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Abstract

Background: Identifying cancer driver genes (CDG) is a crucial step in cancer genomic toward the advancement of
precision medicine. However, driver gene discovery is a very challenging task because we are not only dealing with
huge amount of data; but we are also faced with the complexity of the disease including the heterogeneity of
background somatic mutation rate in each cancer patient. It is generally accepted that CDG harbor variants conferring
growth advantage in the malignant cell and they are positively selected, which are critical to cancer development;
whereas, non-driver genes harbor random mutations with no functional consequence on cancer. Based on this fact,
function prediction based approaches for identifying CDG have been proposed to interrogate the distribution of
functional predictions among mutations in cancer genomes (elLS 1-16, 2016). Assuming most of the observed
mutations are passenger mutations and given the quantitative predictions for the functional impact of the
mutations, genes enriched of functional or deleterious mutations are more likely to be drivers. The promises
of these methods have been continually refined and can therefore be applied to increase accuracy in detecting new
candidate CDGs. However, current function prediction based approaches only focus on coding mutations and lack a
systematic way to pick the best mutation deleteriousness prediction algorithms for usage.

Results: In this study, we propose a new function prediction based approach to discover CDGs through a gene-based
permutation approach. Our method not only covers both coding and non-coding regions of the genes; but it also
accounts for the heterogeneous mutational context in cohort of cancer patients. The permutation model was
implemented independently using seven popular deleteriousness prediction scores covering splicing regions
(SPIDEX), coding regions (MetalR, and VEST3) and pan-genome (CADD, DANN, Fathmm-MKL coding and
Fathmm-MKL noncoding). We applied this new approach to somatic single nucleotide variants (SNVs) from
whole-genome sequences of 119 breast and 24 lung cancer patients and compared the seven deleteriousness
prediction scores for their performance in this study.
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deleteriousness prediction scores, in lung cancer.

Bioinformatics, Whole genome sequencing

Conclusion: The new function prediction based approach not only predicted known cancer genes listed in
the Cancer Gene Census (CGC), but also new candidate CDGs that are worth further investigation. The results
showed the advantage of utilizing pan-genome deleteriousness prediction scores in function prediction based
methods. Although VEST3 score, a deleteriousness prediction score for missense mutations, has the best
performance in breast cancer, it was topped by CADD and Fathmm-MKL coding, two pan-genome

Keywords: Cancer genomics, Driver genes, Function prediction method, Computational evaluation,

Background

The genetic backgrounds of cancers are highly heteroge-
neous [1], with almost 719 genes currently known as
causally implicated in cancer etiology or development [2,
3], some genes are associated with more than one cancer
type and this list is far from complete. Over the last dec-
ade, due to falling cost of high throughput sequencing,
whole genome sequencing analysis has begun to take the
place of exome sequencing as the method of choice for
investigating genetic variants. It is widely known that in
cancer genomics somatic mutations are assumed to
occur randomly; however, not all these mutations are in-
volved in carcinogenesis. Pathogenic driver mutations
provide growth advantage to cancer cells; whereas, non-
pathogenic passenger mutations occurring during
tumorigenesis may or may not have functional effect,
but play no role in cancer. Cancer driver genes (CDGs)
by definition carry at least one driver mutations that in-
crease cell growth advantage. It is challenging to identify
signal of positive selection in CDGs that differentiate
them for passenger genes harboring only random pas-
senger mutations. Because of the high cost of experi-
mental studies of gene functions, computational
predictive algorithms become crucial to assess the evi-
dence of candidate CDGs in a cohort of sequenced can-
cer samples.

Here we introduce a gene-based permutation model
(dubbed Sum of Most Deleterious Score or SMDS) to
predict cancer CDGs in light of the pioneering InVeX
method [4], a random permutation algorithm. Our algo-
rithm infers enrichment of functional variants at each
gene locus (Fig. 1) and applied it to predict the CDGs of
breast and lung cancer. Unlike the InVEx approach
which utilizes only one functional predictive method for
missense SN'Vs (PolyPhen-2) [5], our algorithm leverages
seven different scoring systems through a permutation
based model. In addition, this new method covers both
coding and non-coding regions of genes in order to infer
new CDGs. We assume that for a cancer sample, one
pathogenic driver mutation on a CDGs is enough to
cause cancer, but different sample may have different

pathogenic mutations in different driver genes. This im-
plies that for each driver gene, only a small proportion
of the samples may carry driver mutations. The power of
our method to detect such driver gene depends on how
different the deleteriousness prediction scores of the
driver mutations compared to the artificial mutations we
randomly imposed on to the gene. Given a list of ob-
served SNVs from a cohort of cancer patients (samples),
for each gene, the permutation approach randomly sam-
ples the position of each observed SNVs along a given
gene sequence maintaining the trinucleotide context.
Next, it identifies the Most Deleterious Score (MDS) per
gene and sample (a monochromic measure of deleteri-
ousness ranging from 0 to 1; and the larger the score,
the more likely the variant is deleterious). Then, it tallies
for each gene and across patients the SMDS 1000 times
to build a null distribution and finally it computes an
empirical p-value by comparing the observed SMDS
against the null distribution of simulated SMDS.

Results

Comparison of the functional prediction scores

We have curated somatic mutations data from primary
whole genome samples of two cancer types including
278,152 SNVs from 119 breast cancer patients and
468,348 SNVs from 24 lung cancer patients. These indi-
vidual datasets belong to a large published dataset con-
taining both whole-genome sequencing (WGS) and
whole-exome sequencing data (WES) data [6]. After fil-
tering out intergenic SN'Vs, the functional effect of these
SNVs were scored using seven predictive methods:
CADD [7], DANN [8], Fathmm-MKL coding and non-
coding [9], MetaLR [10], SPIDEX [11] and VEST3 [12].
A summary of the seven predictive scores is presented
in Additional file 1: Table S1.

First, we used the pairwise Pearson correlation coeffi-
cient (r) to measure the relationship between any pairs of
the seven scores (Additional file 1: Table S2). Two pairs of
scores (Fathmm-MKL coding and Fathmm-MKL noncod-
ing, MetaLR and VEST3) were highly correlated (r=>0.7);
while six pairs of scores show medium correlation (0.4 < r
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Fig. 1 SMDS, a gene-based permutation method for the detection of candidate driver genes. The steps are shown from a to e

to generate the null
distribution

<0.7) and the remaining 13 pairs have a lower correlation
(r<04) for breast and lung cancer. Additional file 1:
Figure S1 presents UPGMA (Unweighted Pair Group
Method with Arithmetic Mean) dendrograms clustering
of scores according to their pairwise scores distance
between scores measured by 1- r.

Analysis of Most deleterious scores and sum of Most
deleterious scores

We next identified the MDS(X,q) of each score in each
gene for each sample. We also computed the SMDS (
Dy, ) for each gene across all samples. Our analysis in-
cluded 19,835 protein coding genes in breast cancer and
20,047 protein coding genes in lung cancer after the an-
notation process. For four pan-genome mutation pre-
dictive tools (CADD, DANN, Fathmm-MKL coding and
Fathmm-MKL noncoding), each gene has a SMDS D¢ >
0.0; meaning that at least one observed SNV in those
genes was scored. However, for the three missense and
splicing mutation scoring methods (MetaLR, SPIDEX
and VEST3), because a higher proportion of SNVs are
not missense or splicing mutations there are multiple
genes with SMDS Dy, =0.0. For instance, only 17 to 22%

and 46 to 49% of the genes have Dg > 0.0 for missense

scores (MetaLR and VEST3) and SPIDEX, respectively
(Additional file 1: Figure S2).

Finding candidate driver genes

We applied our gene-based permutation model to
19,835 and 20,047 protein coding genes identified from
the annotation process (see Methods) for the breast and
lung cancer data, respectively. We define candidate
driver genes as those with p-values less than or equal to
0.01 (p-value <0.01). We found that a long list of genes
met that criteria including 942 (4.7%) unique genes for
breast and 796 (4.0%) for lung cancer (Table 1). Depend-
ing on the individual predictive method used in the per-
mutation model: 0.8 to 1.3% genes showed statistically
significant results for breast cancer and 0.6 to 0.9%
genes for lung cancer. Additional file 1: Figure S3 pre-
sents the null distribution of TP53 (p-value <0.01), a
known breast cancer gene, and SLC1A2 (p-value=
0.195), a non-cancer gene, for the CADD score.

P-value distributions of the seven permutation models

The performance of the p-value distribution of the seven
permutation models were evaluated using quantile—
quantile (QQ) plots, which displays the relationship be-
tween the observed p-values to the expected uniform
distribution of p-values under the null hypothesis. For
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Table 1 Candidate driver genes positively selected (p-value <0.01) by each permutation model and their percentage (in brackets) of

all genes tested for breast and lung cancer data

Permutation model CADD ~ DANN  Fathmm-MKL coding Fathmm-MKL noncoding MetalR  SPIDEX  VEST3 Unique genes Total genes
Breast 263 (1.3) 158 (0.8) 178 (0.9 184 (0.9) 174 (09) 178 (09) 171 (0.9 942 (47) 19,835
Lung 121 (06) 142 (0.7) 138(0.7) 149 (0.7) 178 (09) 171 (0.9) 164 (0.8) 796 (4.0) 20,047

breast cancer (Fig. 2a), most QQ plots for the individual
permutation models show that the majority of genes fit
the null expectations and only a small proportion of
genes having a smaller p-value than expected. Indeed,
the deviation of p-values from the expected distribution
of p-values; as observed outside the 95% confidence
interval (grey shading) at the top tail suggest candidate
genes. Individual QQ plot for each independent model
are shown in Additional file 1: Figure S4. The same
trend was observed for the p-values for lung cancer
genes (Fig. 2b and Additional file 1: Figure S5).

Agreement in predicting candidate driver genes by the
seven independent permutation models

To compare the predictions of the seven permutation
models, we collected 942 unique genes positively se-
lected (p-values <0.01) by each model from breast can-
cer and 796 genes for lung cancer patients. We started
by assessing the agreement between all the seven models
for breast cancer (Additional file 2: Table S3) and lung
cancer (Additional file 2: Table S4). We identified the
proportion of selected genes that were unique to each
predictor or commonly chosen by two to three, or by
more than three other permutation models for breast
cancer (Fig. 3a) and lung cancer (Fig. 3b). For the
pan-genome scores and across the two cancer tissues
types, more agreement can be seen among CADD,
DANN, Fathmm-MKL coding, and Fathmm-MKL non-
coding compared to the three predictors scoring only
coding or splice regions. For instance, in breast cancer,
we found that taken individually each score selected
roughly half of the genes (55, 43, 42 and 51%) unique to
its own; whilst the remaining half were also selected by
other scores. On the other hand, VEST3 has less unique
genes (38%) compared to other predictors; MetaLR was
comparable to the pan-genome scores (50%), whereas
for SPIDEX most of its selected genes (88%) were
unique to its own. In lung cancer (Fig. 3b) the same
trend is observed among pan-genome scores that se-
lected roughly one third to half of the genes unique to
its own; whilst the remaining half to two third were also
selected by other scores. VEST3 and MetaLR scores
have unique genes comparable to the pan-genome
scores; whereas for SPIDEX the vast majority of genes
selected genes (89%) were unique to their own respect-
ively breast and lung cancer.

Figure 4 presents a matrix display of the intersection
of the number of the breast candidate driver genes se-
lected by the seven scores. Set intersections characterize
common genes predicted by a set of scores. The blue
circle in the matrix label scores that are part of the inter-
section. The results show that for breast cancer more
genes were exclusively selected by only one score dem-
onstrating the divergence of these methods: SPIDEX
(157), CADD (141), Fathmm-MKL noncoding (93),
MetalR (87), Fathmm-MKL coding (75), DANN (67),
and VEST3 (65). Moreover, fewer candidate genes were
selected by a set of two scores CADD and DANN (60),
MetalLR and VEST3 (46), Fathmm-MKL coding and
Fathmm-MKL noncoding (37). The same trend is ob-
served as the number of consensus scores increased
till seven. We noted that intersecting the scores re-
sulted in very few overlapping protein coding genes.
There was one common gene (TP53) selected by all
seven scores; 2 genes (GRIN1, XG) by six scores; 6
genes (TAF1L, MAP 3K1, PIK3CA, OTOP1, PSMA4,
FZD3) by five scores; and 13 genes by four scores
(KMT2C, RTDR1, MICAL2, CBFB, SHBG, CDHI10,
C9orf135, GABRR1, ODAM, PHTF2, GANC, MAP 2
K4, FUNDC2) and 50 genes by three scores (Fig. 4a
and Additional file 2: Table S3).

For lung cancer, there was one common gene (DLX4)
selected by six scores; 4 genes (TP53, CCT7, ST6GAL2
and RBM10) by five scores; 16 genes (LY6GOE, STK11,
MUSTNI1, NF1, FBXW7, OR7C1, SLC27Al1, SIRPD,
CTIE, CEP250, LPA, RYR1, QRSL1, CHD3, KCNMB3)
by four scores and 27 genes by three scores (Fig. 4b and
Additional file 2: Table S4).

Next, we considered the agreement between the four
models with pan-genome scores (CADD, DANN,
Fathmm-MKL coding, and Fathmm-MKL noncoding). For
breast cancer, these four scores were able to predict 583
unique genes (62%) out of the total 942 candidate genes.
DANN detected fewer driver candidates (158) and CADD
detected the highest number (263) (Table 1). Overall, 7
genes were commonly predicted by the four models
(Additional file 1: Figures S6A and S7A). More genes were
exclusively predicted by only one predictive model demon-
strating the divergence of these models: CADD (156),
Fathmm-MKL noncoding (100), Fathmm-MKL coding
(97), and DANN (69). We found there was more agree-
ment between some of these scores. We observed a higher
number of genes selected by a combination of CADD and
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Fig. 2 Quantile-quantile (QQ) plots of p-values comparing the observed distribution of p-values (y - axis) to the expected p-values of a null
distribution (x - axis) for 19,835 breast cancer genes (Panel a) and 20,047 lung cancer genes (Panel b). The red line represents the expectation
under the null. The grey area depicts the 95% confidence

DANN (65), and Fathmm-MKL coding and Fathmm-MKL
noncoding (48) and that was also noted in lung cancer.
This higher correlation is expected as CADD and DANN
shared the same training data, as well as Fathmm-MKL

coding and noncoding.

We also assessed the agreement between

the

remaining three models for breast cancer. Two of these
independent models only score missense mutations in
coding regions (VEST3 and MetaLR) whereas SPIDEX
cover exonic and intronic regions near splicing sites.
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Across the two cancer tissue types, they have provided
the MDS (D;c) for only 17 to 49% of the genome

(Additional file 1: Figure S2). We found that for breast
cancer, these three predictors selected 437 unique cancer
candidate driver genes (46%) out of the 942 candidate
driver genes. They have consensus on 5 genes (TP53,
RAB37, ODAM, FZD3 and FUNDC?2) (Additional file 1:
Figures S6B and S7B). More genes were exclusively se-
lected by only one predictor demonstrating the diver-
gence of these methods: SPIDEX (167), MetaLR (99),
and VEST3 (90) (Additional file 1: Figure S3B). We ob-
served many shared predicted genes (70) between
MetalR and VEST3 (Additional file 1: Figure S7B).

For lung cancer, the four models with pan-genome
scores (CADD, DANN, Fathmm-MKL coding, and
Fathmm-MKL noncoding) selected 419 unique genes
(53%) out of the total 796 candidate genes. As shown in
Additional file 1: Figure S8A and S9A, they commonly
predicted 7 genes (LY6G6E, TP53, STK11, MUSTNI,
RBM10, DLX4 and CCT?7). The remaining three models

(MetaLR, VEST3 and SPIDEX) selected 435 unique can-
cer candidate driver genes (55%) out of the 796 candi-
date driver genes. Additional file 1: Figures S8B and S9B
show that they have consensus on 5 genes (KCNC3,
SPINK14, KCNMB3, CHD3, and ST6GAL?2).

Intersection of the predicted candidate driver genes for
breast and lung cancer with the Cancer genes census

The CGC currently lists 534 genes (with somatic muta-
tions) causally associated with different types of cancers.
Among them 32 genes have been implicated in breast
cancer. If considering only genes predicted by five or
more scores, the seven predictive permutation models
selected a total of 10 protein coding genes for breast
cancer (Table 2). Among them, TP53 was selected by all
seven scores and is known to cause breast cancer. Two
other genes, PIK3CA and MAP 3 K1, which were se-
lected by five scores, are also associated with breast can-
cer according to CGC. MAP 2 K4 were also selected by
five scores and is a known to be associated with other
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Table 2 Candidate driver genes predicted by five or more permutation models for breast and lung cancer

Number of shared
predictive models

Number of genes
predicted

Genes names overlapping with
breast or lung cancer genes in CGC

Genes names overlapping with Gene names not in CGC

other cancer genes in CGC

Breast

TP53

PIK3CA, MAP 3K1

TP53, RBM10

GRINT, XG

MAP 2 K4 TAF1L, OTOP1, PSMA4, FZD3

DLX4
CCT7, ST6GAL2

cancer types. The remaining six genes (GRIN1, XG,
TAF1L, OTOP1, PSMA4, and FZD3) are not listed in
CGC. Additional file 1: Table S5 shows that all together
these models were able to predict 15 (47%) of known
breast cancer genes. Additional file 1: Table S6 lists the
p-values of 32 breast cancer genes where 38, 25, 19, 19,
19, 16, and 13% of CGC genes were selected by CADD,
VEST3, Fathmm-MKL coding, MetalLR, SPIDEX,
Fathmm-MKL noncoding and DANN permutation
models respectively. We also found that a total of 37
candidates predicted by the seven permutation models
for breast cancer have already been linked to other types
of cancer (Additional file 1: Table S5). Figure 5a shows
the fraction of the 534 genes in CGC predicted by each
model.

In CGC, twelve genes with somatic mutations are caus-
ally associated with lung cancer. A total of 5 protein cod-
ing genes were predicted by five or more scores in this
study. Among them, TP53 and RBM10 were selected by
five scores are known to cause lung cancer according to
CGC. The remaining three genes (DLX4, CCT7, and
ST6GAL2) are not listed in CGC. Additional file 1: Table
S7 shows that all together the seven models were able to
predict 2 (6%) of known lung cancer genes. Additional file
1: Table S8 lists the p-values of 12 lung cancer genes
found in CGC. Figure 5b shows the fraction of the 534
genes in CGC predicted by each model. We found that a
total of 22 candidates predicted by the seven permutation
models for lung cancer have already been linked to other
types of cancer (Additional file 1: Table S7).

Overall performance of the seven deleteriousness
prediction scores

The overall performance of the seven permutation
models was evaluated using the following three criteria
including the number of genes predicted by each model,
overlap with the CGC and the model consensus. These
criteria were recently recommended by Tokheim et al.
[13] for assessing the performance of driver gene predic-
tion method in absence of a gold-standard method. The

model consensus is the fraction of predicted candidate
driver genes selected by two or more other predictors
(Fig. 3a and b). The overlap with the CGC represent the
fraction of the 534 genes in CGC predicted by each
model (Fig. 5a and b). In this study, the top ranked
scores for breast cancer are VEST3, Fathmm-MKL cod-
ing and CADD. For lung cancer, Fathmm-MKL coding,
CADD, and VEST3 outperformed the other (Table 3).

Discussion

In this study we developed a function prediction based
approach (SMDS) utilizing both coding and noncoding
deleteriousness prediction scores for somatic SNVs ob-
served in whole genome sequence data of cancer sam-
ples to identify potential cancer driver genes. We applied
this approach to breast and lung cancer data sets using
seven different functional prediction scores (CADD,
DANN, Fathmm-MKL coding, Fathmm-MKL noncod-
ing, MetaLR, SPIDEX and VEST3). A total of 942
unique gene were selected by the seven scores with
p-values <0.01 in our permutation tests for breast can-
cer. Among them, ten protein coding genes were se-
lected by five or more scores, which have higher
likelihood to be true cancer driver genes. Among the ten
genes, the well-known cancer driver gene TP53 is the
only gene selected by all seven scores. PIK3CA, MAP 3
K1 and MAP 2 K4 are selected by five scores and known
to be associated with breast cancer or other cancer
types. Six new candidate genes were identified by at least
five of the seven scores but not listed in the CGC:
GRIN1, XG, TAF1L, OTOP1, PSMA4 and FZD3. How-
ever, there are some evidence supporting their involve-
ment in cancer development.

For lung cancer, a total of 796 unique gene were se-
lected by the seven scores with p-values <0.01 in our
permutation tests. Among them, five protein coding
genes were selected by five or more scores. Two are
known lung cancer genes (RBM10 and TP53). The fewer
number of know cancer genes predicted here for lung
cancer may be attributed to the small sample size (24
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Fig. 5 Proportion of 534 genes in the Cancer Gene Census predicted by each permutation model from breast cancer (Panel a) and lung cancer

samples compared to 119 samples in breast cancer)
and higher level of passenger mutations (468,348
SNVs for lung cancer samples compared to 278,152
SNVs for breast cancer samples). Three new candi-
date genes identified by at least five of the seven
scores are not listed in the CGC (DLX4, CCT7 and
ST6GAL2). There are also evidence supporting their
involvement in cancer development.

PSMA4

The results of a recent study showed that mRNA high
expression level of PSMA4 in multiple cancer types were
significantly associated with worse prognostic in breast
cancer, gastric cancer and HER2-negative gastric cancer;
whereas they were correlated with better prognostic in
lung adenocarcinoma [14]. A previous functional study

J

reported the gene was involved in promoting cancer cell
proliferation and apoptosis; and it was labeled as a
“strong candidate mediator” associated with lung cancer
susceptibility [15]. PSMA4 polymorphism has been asso-
ciated to lung cancer risk in Chinese Han population
[16]. The gene was also overexpressed in colorectal can-
cer patients and was significantly correlated with metas-
tasis development and worse prognosis [17].

TAF1L

This gene was previously reported as the fourth signifi-
cantly mutated gene among 20 protein kinase genes
rated by probability of harboring at least one mutation
[18]. It was later identified as a potential driver gene
with clinical relevance in melanoma cancer samples [19].
Interestingly, the authors found that it was recurrently
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Table 3 Performance comparison of the seven permutation models on breast and lung cancer

Method Number of Significant genes ~ Overlap with CGC ~ Method consensus  CGC Rank  Consensus Rank  Average Rank

Breast cancer
CADD 263 0.041 045 1 4 25
DANN 158 0.011 0.57 6 2 4
Fathmm-MKL coding 178 0.022 0.58 2 2 2
Fathmm-MKL noncoding 184 0.021 049 3 3 3
MetalR 174 0.013 0.5 5 3 4
SPIDEX 178 0.015 0.12 4 5 4.5
VEST3 171 0.021 0.62 3 1 2

Lung cancer
CADD 121 0.017 048 2 4 3
DANN 142 0.013 025 3 6 4.5
Fathmm-MKL coding 138 0.021 0.66 1 1 1
Fathmm-MKL noncoding 149 0.011 0.54 4 3 35
MetalR 178 0.007 0.46 5 5 5
SPIDEX 171 0.002 0.11 6 7 6.5
VEST3 164 0.011 0.57 4 2 3

mutated in pan-negative melanoma samples (without
mutations in known melanoma cancer driver genes).
The gene was found to be disrupted by frameshift muta-
tions in Gastric and Colorectal Cancers [20] and because
of its known involvement in apoptosis induction and cell
cycle regulation; they hypothesized that the presence of
frameshift mutations could decrease the cell death and
therefore lead to higher survival of cancer cells in gastric
and collateral cancer patients.

GRIN1

Recent studies have demonstrated the role GRIN1 plays
in tumorigenesis. One study [21] analyzed expression of
GRINT1 in 12 different human tumor cell lines and con-
cluded it was present in 9 of them including breast can-
cer. The gene is a calcium regulating tumor suppressor
that was reported as one of the six hyper mutated genes
impacting dysregulation of the glutamate signaling path-
ways in melanoma [22]. Functional mutations (loss of
function) in this gene have been linked to tumor growth,
proliferation and survival in melanoma. Another study
[23] reported that functional receptors from this gene
were crucial for maintaining tumor cell growth and via-
bility in breast and could by target for the development
of therapeutic drugs.

FZD3

This gene was previously described as an oncogene and a
probable therapeutic target gene [24]. The gene was found
to be overexpressed in multiple cancer types including
lung, leukemia, myeloma, lymphoma and sarcoma. A
study assessing its clinical significance in colorectal cancer

concluded that FZD3 was not only associated with car-
cinogenesis and progression; but also, its staining could be
used as prognostic marker [25].

OTOP1

This gene has been associated to diverse type of cancer
including esophageal adenocarcinoma, pancreas, Melan-
oma, Lung, and prostate [26]. It was frequently mutated
in lung cancer cell line genomes [27] and pancreatic tu-
mors [28], but it was not conclusively classified as a
driver gene.

XG

This gene is known to be associated to lower survival
and tumor invasiveness in Ewing’s Sarcoma (EWS)
patients and was described as a biological marker for
EWS [29, 30].

DLX4

The methylation of DLX4 was strongly associated with
high risk of recurrence and poor prognostic survival in
lung cancer patients [31]. The gene can drive tumor pro-
gression in ovarian cancer through the NF-kB pathway
by activating a regulatory factor cell surface molecule
CD44 [32]. It was also found to promote ovarian cancer
by inducing the expression of iNOS, an enzyme that
stimulates angiogenesis [33].

ST6GAL2

DNA methylation of ST6GAL2 has been proposed as a
cancer biomarker for screening and detection. A recent
study had linked ST6GAL2 hypermethylation to cervical
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intraepithelial neoplasia grade 3 or worse [34]. ST6GAL2
upregulation may be implicated to growth and prolifera-
tion in invasive ductal carcinoma (IDC) [35]. In follicular
thyroid carcinoma, up-regulated ST6GAL2 in advanced
cells and its co-expression with LncRNA HCP5 was
strongly associated to cell proliferation, migration, inva-
siveness and angiogenesis [36].

cCcT7

This gene has been recently identified as a potential bio-
marker for endometrial carcinoma [37]; the gene was
found to be highly expressed in a proteomic analysis
comparing endometrial carcinoma and normal precar-
ious tissues. According to the same authors, CCT7 has
been linked to multiples cancer (neck cancer, adenocar-
cinoma, carcinoma squamous cell, neoplasms, malignant
neoplasms and lymphoma) and health conditions (ne-
crosis, staphylococcal scalded skin syndrome and Hodg-
kin disease). CCT7 was also identified as a biomarker
linked to late stage colorectal cancer in a protein inter-
action sub-networks analysis for early tumorigenesis
comparing normal and late stage colon cancer tissues
[38]. A study comparing levels of mRNA expression dur-
ing overall survival in glioblastoma multiform (GBM)
human patients and protein expression during develop-
ment of the macaque rhesus brain discovered eight sig-
nature genes including CCT7 that were higher expressed
in early brain development, were associated with overall
survival of in GBM patients and have the potential for
drug target therapy [39].

Conclusion

In this paper we discussed a gene-based permutation ap-
proach (SMDS) that functionally interrogates the whole
genomes of cancer patients to identify potential candi-
date driver genes. We have performed a comprehensive
analysis to predict CDGs by applying the SMDS method
to breast and lung cancer data and comparing the scores
of seven popular functional predictive methods. Each in-
dividual SMDS was able to identify a set of potential
CDGs. We intersected CDGs predicted by at least five of
the seven SMDS models and obtained a list of well-known
cancer genes reported in the CGC and also novel CDGs
that are worth further investigation. Our study also
showed the advantages of utilizing pan-genome deleteri-
ousness prediction scores in function prediction based
methods for identifying cancer driver genes. Although for
breast cancer the best performed score is tied between a
missense prediction score, VEST3, and a pan-genome
score, Fathmm-MKL coding, for lung cancer, on the other
hand, two pan-genome scores, CADD and Fathmm-MKL
coding performed better than missense prediction scores.
Considering the pan-genomes scores’ performances are at
least comparable to missense prediction scores yet provide
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complementary information, they shall be included in
function prediction based approaches for detecting CDGs,
as demonstrated in this study.

Methods

Cancer mutation data collection

We curated somatic SNVs primary from the whole gen-
ome sequence data of two cancer tissue types (278,152
SNVs from 119 breast cancer patients and 468,348 SNVs
from 24 lung cancer patients) of a large published data-
set containing both whole-genome sequencing and
whole-exome sequencing data [6]. These somatic muta-
tion data were obtained as follows as described by the
authors. Normal DNA samples and tumor samples of
the same individual were sequenced. All somatic muta-
tions data of each sample was then combined to gener-
ate its mutational catalog.

Individual predictive methods

The seven individual scores included in our analysis
were initially developed to prioritize functional muta-
tions and all are non-cancer specific (Additional file 1:
Table S1). CADD [7], is a meta-annotation tool that con-
trasts existing genomic variation to simulated genomic
variation. It uses a linear kernel SVM to differentiate be-
nign variants from deleterious variants (binary classifica-
tion) by integrating the information of diverse functional
annotations (evolutionary conservation, regulatory and
transcript information, and protein-level scores) into a
single score. It scores the deleteriousness of SNVs as
well as insertion/deletions variants for both coding and
non-coding regions. DANN [8] algorithm uses the same
features set and training data as CADD to train a DNN
which scores every possible SNVs in order to capture
non-linear relationships among features. Fathmm-MKL
[9] predicts the functional, molecular and phenotypic
consequences of SNVs of both coding and noncoding re-
gions. It uses a MKL classifier to combine ten different
features groups including functional annotations from
ENCODE and nucleotide-based conservation measures.
Two scores were produced by this method based differ-
ent training features: coding and noncoding. Both scores
are pan-genome. MetaLR [10] scores the deleteriousness
of missense SNVs. It combines individual scores from
ten predictors including nine scores (SIFT [40],
PolyPhen-2 [5], GERP++ [41], MutationTaster [42], Mu-
tation Assessor [43], Fathmm [44], LRT [45], SiPhy [46],
PhyloP [47]) and the maximum minimum frequency ob-
served in the 1000 genomes populations into one en-
semble score using a LR model. SPIDEX [11] algorithm
is a Bayesian ensemble of DNN trained with RNA se-
quencing data. It scores all synonymous, missense and
nonsense exonic SN'Vs, as well as intronic SN'Vs that are
up to 300 nt from splice junctions. VEST3 [12] method
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integrated 86 features from SNVBox [48] (conservation
scores, amino acid residue substitution scores, Uni-
ProtKB annotations, and predicted local protein struc-
ture) to predict the functional significance of missense
mutations.

Annotation and scoring of variants

SNV annotation was done through the WGSA pipeline
[49]. Three different annotation software (ANNOVAR
[50], SnpEff [51] and VEP [52]) with two different data-
bases (RefSeq [53] and Ensembl [54]) were used to func-
tionally annotate all the SNVs. After the annotation
process, we retrieve the following four VEP gene annota-
tion fields: VEP_ensembl_Consequence, VEP_ensembl_-
Gene_Name, VEP_ensembl_Protein_ID, and
VEP_ensembl CANONICAL. We filter only protein
coding genes from other genes using the VEP_ensembl_-
Protein_ID. Because some genes have more than one
transcript, we restricted our analysis to the canonical
transcripts. The region of each gene was defined as from
5kb upstream to 5kb downstream. All seven scores
(CADD, DANN, Fathmm-MKL noncoding and
Fathmm-MKL coding, VEST3 and MetalLR) for each
SNV were annotated through WGSA [49]. To make the
individual scores comparable to one another CADD and
SPIDEX scores were rescaled to rank between 0 and 1.
Because not all the seven scoring systems are applicable
to the entire genome; three methods including MetaLR
and VEST3 (score only missense SNVs) and SPIDEX
(score only part of exon and intron regions) had a high
number of variants with missing values. The lowest
score (0.0) was used for those variants.

A gene-based permutation model

We designed a gene-based permutation model to
prioritize cancer candidate driver genes in light of the
InVeX method [4]. We applied this new approach to
compare the performance of seven predictive methods
(CADD, DANN, Fathmm-MKL noncoding and
Fathmm-MKL coding, MetaLR, SPIDEX and VEST3)
that measure the functional effect of SNVs in both cod-
ing and non-coding regions of the genome. For a cancer
tissue type and assuming there are total of (G) genes, (S)
samples, and(C) categories (predictive scores of each in-
dividual predictive method); first, we identify the MDS
(Xgsc) of each observed SNV, for each sample (s), gene
(¢) and category/score (c). MDS is a monochromic meas-
ure of deleteriousness ranging from 0 to 1; and the lar-
ger the score, the more likely the variant is deleterious).
Second, we compute the SMDS where all the MDS per
sample (s) are tallied for each gene (g) and each category
(c) into Dg. = Zf:ngsc' Third, we generate within-gene
null distribution to compute p-values in the observed
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data. Basically, for each sample (s), gene (g) and category
(c), the gene-based permutation approach randomly per-
muted the position of the each observed SNV along the
gene sequence, preserving the trinucleotide context in
each sample (ie. for a ACG>ATG SNV we randomly
choose another ACG trinucleotide sites from the gene
sequence, from 5kb stream to 5kb downstream, and
“move” the ACG > ATG SNV there) and this is done
1000 times. Next, the newly “simulated” SNVs were an-
notated and scored and each set is known as a trial (total
number of trials =1000). Fourth, for each trial set, we

identify the MDS (Xg,’és) and compute the SMDS (D;Z

= Zf:ngsc) for the simulated data. Fifth, we compute
individual p-value (Pg) for each gene (g) and for each
category (c) for the observed Dy based on the empirical

null distribution of the simulated 1000 Dg; scores (m =

1000). Py, was defined as the percentage of the simulated

Dy scores equal or greater than the observed Dp.
Plotting

The QQ-plot of p-values showing the distribution of
p-values were produced in R using the function pQQ
from the Haplin library [55]. The intersection between
the candidate driver genes predicted by each individual
predictive model were found using UpSetR [56]. The
Veen diagrams were drawn in the website http://bioin-
formatics.psb.ugent.be/webtools/Venn/. The dendro-
gram (UPGMA cluster analysis) were produced in R
using the package UPGMA, (https://www.rdocumenta-
tion.org/packages/phangorn/versions/2.4.0/topics/
upgma).

Additional files

Additional file 1: Figure S1. UPGMA dendrogram comparing the seven
prediction scores for breast cancer (Panel A) and lung cancer (Panel B).
Figure S2. Percentage of genes with Sum of Most Deleterious Scores DZC
> 0.0 covered by each of the 7 predictive models in for breast and lung
cancer data. Figure S3. Null distribution of the permuted Sum of Most
Deleterious Scores D;”[ for the CADD score in TP53 (p-value = 0.000)
well-known breast cancer gene; and SLC1A2 (p-value = 0.195) gene not
associated with cancer. The red dots and lines indicate the observed
values 6.7 for TP53 and 3.7 for SALL4. Figure S4. Quantile—quantile plot
of the observed p-values for breast cancer genes (y - axis) against the
expected P values of a null distribution (x - axis). The red line represents
the expectation under the null hypothesis. The grey area depicts the 95%
confidence interval. Figure S5. Quantile—quantile plot of the observed
p-values for lung cancer genes (y - axis) against the expected P values of
a null distribution (x - axis). The red line represents the expectation under
the null hypothesis. The grey area depicts the 95% confidence interval.
Figure S6. Proportion of breast candidate driver genes predicted by one,
two to three, and more than three permutation models: Panel A-
Agreement between CADD, DANN, Fathmm-MKL coding and Fathmm-
MKL noncoding; Panel B- Agreement between MetalR, SPIDEX and
VEST3. Figure S7. Comparison of breast candidate genes driver predicted
by seven independent permutation models. Panel A- Venn diagram of
candidate driver genes predicted by CADD, DANN, Fathmm-MKL coding,
and Fathmm-MKL noncoding. Panel B- Venn diagram of candidate driver
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genes predicted MetalR, SPIDEX and VEST3. Figure S8. Proportion of
lung candidate driver genes predicted by one, two to three, and more
than three permutation models: Panel A- Agreement between CADD,
DANN, Fathmm-MKL coding and Fathmm-MKL noncoding; Panel B-
Agreement between MetalR, SPIDEX and VEST3. Figure $9. Comparison
of lung candidate driver genes predicted by seven independent
permutation models. Panel A- Venn diagram of candidate driver genes
predicted by CADD, DANN, Fathmm-MKL coding, and Fathmm-MKL
noncoding. Panel B- Venn diagram of candidate driver genes predicted
MetalR, SPIDEX and VEST3. Table S1. Summary of methods for scoring
somatic mutations (SNVs) deleteriousness. Table S2. Pearson’s correlation
Coefficients between the seven predictive scores for breast cancer (Upper
Triangle) and lung cancer (Lower Triangle). Table S5. Breast cancer
candidate driver genes predicted by one or more permutation models.
Table S6. P-values for each permutation model for the 32 breast cancer
genes in Cancer Genes Census. Table S7. Lung cancer candidate driver
genes predicted by one or more permutation models. Table S8. P-values
for each permutation model for the 12 lung cancer genes in Cancer
Genes Census. (PDF 1721 kb)

Additional file 2: Table S3. Predicted breast cancer driver genes by
the seven permutation models. Table S4. Predicted lung cancer driver
genes by the seven permutation models. (XLSX 43 kb)
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