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Abstract

Background: Diet plays an important role in Alzheimer’s disease (AD) initiation, progression and outcomes. Previous
studies have shown individual food-derived substances may have neuroprotective or neurotoxic effects. However, few
works systematically investigate the role of food and food-derived metabolites on the development and progression
of AD.

Methods: In this study, we systematically investigated 7569 metabolites and identified AD-associated food metabolites
using a novel network-based approach. We constructed a context-sensitive network to integrate heterogeneous chemical
and genetic data, and to model context-specific inter-relationships among foods, metabolites, human genes and AD.

Results: Our metabolite prioritization algorithm ranked 59 known AD-associated food metabolites within top 4.9%, which
is significantly higher than random expectation. Interestingly, a few top-ranked food metabolites were specifically
enriched in herbs and spices. Pathway enrichment analysis shows that these top-ranked herb-and-spice metabolites
share many common pathways with AD, including the amyloid processing pathway, which is considered as a hallmark
in AD-affected brains and has pathological roles in AD development.

Conclusions: Our study represents the first unbiased systems approach to characterizing the effects of food and food-

derived metabolites in AD pathogenesis. Our ranking approach prioritizes the known AD-associated food metabolites,
and identifies interesting relationships between AD and the food group “herbs and spices”. Overall, our study provides

intriguing evidence for the role of diet, as an important environmental factor, in AD etiology.
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Background

Alzheimer’s disease (AD) is the sixth leading cause of
death and affected 5.3 million people in 2015 in the
United States [1]. Diet plays an important role in the
disease development [2]. Epidemiological studies have
shown that higher adherence to a Mediterranean-type
diet is associated with lower risk for AD [3-5] and mild
cognitive impairment [6, 7]. Evidence suggests that
improper diet habits may accelerate the progression of
neuron damage through increasing the concentration of
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pro-inflammatory mediators [8, 9]. In addition, a number
of experimental studies have investigated individual food-
derived substances, such as resveratrol [10], vitamin [11],
and advanced glycation end products [12], and demon-
strated their neuroprotective or neurotoxic effects. Sys-
tematic study of food metabolites and their associations
with AD may offer insights into the disease-environment
relationship and disease prevention, but currently remains
unexplored.

Knowledge of metabolites and their interactions with
disease-associated proteins has been obtained through in
vitro, in silico, and in vivo technologies [13]. Most previ-
ous studies used these data to understand drug actions
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[14, 15]. Recently, large amounts of data have also accu-
mulated on food metabolites (Fig. 1): The Human Metab-
olome Database (HMDB) [16] provides high-quality and
comprehensive information for 74,462 metabolites, in-
cluding their chemical, biological, and physical properties;
these metabolites can be linked to foods using the
large-scale food constitute resource in the Food Database
(FooDB) [17], which covers the detailed compositional
information for 907 foods. On the other hand, the interac-
tions between the metabolites and human proteins are
also available in chemical-protein interaction databases,
such as the Search Tool for Interactions of Chemicals
(STITCH) [18]. Here, we developed a network-based
approach to integrate food metabolites with foods and
human proteins, and performed a systematic unbiased
study to identify AD-associated food metabolites.
Network-based approaches have been widely used in
biomedical applications, such as predicting disease-gene
associations [19-21], understanding disease comorbidity
[22], and drug repurposing [23—25]. Traditional biomedical
networks often model the relationships between two nodes
based on pairwise similarities [26, 27]. For example, disease
networks have been constructed by defining different
similarities: some quantified the disease-disease similar-
ities based on shared phenotypes [26, 27], and others
used shared genetic factors [28]. These networks only
captured the strength of the links, but ignored their
semantic meaning. Real world interconnections are multi-
typed. Specifically, in our problem, two metabolites may
share commonalities because they are contained in the
same food, or interact with the same protein. Recently, we
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introduce a novel concept—context-sensitive network
[29], which preserves the context of how nodes are
connected in the network. In a disease-gene prediction
study, our experiment results demonstrated that the
context-sensitive disease network led to significantly
improved performance than the similarity-based disease
network [29]. Analysis shows that the similarity-based
network tends to contain noises and bury the true
signals in a much denser network structure than the
context-sensitive network [29]. Motivated by the bene-
fits of context-sensitive networks, we construct a gene-
metabolite-food (GMF) network in this study to model the
complex relationships among food, metabolites, human
proteins, and AD by seamlessly integrating heterogeneous
databases in Fig. 1. Then we predict the food metabolites
that are highly associated with AD using this network, and
further investigate the pathways shared between AD and
the prioritized food metabolites. Due to the lack of gold
standard, we tested our approach in AD by manually
curating a list of known AD-associated food metabolites.
To the best of our knowledge, our study represents the
first effort to systematically model the context-sensitive
interactions among tens of thousands of human genes,
food metabolites, food and diseases and to understand
which and how food and food-derived metabolites are
involved in disease development. In summary, the identifi-
cation of food and food-derived metabolites and the under-
standing of their role as key mediators through which
these factors promote or protect against human diseases
will enable new possibilities for disease understanding,
diagnosis, prevention, and treatment.
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Fig. 1 Link disease, chemical and genetic data to infer the food metabolites related with AD
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Methods

Our study consists of four steps (Fig. 2): first, we construct
the GMF network using databases in Fig. 1; second, we
prioritize AD-associated metabolites using a network-
based ranking algorithm with the input of AD-causing
genes; third, we evaluate the metabolite ranking using
the known disorder-metabolite associations provided by
HMDB; and finally, we investigate the common path-
ways shared by AD and top-ranked food metabolites to
gain insights into how the metabolites affect AD. The
following subsections describe each step in details.

GMF network construction

We construct a context-sensitive network to model the
interconnections among foods, metabolites, and human
genes. We first extract the three types of nodes for the
network: the metabolite nodes are extracted from HMDB
[16]; the gene nodes are obtained from The HUGO Gene
Nomenclature Committee (HGNC) [30] and labeled by
approved gene names. For food nodes, we extract food
names from FooDB [17] and normalize these strings using
the unique identifier assigned by the database. Then we
use the “group” information provided in FooDB for each
food to further clean the food names: we exclude the
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foods in the group of “dishes”, such as “pizza” and “meat-
ball”, which contain complex and uncertain components,
and remove the food names that are high level food group
names, such as “herbs and spices”, “fruits”, and “green
vegetables”.

Next, we identify three types of edges for the network:
metabolite-gene, metabolite-food, and gene-gene links.
The metabolite-food edges are extracted from FooDB:
we aligned the unique metabolite identifiers provided by
FooDB to the metabolite names in HMDB. We conducted
distribution analysis on food metabolites (Fig. 3). Each
food is averagely associated with 78 metabolites, and 95%
of the metabolites are linked to less than 20 foods. The
metabolite-gene connections are extracted from the
STITCH'® database: we link the metabolite names to
PubChem compound identifiers, which is linked to inter-
acting genes in STITCH. In addition, genes are connected
other gene nodes via the protein-protein interactions
extracted from the Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING) [31]. Since protein-
protein interactions in STRING and metabolite-gene
interactions in STITCH have confidence scores provided
by each own database, we establish weighted edges for
gene-gene and gene-metabolite edges, and normalize the
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Fig. 2 Four steps of our study: (1) GMF network construction (blue nodes: genes; green nodes: metabolites; orange nodes: food); (2) metabolite
ranking using a network-based ranking algorithm; (3) evaluation of the metabolite ranking; and (4) investigation of the common pathways
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weights into the range of [0,1]. Table 1 shows the size of
the entire GMF network, and the numbers of nodes and
edges of each kind.

Metabolite ranking algorithm
We first extracted from the Online Mendelian Inheritance
in Man (OMIM) database all 14 genes associated with AD
[32], and set the corresponding gene nodes in the GMF
network as the “seeds.” Then we rank the nodes in the
GMF network using the random walk model, which
assumes that a walker starts from the seeds and randomly
jumps to the neighbor nodes. We calculate an iteratively
updated score for each node as the probability of being
reached by the seeds:

pi = (1=y)Mp;_, + ypo, (1)
where M is the transition matrix, y is the probability of
restarting from the seeds, and pgy consists of the initial
scores for all nodes. Here, the initial score is 1/14 for
each seed and zero for all other nodes; thus all the

Table 1 Number of nodes and edges in the gene-metabolite-food
(GMF) network

Node/edge type Number
Nodes Gene nodes 18,338
Metabolite nodes 7596
Food nodes 790
Total 26,724
Edges Gene-gene 7,869,282
Gene-metabolite 210,405
Metabolite-food 62,216
Total 8,141,903

scores add up to 1. The transition matrix M is the adja-
cency matrix of the GMF network after column-wise
normalization. We set the restarting probability y as 0.7
and the algorithm is insensitive to different choices of y.
We assume the algorithm converges if the difference of
scores between iteration &<107% After the algorithm
converges, we extract metabolites from all the nodes and
rank them based on the scores.

Evaluation of metabolite ranking

HMDB provides metabolite-disorder associations curated
from literature. We extract a total of 81 AD-associated
metabolites from HMDB, 59 of which appear in STITCH
with associated genes. We used these 56 metabolites as
the evaluation set. Most of metabolite-AD associations
were identified in previous animal model or human cell
line studies. Here, though the 59 metabolites are not the
perfect gold standard for AD-associated metabolites,
we consider them as the positive examples that show
relevance with AD and test if they tend to be ranked
highly in our approach.

We calculate the mean and median ranks for the 59
metabolites among our ranking. We also plot the
precision-recall curve, and calculated the average pre-
cision across all recall levels when considering top k
retrieved metabolites as the positive. The evaluation
metrics are compared between our approach and the
random cases. Pure random rankings result in a mean
average rank of 50% for the 59 metabolites. Here, we
generate random rankings by randomly selecting the
seeds on the GMF network. Comparing our ranking
for the evaluation set with the randomized cases, we
test if the top-ranked metabolites were prioritized by
chance.
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Pathway analysis for top-ranked food metabolites

Only part of the 7596 metabolites are actually linked to
food nodes based on the FooDB data in the GMF network.
In addition, many of the food metabolites are components
of hundreds of different foods. We first extract the metab-
olites that were uniquely identified in less than ten foods.
Then we identify the significantly enriched pathways for
each top-ranked food-specific metabolite: we import the
metabolite interacting genes into the QIAGEN’s Ingenuity
Pathway Analysis software (IPA°, QIAGEN Redwood City,
https://www.qiagenbioinformatics.com/products/ingenui-

ty-pathway-analysis/) and download the significant canon-
ical pathways. To compare the pathways for prioritized
metabolites and AD, we also identified significant path-
ways for AD using the 14 AD-associated genes from
OMIM.

We developed a method to rank the common significant
pathways between AD and each prioritized metabolite.
Intuitively, we intended to prioritize the pathways that are
highly enriched for both AD- and metabolite-associated
genes. The IPA software provides a coverage score for
each AD- or metabolite-associated significant pathway;
the score measures the percentage of AD- or metabolite-
associated genes in each pathway. We design a score for
each common pathway between AD and a metabolite to
ensure the balanced coverage:

CAD X Ciy
§=—,
CAD + Cim

(2)

where c4p and ¢, are the coverage of AD-associated
genes and the metabolite-associated genes, respectively.
The score was inspired by the definition of F1 measure,
which is a measure of a test’s accuracy, and considers
precision and recall at the same time. Last, we examine
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the top-ranked common significant pathways between
AD and each metabolite based on the balanced score.

Results

Metabolite ranking based on the context-sensitive GMF
network are supported by existing knowledge

Our approach averagely ranked the 59 known AD-asso-
ciated food metabolites in top 4.9% among the 5192 food
metabolites in the GMF network (metabolite nodes that
have connections to food nodes). Comparing with the ran-
domized rankings (generated with random seeds placed
on the GMF network), we achieved significantly higher
mean rank (p < e-12, student’s T test) and median rank (p
< e-14, Wilcoxon ranked sum test). Also, 55 out of the 59
(93%) positive examples of AD-associated metabolites
were ranked within top 10%. In addition, the
precision-recall curve in Fig. 4 demonstrates a better
performance of our ranking comparing with the random-
ized rankings; the mean average precision calculated from
the precision-recall curve is also significantly higher than
the random case (Table 2, p < e-8). Together, the results
demonstrate that our ranking for the food metabolites
was able to prioritize relevant compounds for AD. Note
that our ranking algorithm is unbiased, and did not use
any prior knowledge about the known AD-associated food
metabolites.

Besides the ranking for metabolites, our approach also
automatically generated the ranking for all foods based
on the strength of their associations with AD. We grouped
the foods into categories and ranked the categories based
on the average of food ranks in each category. The ranking
shows a trend that high-fiber foods, such as grains, vegeta-
bles and legumes, tend to have higher scores than meats,
sweets and milk products. Interestingly, our ranking is
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Fig. 4 Precision recall curve for GMF network ranking algorithm for food-contained metabolites and the average of 100 random rankings



https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/)
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/)

Chen and Xu BMC Medical Genomics 2019, 12(Suppl 1):17

Table 2 Performance of metabolite ranking using the reduced
GMF network comparing with the average performance of
random rankings

Ranking Mean rank Median rank Mean average
precision

GMF network ranking 4.9% 1.9% 0.287

Randomized ranking 11.4% 18.2% 0.093

approximately correlated with the Mediterranean diet
pyramid, which suggests an eating pattern with many
healthy grains, fruits, vegetables, beans and nuts, and
small amounts of dairy, red wine and meats [33] (Fig. 5).
Here, the ranking of food categories only reflects the
average ranks for foods of each class, and individual food
in lowly ranked food categories may also contain metabo-
lites that are closely relevant to AD. Next, we specifically
examined each top-ranked food metabolites.

Top-ranked food metabolites contain interesting
candidates of AD-associated compounds

Many top-ranked metabolites are common nutrients
found in hundreds of different foods, such as calcium and
glycerol. Here, we focus on the unique metabolites that
were exclusively identified in several specific foods or food
categories. Table 3 lists the top-ranked food metabolites
that were identified in less than ten foods. Seven out of
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Table 3 Top-ranked unique metabolites that were found in less
than ten foods

Metabolite Food group Rank among all
estradiol fruits, legumes 0.12%
tetramethylpyrazine fruits, vegetables 0.18%
resveratrol fruits, nuts 0.22%
theophylline fruits 0.46%
chloroform herbs and spices 047%
4-hydroxynonenal legumes 0.55%
capsaicin herbs and spices 0.62%
chlorine fruits, vegetables 0.68%
emodin herbs and spices, vegetables 0.75%
xylene nuts, grains 0.76%

ten metabolites were constituents of “healthy foods,”
which include fruits, vegetables, grains, nuts and legumes.
Among them, tetramethylpyrazine has been shown to
exhibit the neuroprotective effects in rats [34]; and res-
veratrol is widely-known nutritional supplement with a
number of beneficial health effects, such as anti-cancer
[35], antiviral [36], neuroprotective [37-40], anti-aging
[41], anti-inflammatory [42], cardioprotective [43], and
life-prolonging effects. Among the top ten food-specific
metabolites, only 4-hydroxynonenal was in the evaluation

Mediterranean diet
pyramid

Fig. 5 Mediterranean diet pyramid and food category ranking based on the GMF network

Food class
ranking

seafoods

ranking
score
decreases

vegetables
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set of food metabolites that were known to be associated
with AD based on the HMDB data. This also shows that
many AD-associated food metabolites may not be readily
included in existing databases. The ultimate goal of our
study is to identify these new relevant food metabolites,
which may might shed lights on the disease prevention.

Surprisingly, we found that three metabolites in Table 3
are uniquely identified in the group of “herbs and spices”.
Previous studies point out that the incidence of neurode-
generative diseases among people living in the Asian
subcontinent, where people regularly consume spices,
is much lower than in countries of the western world
[44]. In addition, both in vitro and in vivo studies have
indicated that nutraceuticals derived from herbs and
spices, such as red pepper, black pepper, ginger, garlic,
and cinnamon, target inflammatory pathways, and may
show effects in preventing neurodegenerative diseases
[45, 46]. We filtered our metabolite ranking and systemat-
ically extracted the compounds that are specifically found
in herbs and spices. Table 4 lists the top ten spice-specific
metabolites. Among these chemicals, capsaicin has been
studied in animal models to investigate if it may attenuate
memory impairment [47, 48]. Next, we systematically in-
vestigated the pathways targeted by the top AD-associated
spice-specific metabolites.

Top-ranked spice-specific metabolites share significant
pathways with AD

We identified 58 significantly enriched pathways for AD,
and found that each top-ranked herb-and-spice metabolite
has many overlapping pathways with AD. Figure 5 shows
the overlapping pathways that are mostly enriched for
both AD- and metabolite-associated genes. Importantly,
we found that amyloid processing (highlighted in Fig. 6)
appears repetitively among the enriched pathways for
herb-and-spice metabolites. The accumulation of the
beta-amyloid protein is a major neuropathological hall-
mark in AD-affected brains and has a pathological role
in AD [49]. The pathway analysis supports that the

Table 4 Top-ranked herbs and spices specific metabolites
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identified herb-and-spice metabolites are potentially
involved with the development of AD. Other AD-involved
pathways, including melatonin degradation [50], neuropro-
tective role of THOP1 [51], and Reelin signaling in neu-
rons [52], were also found enriched for the herb-and-spice
metabolite interacting genes. As a control, we also investi-
gated the pathways for guanosine 2',3"-cyclic phosphate,
which is food metabolite ranked in the bottom by our
approach; the metabolite has no overlapping pathways
with AD.

Discussions
We developed a novel context-sensitive network approach
to analyze interactions among food, food metabolites, host
genetics and pathways in the context of specific diseases.
In this study, we use the approach to identify relevant food
metabolites for AD, which is a complex disease affected by
both genetic and environmental factors. Our study pro-
vides intriguing evidence for the role of diet, as an import-
ant environmental factor, in AD etiology. We also provide
the hypotheses for the subsequent biological and clinical
studies of host-environment interactions in AD. Due to
the lack of gold standard (i.e., known food metabolites for
many diseases), we did not test our algorithm on all other
diseases. Our approach is not biased towards to AD; it is
highly generic and can be applied to any other diseases.
The future work of this study includes the following
aspects. (1) We will test and apply the algorithms to
other food-related diseases, such as cancers, inflammatory
bowel diseases, and allergy. (2) We will further classify
food metabolites into neuroprotective and neurotoxic. In
the future, as more detailed and quantitative data become
increasingly available, we will be able to further classify
the effects of food metabolites into AD-promoting or pro-
tective. (3) We constructed a network that contains gene,
food, and metabolite nodes in this study. Other types of
data, such as disease-phenotype relationships and disorder-
metabolites in HMDB, may also be helpful in inferring
AD-associated food metabolites. However, the usefulness

Metabolite Food Rank among all
chloroform spearmint 0.6%
capsaicin ginger, pepper (C. frutescens), pepper (C. annuum) 0.79%
2,6-di-tert-butyl-4-methylphenol soft-necked garlic 1.16%
sesamol sesame, fats and oils 1.89%
desmosterol cardamom, soy bean 2.56%
santene parsley, rosemary, cornmint 3.18%
1-piperidinecarboxaldehyde herbs and spices, pepper (spice) 3.28%
p-menthan-3-ol herbs and spices 4.5%
sanguinarine opium poppy 4.77%
1,1,1,3,3,3-hexachloro-2-propanone herbs and spices 5.26%
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Fig. 6 Overlapping pathways between the top-ranked herbs and spices specific metabolites and AD

of these data requires further evaluation. In the future, we
will investigate effective approaches to rationally integrate
more comprehensive data to predict AD-affecting food
metabolites. (4) We will further improve the prediction
algorithm based on the context-sensitive networks. In so-
cial network analysis, researchers have developed improved
random walk algorithms that consider the semantic
meanings of the paths in networks [53]. However, these
approaches usually require prior knowledge or suffi-
cient training data, to define or learning meaningful
paths for the random walker in the network; the know-
ledge and training data cannot be easily obtained in
most biomedical prediction scenarios. We will explore
new algorithms in the unsupervised fashion that could
further take the advantages of the context-sensitive
networks. (5) In addition, we need further validation on
the prioritized AD-associated food metabolites and how
they might affect AD. Currently, we investigated the
common significantly enriched pathways between AD
and the prioritized metabolites, and found that a few
metabolites are involved in the amyloid processing
pathways. Amyloid processing is a major activity in
AD-affected brains and involves with the cause of AD.
The result shows that the top-ranked food metabolites
are highly associated with AD development. However,
further validations are essential through in vitro and in
vivo experiments (6) Finally, AD may be related with
the interactions of different food metabolites. More
generally, other environmental factors, including toxins,
drugs, and gut microbiome may also contribute to the AD

development. In our previous work, we have studied
brain-gut-microbiome connections in AD [54]. In the
future, we will develop approaches in identifying chemi-
cals from other sources that are associated with AD. We
will also explore more complex computational models to
investigate the combined effects of multiple environmen-
tal factors.

Conclusions

In summary, we developed a novel network-based approach
to understanding how food and food-derived metabolites
are involved in complex human diseases, and conducted an
exploratory study in AD. The identification of disease-asso-
ciated food metabolites and their underlying pathways may
provide insights into disease mechanism and offer the op-
portunities for disease prevention and treatment.

Abbreviations

AD: Alzheimer's disease; FooDB: The Food Database; GMF: Gene-metabolite-food;
HMDB: The Human Metabolome Database; OMIM: The Online Mendelian
Inheritance in Man; STITCH: Search Tool for Interactions of Chemicals; STRING: The
Search Tool for the Retrieval of Interacting Genes/Proteins

Acknowledgements
Not applicable.

Funding

This work was supported by the Eunice Kennedy Shriver National Institute of
Child Health & Human Development of the National Institutes of Health
under the NIH Director’s New Innovator Award number DP2HD084068 (Xu),
NIH National Institute of Aging (1 R0OT AG057557-01, Xu), NIH National
Institute of Aging (1 RO1 AG061388-01, Xu), NIH National Institute of Aging
(1 R56 AG062272-01, Xu), American Cancer Society Research Scholar Grant
(RSG-16-049-01 - MPC, Xu), NIH Clinical and Translational Science



Chen and Xu BMC Medical Genomics 2019, 12(Suppl 1):17

Collaborative of Cleveland (1UL1TR002548-01, Konstan). Publication of this
article was sponsored by the Eunice Kennedy Shriver National Institute of
Child Health & Human Development of the National Institutes of Health
under the NIH Director's New Innovator Award number DP2HD084068.

Availability of data and materials
Not applicable.

About this supplement

This article has been published as part of BMC Medical Genomics Volume 12
Supplement 1, 2019: Selected articles from the International Conference on
Intelligent Biology and Medicine (ICIBM) 2018: medical genomics. The full
contents of the supplement are available online at https://
bmcmedgenomics.biomedcentral.com/articles/supplements/volume-12-
supplement-1.

Authors’ contributions

RX conceived the study. YC and RX designed the experiment. YC performed
the experiment and wrote the manuscript. All authors have participated in
study discussion and manuscript preparation. All of the authors have read
and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Published: 31 January 2019

References

1. Alzheimer's A. 2015 Alzheimer's disease facts and figures. Alzheimer's
Dementia. 2015;11(3):332.

2. Creegan R, Hunt W, McManus A, Rainey-Smith SR. Diet, nutrients and
metabolism: cogs in the wheel driving Alzheimer's disease pathology? Br J
Nutr. 2015;113(10):1499-517.

3. Scarmeas N, Stern Y, Mayeux R, Luchsinger JA. Mediterranean diet,
Alzheimer disease, and vascular mediation. Arch Neurol. 2006,63(12):1709-17.

4. Scarmeas N, Stern Y, Tang MX, Mayeux R, Luchsinger JA. Mediterranean diet
and risk for Alzheimer's disease. Ann Neurol. 2006;59(6):912-21.

5. Lourida I, Soni M, Thompson-Coon J, Purandare N, Lang IA, Ukoumunne
OC, Llewellyn DJ. Mediterranean diet, cognitive function, and dementia: a
systematic review. Epidemiology. 2013,;24(4):479-89.

6. Scarmeas N, Stern Y, Mayeux R, Manly JJ, Schupf N, Luchsinger JA. Mediterranean
diet and mild cognitive impairment. Arch Neurol. 2009,66(2):216-25.

7. Tangney CC, Kwasny MJ, Li H, Wilson RS, Evans DA, Morris MC. Adherence
to a Mediterranean-type dietary pattern and cognitive decline in a
community population. Am J Clin Nutr. 2011;93(3):601-7.

8. Scarmeas N, Luchsinger JA, Schupf N, Brickman AM, Cosentino S, Tang MX,
Stern Y. Physical activity, diet, and risk of Alzheimer disease. JAMA. 2009;
302(6):627-37.

9. Heneka MT, Kummer MP, Latz E. Innate immune activation in
neurodegenerative disease. Nat Rev Immunol. 2014;14(7):463-77.

10.  Rege SD, Geetha T, Griffin GD, Broderick TL, Babu JR. Neuroprotective effects
of resveratrol in Alzheimer disease pathology. Front Aging Neurosci. 2014;
6(218):1-2.

11. Luchsinger JA, Tang MX, Shea S, Mayeux R. Antioxidant vitamin intake and
risk of Alzheimer disease. Arch Neurol. 2003;60(2):203-8.

12. Cai W, Ramdas M, Zhu L, Chen X, Striker GE, Vlassara H. Oral advanced
glycation endproducts (AGEs) promote insulin resistance and diabetes by
depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proc Natl
Acad Sci. 2012;109(39):15888-93.

13. Yang GX, Li X, Snyder M. Investigating metabolite-protein interactions: an
overview of available techniques. Methods. 2012;57(4):459-66.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

Page 141 of 189

Matsuda R, Bi C, Anguizola J, Sobansky M, Rodriguez E, Badilla JV, Zheng X,
Hage B, Hage DS. Studies of metabolite-protein interactions: a review. J
Chromatogr B. 2014;966:48-58.

Chen S, Jiang H, Cao Y, Wang Y, Hu Z, Zhu Z, Chai Y. Drug target
identification using network analysis: taking active components in Sini
decoction as an example. Sci Rep. 2016;6(Article number: 24245).

Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y,
Mandal R, Aziat F, Dong E, Bouatra S. HMDB 3.0—the human metabolome
database in 2013. Nucleic Acids Res. 2013;41(Database issue):D801-7.
Scalbert A, Andres-Lacueva C, Arita M, Kroon P, Manach C, Urpi-Sarda M,
Wishart D. Databases on food phytochemicals and their health-promoting
effects. J Agric Food Chem. 2011 Apr 12;59(9):4331-48.

Kuhn M, von Mering C, Campillos M, Jensen LJ, Bork PSTITCH. Interaction
networks of chemicals and proteins. Nucleic Acids Res. 2008;36(suppl 1):
D684-8.

Chen Y, Li L, Zhang GQ, Xu R. Phenome-driven disease genetics prediction
toward drug discovery. Bioinformatics. 201531(12):i276-83.

Ni J, Koyuturk M, Tong H, Haines J, Xu R, Zhang X. Disease gene
prioritization by integrating tissue-specific molecular networks using a
robust multi-network model. BMC bioinformatics. 2016;17(1):453.

Chen Y, Xu R. Network-based gene prediction for plasmodium falciparum
malaria towards genetics-based drug discovery. BMC Genomics. 2015;16(7):S9.
Chen Y, Li L, Xu R. Disease comorbidity network guides the detection of
molecular evidence for the link between colorectal cancer and obesity.
AMIA Summits on Translational Science Proceedings. 2015;2015:201.
Gottlieb A, Stein GY, Ruppin E, Sharan RPREDICT. A method for inferring
novel drug indications with application to personalized medicine. Mol Syst
Biol. 2011 Jan 1,7(1):496.

Chen Y, Cai X, Xu R. Combining human disease genetics and mouse model
phenotypes towards drug repositioning for Parkinson’s disease. In AMIA
annual symposium proceedings 2015 (Vol. 2015, p. 1851). American Medical
Informatics Association.

Chen Y, Xu R. Drug repurposing for glioblastoma based on molecular
subtypes. J Biomed Inform. 2016,64:131-8.

Chen Y, Zhang X, Zhang GQ, Xu R. Comparative analysis of a novel disease
phenotype network based on clinical manifestations. J Biomed Inform.
2015;53:113-20.

Robinson PN, Kéhler S, Bauer S, Seelow D, Horn D, Mundlos S. The human
phenotype ontology: a tool for annotating and analyzing human hereditary
disease. Am J Hum Genet. 2008:83(5):610-5.

Goh Kl, Cusick ME, Valle D, Childs B, Vidal M, Barabési AL. The human
disease network. Proc Natl Acad Sci. 2007;104(21):8685-90.

Chen Y, Xu R. Context-sensitive network-based disease genetics prediction
and its implications in drug discovery. Bioinformatics. 2017 Apr 1,33(7):1031-9.
Gray KA, Yates B, Seal RL, Wright MW, Bruford EA. Genenames. Org: the
HGNC resources in 2015. Nucleic Acids Res. 2015:43(Database issue):D1079-85.
Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P,
Doerks T, Stark M, Muller J, Bork P, Jensen LJ. The STRING database in 2011:
functional interaction networks of proteins, globally integrated and scored.
Nucleic Acids Res. 2011;39(Database issue):D561-8.

Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online
Mendelian inheritance in man (OMIM), a knowledgebase of human genes
and genetic disorders. Nucleic Acids Res. 2005;33(suppl 1):D514-7.

Willett WC, Sacks F, Trichopoulou A, Drescher G, Ferro-Luzzi A, Helsing E,
Trichopoulos D. Mediterranean diet pyramid: a cultural model for healthy
eating. Am J Clin Nutr. 1995,61(6):14025-6S.

Hu J, Lang Y, Cao Y, Zhang T, Lu H. The neuroprotective effect of
Tetramethylpyrazine against contusive spinal cord injury by activating PGC-
Ta in rats. Neurochem Res. 2015;40(7):1393-401.

Aluyen JK, Ton QN, Tran T, Yang AE, Gottlieb HB, Bellanger RA. Resveratrol:
potential as anticancer agent. Journal of dietary supplements. 2012,9(1):45-56.
Campagna M, Rivas C. Antiviral activity of resveratrol. Biochem Soc Trans.
2010;38(1):50-3.

Albani D, Polito L, Signorini A, Forloni G. Neuroprotective properties of
resveratrol in different neurodegenerative disorders. Biofactors. 2010;36(5):370-6.
Bastianetto S, Ménard C, Quirion R. Neuroprotective action of resveratrol.
Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2015;
1852(6):1195-201.

Bastianetto S, Zheng WH, Quirion R. Neuroprotective abilities of resveratrol
and other red wine constituents against nitric oxide-related toxicity in
cultured hippocampal neurons. Br J Pharmacol. 2000;131(4):711-20.


https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-12-supplement-1
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-12-supplement-1
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-12-supplement-1

Chen and Xu BMC Medical Genomics 2019, 12(Suppl 1):17

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Han YS, Zheng WH, Bastianetto S, Chabot JG, Quirion R. Neuroprotective
effects of resveratrol against -amyloid-induced neurotoxicity in rat
hippocampal neurons: involvement of protein kinase C. Br J Pharmacol.
2004 Mar 1;141(6):997-1005.

Alarcon De La Lastra C, Villegas . Resveratrol as an anti-inflammatory and
anti-aging agent: mechanisms and clinical implications. Mol Nutr Food Res.
2005;49(5):405-30.

Zordoky BN, Robertson IM, Dyck JR. Preclinical and clinical evidence for the
role of resveratrol in the treatment of cardiovascular diseases. Biochimica et
Biophysica Acta (BBA)-Molecular Basis of Disease. 2015;1852(6):1155-77.
Prasad S, Gupta SC, Tyagi AK, Aggarwal BB. Curcumin, a component of
golden spice: from bedside to bench and back. Biotechnol Adv. 2014;32(6):
1053-64.

Kannappan R, Gupta SC, Kim JH, Reuter S, Aggarwal BB. Neuroprotection by
spice-derived nutraceuticals: you are what you eat! Mol Neurobiol. 2011;
44(2):142-59.

Aggarwal BB. Targeting inflammation-induced obesity and metabolic
diseases by curcumin and other nutraceuticals. Annu Rev Nutr. 2010;30:173.
Aggarwal BB, Van Kuiken ME, lyer LH, Harikumar KB, Sung B. Molecular
targets of nutraceuticals derived from dietary spices: potential role in
suppression of inflammation and tumorigenesis. Exp Biol Med. 2009;234(8):
825-49.

Sharma SK, Vij AS, Sharma M. Mechanisms and clinical uses of capsaicin. Eur
J Pharmacol. 2013;720(1):55-62.

Jiang X, Jia LW, Li XH, Cheng XS, Xie JZ, Ma ZW, Xu WJ, Liu Y, Yao Y, Du LL,
Zhou XW. Capsaicin ameliorates stress-induced Alzheimer's disease-like
pathological and cognitive impairments in rats. J Alzheimers Dis. 2013;35(1):
91-105.

O'Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer's
disease. Annu Rev Neurosci. 2011,34:185.

Lin L, Huang QX, Yang SS, Chu J, Wang JZ, Tian Q. Melatonin in Alzheimer's
disease. Int J Mol Sci. 2013;14(7):14575-93.

Pollio G, Hoozemans JJ, Andersen CA, Roncarati R, Rosi MC, van Haastert ES,
Seredenina T, Diamanti D, Gotta S, Fiorentini A, Magnoni L. Increased
expression of the oligopeptidase THOP1 is a neuroprotective response to
AB toxicity. Neurobiol Dis. 2008;31(1):145-58.

Krstic D, Pfister S, Notter T, Knuesel |. Decisive role of Reelin signaling during
early stages of Alzheimer’s disease. Neuroscience. 2013;246:108-16.

Sun'Y, Han J, Yan X, Yu PS, Pathsim WT. Meta path-based top-k similarity
search in heterogeneous information networks. Proceedings of the VLDB
Endowment. 2011;4(11):992-1003.

Xu R, Wang Q. Towards understanding brain-gut-microbiome connections
in Alzheimer's disease. BMC Syst Biol. 2016;10(3):63.

Page 142 of 189

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	GMF network construction
	Metabolite ranking algorithm
	Evaluation of metabolite ranking
	Pathway analysis for top-ranked food metabolites

	Results
	Metabolite ranking based on the context-sensitive GMF network are supported by existing knowledge
	Top-ranked food metabolites contain interesting candidates of AD-associated compounds
	Top-ranked spice-specific metabolites share significant pathways with AD

	Discussions
	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	References

