discriminate
mutations from modifiers, and pathogenic pathways
from pathways that modify the outcome. Our technique
represents a potential diagnostic, prognostic, biomarker,
and treatment discovery methodology in a genomically
heterogeneous disorder like drDCM.

Translational perspective
Our integrative approach will be useful in modeling
complex traits while revealing genomic biomarkers and
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targets for therapeutic intervention. The method will
also be valuable for the discovery of diagnostic and prog-
nostic tools that consider the interplay between DNA,
mRNA, and related pathways. The results revealed raise
the potential for MIR3944 to be both a diagnostic and
prognostic biomarker for drDCM. Data show that
MIR3944 is expressed in patients with drDCM but not
in the controls suggesting that the expression of
MIR3944 in the heart is unusual and indicative of
drDCM. Because MIR3944 is not detected in healthy tis-
sue, it would serve as a more precise and sensitive bio-
marker then ECHS1 which is also expressed in the
healthy tissue, for example. While overexpression of
ECHS1 is suggestive of drDCM, a detectable limit at
which to determine what levels are pathogenic would
first have to be established for each patient. However, for
MIR3944, the mere detection in a patient would indicate
pathology. ECHS1 could be targeted for the design of a
novel drug, and elimination of BCAAs and LVLFAs from
one’s diet could repair three drDCM pathogenic path-
ways simultaneously. One could also use levels of Gluco-
corticoids, acetoacetate, propionic acid, and fatty acids
as biomarkers for drDCM. ECHS1 could be used, as a
biomarker to implement risk stratification that improves
the management of drDCM. ECHSI1 protein may be a
potential therapeutic target for dArDCM patients who are
not related.

Additional files

Additional file 1: Table S1. Exome sequence data sets from the
HapMap. Legend: Exome sequencing of (CEU) Utah residents with ancestry
from Northern and Western Europe and of (CHB) Han Chinese in Beijing,
China - CEPH — HapMap. Table S2. Coverage: Reads mapped per drDCM
subject. Legend: Percentage and number of reads mapped before and after
filtering for each subject in the drDCM case control study. Table S3.
Alignment Summary (ltalian). Legend: Mean coverage: the total number of
targeted bases divided by the targeted region size. Target coverage at 1X:
Percentage targets with coverage greater. Table S4. Alignment summary
(Chinese). Legend: Mean coverage: the total number of targeted bases
divided by the targeted region size. Target coverage at 1X: Percentage
targets with coverage greater. Table S5. Alignment summary: HapMap
project data set. Legend: Mean coverage: the total number of targeted
bases divided by the targeted region size. Target coverage at 1X:
Percentage targets with coverage greater than 1X. Target coverage at 10X:
Percentage targets with coverage greater than 10X. Target coverage at 20X:
Percentage targets with coverage greater than 20X. Target coverage at 50X:
Percentage targets with coverage greater than 50X. Table S6. drDCM 131
variants in differentially expressed genes. Table S7. drDCM Pathways.
Table S8. Variants found in a pathway. Table $9. RNA-Seq drDCM geno-
types: ECHS1, DBT, and MCCCT. Legend: Ref: reference allele, Alt: alternative
allele, DCM: dilated cardiomyopathy, CTR: control. ECHS1: enoyl-CoA hydra-
tase, short chain, 1, mitochondrial, DBT: Dihydrolipoamide branched chain
transacylase E2, and MCCC1: methy! crotonoyl-CoA carboxylase 1. Table
$10. Variants in DCM pedigrees from Italy and China. Legend: Genotypes
for DCM cases for the ECHS1, DBT, and MCCC1 genes. ECHS1: enoyl-CoA
hydratase, short chain, 1, mitochondrial, DBT: Dihydrolipoamide branched
chain transacylase E2, and MCCC1: methyl crotonoyl-CoA carboxylase 1.
Table S11. Variant scanning in HapMap data set. Legend: Control geno-
types for the ECHS1, DBT, and MCCC1 genes. ECHS1: enoyl-CoA hydratase,
short chain, 1, mitochondrial, DBT: Dihydrolipoamide branched chain
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transacylase E2, and MCCC1: methyl crotonoyl-CoA carboxylase 1. Table
$12. Population Genetics for the ECHS1:rs10466126 Putative Mutation. Le-
gend: Population Code: “CHB: Han Chinese in Beijing, China, JPT:Japanese in
Tokyo, Japan, CHS: Southern Han Chinese, CDX: Chinese Dai in Xishuang-
banna, China, KHV: Kinh in Ho Chi Minh City, Vietnam, CEU: Utah Residents
(CEPH) with Northern and Western European Ancestry, TSI: Toscani in Italia,
FIN: Finnish in Finland, GBR: British in England and Scotland, IBS: Iberian
Population in Spain, YRI: Yoruba in Ibadan, Nigeria, LWK: Luhya in Webuye,
Kenya, GWD: Gambian in Western Divisions in the Gambia, MSL: Mende in
Sierra Leone, ESN: Esan in Nigeria, ASW: Americans of African Ancestry in SW
USA, ACB: African Caribbeans in Barbados, MXL: Mexican Ancestry from Los
Angeles USA, PUR: Puerto Ricans from Puerto Rico, CLM: Colombians from
Medellin, Colombia, PEL: Peruvians from Lima, Peru, GIH: Gujarati Indian from
Houston, Texas, PJL: Punjabi from Lahore, Pakistan, BEB: Bengali from
Bangladesh, STU: Sri Lankan Tamil from the UK, ITU: Indian Telugu from the
UK" (<http//www.internationalgenome.org/category/population/>). Table
S13. Novel ECHST c41insT. Table S14. drDCM differentially expressed
genes. Table S15. drDCM Diseases and Functions. Table S16.
ECHS1rs10466126 and ECHS1:rs1049951 pairwise linkage disequilibrium in
24 populations from the 1000 genomes project. Table S17. Data mining:
IPA knowledge database, PALLD. Table $18. Chemicals that interact with
the ECHS1 gene. Table S19. The effect of chemical interactions on the ex-
pression of the ECHS1 gene. Table $20. Chemicals associated with diseases
that interfere with the ECHS1 gene. (XLSX 632 kb)

Additional file 2: Figure S1. Transcription factors that bind to the
ECHS1 gene. (PPTX 202 kb)

Additional file 3: Figure S2. Expression profiles for ECHS1 and has-mir-
3944 in normal heart. Legend: Panel 1: ECHS1 expression profiles in 6 dif-
ferent tissues. Panel 2: has-mir-3944 expression profiles in 6 different tis-
sues. Panel 3: Expression correlations between has-mir-3944-5p and the
ECHST1 in the 6 different tissues. (PPTX 248 kb)

Additional file 4: Figure S3. Predicted conservation: Putative target
region and has-mir-3944. Legend: A Conservation for RHOD. B Conserva-
tion for ITGAV. C Conservation for BAG1. (PPTX 545 kb)

Additional file 5: Figure S4. Pathways associated with the ECHS1 gene.
(PPTX 849 kb)

Additional file 6: Figure S5. Proposed schematic: Dysfunction in the
mitochondria. Legend: Arrows (red) pointing up represent up-regulated
genes and arrows (green) pointing down, down-regulated genes. Printed
in blue indicates putative modifiers and in red mutations. In bold print in-
dicates genes carrying a variant. Orange arrows indicate the flow of ca-
talysis in the fatty acid beta-oxidation pathway. Green arrows show the
flow of catalysis in the Leucine degradation 1 pathway. Purple arrows
show the flow of catalysis in the Valine degradation 1 pathway. Blue ar-
rows indicate the flow of catalysis in the Isoleucine degradation 1 path-
way. In boxes at the end of each pathway are proposed products of each
pathway. (PPTX 583 kb)

Abbreviations

ACSL5: acyl-CoA synthetase long-chain family member 5; ADD2: Beta-
adducin; App: application; ARVC: Arrhythmogenic right ventricular
cardiomyopathy; ATP: Adenosine triphosphate; BAG3: Bcl2-associated
athanogene 3; BCAAs: Branched-chain amino acids; BCAAs: Branched-chain
amino acids; BCKAs: Branched-chain a-keto acids; BCKD: Branched-chain
alpha-keto acid dehydrogenase complex; BCKD: Branched-chain alpha-keto
acid dehydrogenase complex; BCKDHA: Branched chain keto acid
dehydrogenase E1, alpha polypeptide; BCKDHB: Branched chain keto acid
dehydrogenase E1, beta polypeptide; bp: Base pairs; cDNA: Complementary
DNA; CoA: Coenzyme A; CTR: Control; dbSNP: Single Nucleotide
Polymorphism database; DBT: Dihydrolipoamide branched chain transacylase
E2; DCM: Dilated cardiomyopathy; DLD: Dihydrolipoamide dehydrogenase;
DNA: Deoxyribonucleic acid; E1: Decarboxylase; E2: Homo-24-meric
dihydrolipoyl transacylase; E3: Dehydrogenase; ECHS1: Enoyl-CoA hydratase,
short chain 1; ECHS1: Enoyl-CoA hydratase, short chain, 1, mitochondrial;
EDGC: Eone-Dianomics Genome Center; FADH2: Flavin adenine dinucleotide;
FDR: False discovery rate; FPKM: Fragments per kilobase of transcript per
million mapped reads; gVCF: Genomic VCF; H +: Proton; H20: Water;

HCM: Hypertrophic cardiomyopathy; HIBCH: 3-Hydroxyisobutyryl-CoA
Hydrolase; IPA: Ingenuity Pathway Analysis; Log: Logarithm; MAF: Minor allele

Page 28 of 30

frequency; mRNA: Messenger RNA; NADH: Nicotinamide adenine
dinucleotide; Nextgen: Next generation; p-value: Probability value; g-
value: FDR adjusted p -value; Rhod: Rho-related GTP-binding protein;
RNA: Ribonucleic acid sequence; RNA-Seq: Ribonucleic acid sequence;
SCEH: Short-chain enoyl-CoA hydratase; SLC27A3: Solute carrier family 27
member 3; SNPs: Single Nucleotide Polymorphisms; SRA: Sequence Read
Archive; UTR: Untranslated regions; VEP: Variant Effect Predictor

Acknowledgements
Not applicable.

Funding

The design of the study and collection, analysis, and interpretation of data and
in writing the manuscript was funded by federal educational loans. CCTSI is
supported in part by Colorado CTSA Grant ULT TR001082 from NCATS/NIH.

Availability of data and materials
The data sets analyzed during the current study are available at NCBI, SRA
database:

1. RNA sequence case control data sets (FASTQ files) for drug refractory DCM

Data set SRA study accession number: SRP052978. Data sets are available at:
A:lhttps://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP052978] [14].

2. Exome sequence data sets (FASTQ files) for familial dilated
cardiomyopathy from Italy

Data set SRA study number: SRP022855. Data sets are available at: B:[https.//
www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP022855]. [14]

3. Exome sequence data sets (FASTQ files) for familial dilated
cardiomyopathy from China

Data set SRA study number: SRP066837. Data sets are available at:
C.[https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP066837]. [14]

4. Exome sequence data sets (FASTQ files) for additional controls from
the HapMap project

Data set SRA study number: SRP004364. Data sets from Chinese subjects are
available at: D: [https.//www.ncbinlm.nih.gov/Traces/study/?acc=SRP004364]. [16]
Data set SRA study number: SRP004078. Data sets from Caucasian subjects are
available at: E: [https//www.ncbinlm.nih.gov/Traces/study/?acc=SRP004078]. [16]

5. RNA sequence 128 DCM data sets are available at: F: [https://
www.ncbi.nlm.nih.gov/Traces/study/?acc=ERP009437], SRA Studly:
ERP009437. [16]

6. RNA-Seq control data set are available at SRA Study: SRP041706,
[https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP041706]. [16]
SRA Study: SRP093240,

[https//www.ncbinlm.nih.gov/Traces/study/?acc=SRP093240]. [16] SRA Study:
SRP021193, [https//www.ncbinlm.nih.gov/Traces/study/?acc=SRP021193&g0o=go].
[16] and SRA Study: ERP003613, [https.//www.ncbinlm.nih.gov/Traces/study/
7acc=ERP003613&go=go]. [16]

Authors’ contributions

NC, DW, IC, RS, CH, MM, DI, and JT conceived and designed the experiments.
NC and IC analyzed the data. NC and IC contributed materials/analysis tools.
NC, DW, IC, RS, CH, MM, DI, and JT wrote the paper. All authors read and
approved the final manuscript.

Authors’ information

N M-C: Ph.D. (concentration: systems biology, bioinformatics, and genomics
of dilated cardiomyopathy), Clinical Science Ph.D. program, Department of
Medicine (Grad), Colorado Clinical and Translational Sciences Institute Ph.D.
certificate program, TL1 trainee, University of Colorado, Denver. Master in


http://www.internationalgenome.org/category/population/%3e
https://doi.org/10.1186/s12920-018-0439-6
https://doi.org/10.1186/s12920-018-0439-6
https://doi.org/10.1186/s12920-018-0439-6
https://doi.org/10.1186/s12920-018-0439-6
https://doi.org/10.1186/s12920-018-0439-6
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP052978
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP022855
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP022855
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP066837
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP004364
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP004078
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=ERP009437
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=ERP009437
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP041706
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP093240
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP021193&go=go
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=ERP003613&go=go
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=ERP003613&go=go

Campbell et al. BMC Medical Genomics (2018) 11:110

Advanced Studies in Clinical Research (concentration: genomics of
hypertension): University of California San Diego. Master in Clinical Science
(concentration: systems biology, bioinformatics and genomics of rare
cardiomyopathies): University of Colorado, Denver.

DW: Department of Biostatistics, School of Public Health, University of
Colorado, Denver.

IC: Bachelor of Science, Stanford University.

RS: Principal dealer. Schmidt Motors, Ogallala, Nebraska.

CH: Professor, Department of Genetics, Louisiana State University Health
Sciences Center.

MM: Assistant Professor of research, Dept. of Pharmacology, U. Colorado
School of Medicine.

DI: Associate Professor, Dept. of Cardio Vascular Pulmonary Research, U.
Colorado School of Medicine.

JT: Associate Professor, division of medical oncology, U. Colorado School of
Medicine.

Ethics approval and consent to participate

Not applicable. Data utilized in this study are secondary data, de-identified,
free open source, and available online to the public. No approval from the
ethics committee was required. Consent to participate: Public. Data utilized
in this study are secondary data, de-identified, free open source, and avail-
able online to the public.

Consent for publication

Public. Data utilized in this study are secondary data, de-identified, free open
source, and available online to the public. This study did not involve human
subjects.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

Colorado Clinical and Translational Sciences Institute, Mail Stop B141, 12401
E. 17th Ave, Aurora, CO 80045, USA. “Anschutz Medical Campus, University of
Colorado, 13001 E 17th PI, Aurora, CO 80045, USA. *Stanford University, 450
Serra Mall, Stanford 94305, CA, USA. *Schmidt Motors, 501 W 1st St, Ogallala,
NE 69153, USA. *Louisiana State University Health Sciences Center, New
Orleans, LA 70112, USA. ©28998 Road N, Dolores 81323, CO, United States.

Received: 2 May 2018 Accepted: 27 November 2018
Published online: 12 December 2018

References

1. Pinto YM, Elliott PM, Arbustini E, Adler Y, Anastasakis A, Bohm M, et al.
Proposal for a revised definition of dilated cardiomyopathy, hypokinetic
non-dilated cardiomyopathy, and its implications for clinical practice: a
position statement of the ESC working group on myocardial and pericardial
diseases. Eur Heart J. 2016;37(23):1850-8.

2. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, et al.
Classification of the cardiomyopathies: a position statement from the
European Society of Cardiology working group on myocardial and
pericardial diseases. Eur Heart J. 2008;29(2):270-6.

3. Haas J, Frese KS, Peil B, Kloos W, Keller A, Nietsch R, et al. Atlas of the clinical
genetics of human dilated cardiomyopathy. Eur Heart J. 2015;36(18):1123-35a.

4. Sliwa K, Hilfiker-Kleiner D, Petrie MC, Mebazaa A, Pieske B, Buchmann E, et
al. Current state of knowledge on aetiology, diagnosis, management, and
therapy of peripartum cardiomyopathy: a position statement from the heart
failure Association of the European Society of cardiology working group on
peripartum cardiomyopathy. Eur J Heart Fail. 2010;12(8):767-78.

5. Manolis AG, Liagas K, Katsivas A, Vassilopoulos C, Koutsogeorgis D, Louvros
N. Modulation of the sympathovagal balance in drug refractory dilated
cardiomyopathy, treated with permanent atrioventricular sequential pacing.
Jpn Heart J. 2000;41(1):33-40.

6.  Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of
integrating data to uncover genotype-phenotype interactions. Nat Rev
Genet. 2015;16(2):85-97.

19.
20.

22.

23.

24,

25.

26.

27.

28.

29.

30.

32.

33.

34,

Page 29 of 30

Huang S, Chaudhary K, Garmire LX. More is better: recent Progress in multi-
omics data integration methods. Front Genet. 2017,8:84.

VanderWeele TJ, Robins JM. Four types of effect modification: a classification
based on directed acyclic graphs. Epidemiology. 2007;18(5):561-8.

Blot WJ, Day NE. Synergism and interaction: are they equivalent? Am J
Epidemiol. 1979;110(1):99-100.

Rothman KJ, Greenland S, Walker AM. Concepts of interaction. Am J
Epidemiol. 1980;112(4):467-70.

Saracci R. Interaction and synergism. Am J Epidemiol. 1980;112(4):465-6.
Hernan MA, Hernandez-Diaz S, Werler MM, Mitchell AA. Causal knowledge
as a prerequisite for confounding evaluation: an application to birth defects
epidemiology. Am J Epidemiol. 2002;155(2):176-84.

Steinbuch K. Machine intelligence and pattern recognition.
Naturwissenschaften. 1971,58(4):210-7.

Leinonen R, Sugawara H, Shumway M. The sequence read archive. Nucleic
Acids Res. 2011;39(Database).D19-21.

Campbell N, Sinagra G, Jones KL, Slavov D, Gowan K, Merlo M, et al. Whole
exome sequencing identifies a troponin T mutation hot spot in familial
dilated cardiomyopathy. PLoS One. 2013;8(10):e78104.

Database Resources of the National Center for Biotechnology Information.
Nucleic Acids Res. 2017,45(D1):D12-D7.

Jorde LB. Inbreeding in the Utah Mormons: an evaluation of estimates
based on pedigrees, isonymy. and migration matrices Ann Hum Genet.
1989;53(Pt 4):339-55.

Mestroni L, Maisch B, McKenna WJ, Schwartz K, Charron P, Rocco C, et al.
Guidelines for the study of familial dilated cardiomyopathies. Collaborative
Research Group of the European Human and Capital Mobility Project on
Familial Dilated Cardiomyopathy Eur Heart J. 1999;20(2):93-102.

The International HapMap Project. Nature. 2003;426(6968):789-96.

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al.
Transcript assembly and quantification by RNA-Seq reveals unannotated
transcripts and isoform switching during cell differentiation. Nat Biotechnol.
2010;28(5):511-5.

Wang Y, Ghaffari N, Johnson CD, Braga-Neto UM, Wang H, Chen R, et al.
Evaluation of the coverage and depth of transcriptome by RNA-Seq in
chickens. BMC Bioinformatics. 2011;12(Suppl 10):S5.

Database resources of the National Center for Biotechnology Information
Nucleic Acids Res 2017.

Arn P, Funanage VL. 3-methylglutaconic aciduria disorders: the clinical
spectrum increases. J Pediatr Hematol Oncol. 2006;28(2):62-3.

Sandelin A, Alkema W, Engstrom P, Wasserman WW, Lenhard B. JASPAR: an
open-access database for eukaryotic transcription factor binding profiles.
Nucleic Acids Res. 2004:32(Database issue):D91-4.

Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target
sites in mammalian mRNAs. elife. 2015:4.

Rouillard AD, Gundersen GW, Fernandez NF, Wang Z, Monteiro CD,
McDermott MG, et al. The harmonizome: a collection of processed datasets
gathered to serve and mine knowledge about genes and proteins.
Database (Oxford). 2016;2016.

Lachmann A, Torre D, Keenan AB, Jagodnik KM, Lee HJ, Wang L, et al.
Massive mining of publicly available RNA-seq data from human and mouse.
Nat Commun. 2018;9(1):1366.

Huang Y, Zhou M, Sun H, Wang Y. Branched-chain amino acid metabolism
in heart disease: an epiphenomenon or a real culprit? Cardiovasc Res. 2011;
90(2):220-3.

Romano S, Valayannopoulos V, Touati G, Jais JP, Rabier D, de Keyzer Y, et al.
Cardiomyopathies in propionic aciduria are reversible after liver
transplantation. J Pediatr. 2010;156(1):128-34.

Schadewaldt P, Wendel U. Metabolism of branched-chain amino acids in
maple syrup urine disease. Eur J Pediatr. 1997;156(Suppl 1):562-6.

de Keyzer Y, Valayannopoulos V, Benoist JF, Batteux F, Lacaille F, Hubert L,
et al. Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal
muscle of patients with methylmalonic aciduria and propionic aciduria.
Pediatr Res. 2009:66(1):91-5.

De Bie |, Nizard SD, Mitchell GA. Fetal dilated cardiomyopathy: an
unsuspected presentation of methylmalonic aciduria and
hyperhomocystinuria, cblC type. Prenat Diagn. 2009;29(3):266-70.

Bowles KR, Bowles NE. Genetics of inherited cardiomyopathies. Expert Rev
Cardiovasc Ther. 2004;2(5):683-97.

Draaisma JM, van Kesteren IC, Daniels O, Sengers RC. Dilated cardiomyopathy
with 3-methylglutaconic aciduria. Pediatr Cardiol. 1994;15(2):89-90.



Campbell et al. BMC Medical Genomics (2018) 11:110 Page 30 of 30

35, Ingwall JS. Energy metabolism in heart failure and remodelling. Cardiovasc
Res. 2009;81(3):412-9.

36. Horowitz JD, Chirkov YY, Kennedy JA, Sverdlov AL. Modulation of
myocardial metabolism: an emerging therapeutic principle. Curr Opin
Cardiol. 2010;25(4):329-34.

37. Kanazawa M, Ohtake A, Abe H, Yamamoto S, Satoh Y, Takayanagi M, et al.
Molecular cloning and sequence analysis of the cDNA for human mitochondrial
short-chain enoyl-CoA hydratase. Enzyme Protein. 1993:47(1)9-13.

38. Peters H, Buck N, Wanders R, Ruiter J, Waterham H, Koster J, et al. ECHS1
mutations in Leigh disease: a new inborn error of metabolism affecting
valine metabolism. Brain. 2014;137(Pt 11):2903-8.

39. David L, Nelson MMC. Lehninger principles of biochemistry. 4th ed. New
York: W.H. Freeman; 2005.

40.  Chen FF, Xia YL, Xu CQ, Li SS, Zhao YY, Wang XJ, et al. Common variant
157597774 in ADD2 is associated with dilated cardiomyopathy in Chinese
Han population. Int J Clin Exp Med. 2015;8(1):1188-96.

41. Hancock AM, Rienzo AD. Detecting the genetic signature of natural
selection in human populations: models, methods, and data. Annu Rev
Anthropol. 2008,37:197-217.

42. Neel JV. Diabetes mellitus: a "thrifty" genotype rendered detrimental by
"progress"? Am J Hum Genet. 1962;14:353-62.

43, Smith JM, Haigh J. The hitch-hiking effect of a favourable gene. Genet Res.
1974;23(1):23-35.

44. Nielsen R, Hellmann I, Hubisz M, Bustamante C, Clark AG. Recent and ongoing
selection in the human genome. Nat Rev Genet. 2007;8(11):857-68.

45, Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among
US adults: findings from the third National Health and nutrition examination
survey. JAMA. 2002;287(3):356-9.

46.  Park YW, Zhu S, Palaniappan L, Heshka S, Carnethon MR, Heymsfield SB. The
metabolic syndrome: prevalence and associated risk factor findings in the
US population from the third National Health and nutrition examination
survey, 1988-1994. Arch Intern Med. 2003;163(4):427-36.

47. Bugger H, Abel ED. Molecular mechanisms for myocardial mitochondrial
dysfunction in the metabolic syndrome. Clin Sci (Lond). 2008;114(3):195-210.

48.  Zimmet P, Alberti KG, Shaw J. Global and societal implications of the
diabetes epidemic. Nature. 2001;414(6865):782-7.

49.  Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, et al.
Obesity and the metabolic syndrome in children and adolescents. N Engl J
Med. 2004;350(23):2362-74.

50. Nelson DR. Cytochrome P450 nomenclature, 2004. Methods Mol Biol. 2006;
320:1-10.

51. Guengerich FP. Cytochrome p450 and chemical toxicology. Chem Res
Toxicol. 2008;21(1):70-83.

52. Zanger UM, Turpeinen M, Klein K, Schwab M. Functional pharmacogenetics/
genomics of human cytochromes P450 involved in drug biotransformation.
Anal Bioanal Chem. 2008;392(6):1093-108.

53.  Marin-Garcia J, Goldenthal MJ. Fatty acid metabolism in cardiac failure:
biochemical. genetic and cellular analysis Cardiovasc Res. 2002;54(3):516-27.

54. Harris RA, Joshi M, Jeoung NH. Mechanisms responsible for regulation of
branched-chain amino acid catabolism. Biochem Biophys Res Commun.
2004;313(2):391-6.

55.  Damuni Z, Reed LJ. Purification and properties of the catalytic subunit of
the branched-chain alpha-keto acid dehydrogenase phosphatase from
bovine kidney mitochondria. J Biol Chem. 1987,262(11):5129-32.

56.  Fomous C, Mitchell JA, McCray A. 'Genetics home reference’: helping
patients understand the role of genetics in health and disease. Community
Genet. 2006;9(4):274-8.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions . BMC




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Conceptual framework
	Analytical model
	Statistical measures
	Statistical associations
	Effect modification, a structural classification

	Study design
	Data sets and source
	Data source
	Case-control RNA-Seq data sets
	Exome sequence data sets from Italian pedigrees
	Exome sequence data sets from a Chinese pedigree
	Control data sets from the HapMap project
	Variant replication RNA-Seq data sets

	Measures
	Outcome and exposure variables
	Inclusion standards for pedigree data sets
	Inclusion standards for case-control study design data sets
	Diagnostic standards for exome sequence pedigree data sets
	Diagnostic criteria for subjects in RNA-Seq case-control data sets
	Clinical status evaluation

	Bioinformatics
	RNA-Seq data analysis
	Missing data
	RNA-Seq variant annotation
	Exome sequence variant analyses

	Pathway analyses
	Canonical pathway analyses
	Network analysis
	Diseases and functions

	Data integration
	Replication analyses
	Pathway and gene prioritization

	Results
	RNA-Seq drDCM data quality
	Exome re-sequence data coverage

	Transcriptome profiling
	RNA-Seq drDCM variant list
	Data integration
	Pathway and gene prioritization
	Variants associated with BCAAs and LVLFAs
	drDCM patient genotypes
	ECHS1 variant verification in FAM001 and FAM027
	Variant verification in FAM001, FAM027, and Chinese
	Variant verification in the hap map project

	ECHS1:rs10466126 population genetics
	Novel variant in the ECHS1 gene
	Evaluation of ECHS1:rs10466126 and ECHS1:rs1049951
	ECHS1 is a host for miRNA3944
	RHOD is a putative target for has-miR-3944-5p
	ITGAV is a putative target for has-miR-3944-5p
	BAG1 is a putative target for has-miR-3944-3p

	Variant detection replication analyses
	Linkage disequilibrium evaluation of ECHS1:rs10466126 and ECHS1:rs1049951
	Replication analyses for ECHS1:C.41insT
	Replication analyses for DBT

	Putative pathogenic pathways related to ECHS1
	Network analyses
	Mitochondria and cytoskeleton crosstalk

	Evaluations of the ECHS1 gene
	Association of ECHS1 with diseases
	Relationships between ECHS1 with drugs
	ECHS1 functional predictions
	ECHS1 predicted human phenotypes
	ECHS1 predicted pathways (KEGG)


	Discussion
	Association between drDCM and ECHS1
	ECHS1:rs10466126 and ECHS1:rs1049951
	The ECHS1 gene
	Association between ECHS1, BCAAs and LVLFAs
	DBT and drDCM
	MCCC1 and drDCM
	ECHS1 and mitochondrial dysfunction and actin cytoskeleton

	Proposed molecular pathogenesis of drDCM
	Study strengths and limitations
	Strengths
	Limitations


	Conclusion
	Translational perspective

	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Authors’ information
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

