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Abstract

Background: Carotid body tumor (CBT) is a rare neoplasm arising from paraganglion located near the bifurcation
of the carotid artery. There is great intra-tumor heterogeneity, and CBT development could be associated with both
germline and somatic allelic variants. Studies on the molecular genetics of CBT are limited, and the molecular
mechanisms of its pathogenesis are not fully understood. This work is focused on the estimation of mutational load
(ML) in CBT.

Methods: Using the NextSeq 500 platform, we performed exome sequencing of tumors with matched lymph node
tissues and peripheral blood obtained from six patients with CBT. To obtain reliable results in tumors with low ML,
we developed and successfully applied a complex approach for the analysis of sequencing data. ML was evaluated
as the number of somatic variants per megabase (Mb) of the target regions covered by the Illumina TruSeq Exome
Library Prep Kit.

Results: The ML in CBT varied in the range of 0.09–0.28/Mb. Additionally, we identified several pathogenic/likely
pathogenic somatic and germline allelic variants across six patients studied (including TP53 variants).

Conclusions: Using the developed approach, we estimated the ML in CBT, which is much lower than in common
malignant tumors. Identified variants in known paraganglioma/pheochromocytoma-causative genes and novel
genes could be associated with the pathogenesis of CBT. The obtained results expand our knowledge of the
mutation process in CBT as well as the biology of tumor development.

Keywords: Carotid body tumor, Mutational load, Somatic variants, Germline variants, Exome, High-throughput
sequencing

Background
Carotid body tumor (CBT) is the most frequent paragan-
glioma of the head and neck that arises from carotid glo-
mus [1]. This tumor is highly vascularized and commonly
involves carotid artery and cranial nerves. Surgery is a
main method for CBT treatment, since radiation therapy
and chemotherapy are not very effective.

Tumor development is closely associated with the ac-
cumulation of somatic mutations, which may be due to
various processes such as endogenous and exogenous
DNA damage, defective mechanisms of DNA replication,
modification, and repair [2, 3]. These cause the changes
in expression profiles of many genes, including activation
of oncogenes and inactivation of tumor suppressor genes
that lead to alterations in signaling pathways, cellular me-
tabolism, and proliferation [4–14]. Distinct combinations
of mutation types (“mutational signatures”) depend on dif-
ferent mutation processes; multiple mutation processes
generate jumbled composite signatures. In the study of
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Alexandrov et al. (2013), more than 21 mutational signa-
tures for 30 cancers were identified, and it has been shown
that the prevalence of somatic mutations across human
cancer types are different, ranging from approximately 0.04
to 20 somatic mutations per megabase (Mb) [15, 16].
In recent years, immunotherapy has been successfully used

in cancer treatments. Notably, the blockade of immunosup-
pressive checkpoints, such as T-lymphocyte-associated anti-
gen 4 (CTLA4), programmed cell death 1 (PD1) protein, and
programmed cell death-ligand 1 (PD-L1), has demon-
strated objective clinical responses in various cancers
and other malignant neoplasms [17, 18]. Inhibition of
both CTLA4 and PD1/PD-L1 reactivates lymphocytes
against tumor-expressing neoantigens. They result from
different mutations in tumor cells, and the potential of
neoantigen formation is correlated with mutational load
(ML) [19]. Melanoma and lung cancer, which are char-
acterized by high MLs, were demonstrated to have clin-
ical benefits from the immunotherapy with antibodies
targeting CTLA4 and PD1 [20, 21]. Responses to immune
checkpoint blockade therapy have been described in pa-
tients with colorectal cancer characterized by microsatellite
instability (MSI), which is accompanied in most cases with
high ML, resulting from defects in mismatch-repair path-
ways [22]. High ML, MSI (surrogate marker of high ML),
and neoantigen production have been demonstrated to be
promising markers of sensitivity to immune checkpoint
blockade for several tumors [23–25]. However, these cri-
teria also exhibited inconsistent patterns in patients with
ovarian and urothelial cancer as well as those with glio-
blastoma; therefore, their potential use as prognostic fac-
tors requires further studies [26–28]. Additionally,
intestinal microbiota, expression of PD-L1 in tumor cells,
and tumor-infiltrating lymphocytes (TILs) were also deter-
mined to have a predictive role in immunotherapeutic re-
sponses [29–33].
In this study, we estimated the ML in CBT. We per-

formed exome sequencing of tumors with matched lymph
node tissues and peripheral blood derived from six patients
with CBT. Additionally, a number of pathogenic/likely
pathogenic somatic and germline variants were identified.

Methods
Patients and samples
Formalin-fixed paraffin-embedded (FFPE) tumor and
lymph node tissues as well as peripheral blood from six pa-
tients with CBT were collected from Vishnevsky Institute
of Surgery, Ministry of Health of the Russian Federation
for exome sequencing. We also used a collection of 52
CBTs (exome sequencing data, available in the NCBI
Sequence Read Archive [SRA] under accession number
PRJNA411769) from a previous study [34]. All patients
provided written informed consent. Clinicopathologic
characteristics of the patients with CBT are presented
in Table 1. The study was approved by the ethics com-
mittee from Vishnevsky Institute of Surgery and per-
formed according to the Declaration of Helsinki (1964).

Exome sequencing
DNA was extracted from blood cells using a MagNA
Pure Compact Nucleic Acid Isolation Kit I (Roche,
Switzerland) on a MagNA Pure Compact Instrument
(Roche); DNA from tumor and lymph node tissues was
isolated with High Pure FFPET DNA Isolation Kit
(Roche). DNA (100 ng per sample) was sheared to 150
bp using Covaris S 220 System (Thermo Fisher Scien-
tific, USA) and was then subjected to library preparation
with TruSeq Exome Library Prep Kit (Illumina, USA) ac-
cording to manufacturer’s instructions. The exome se-
quencing was performed on a NextSeq 500 System
(Illumina) with paired-end reads. Read length was 76 bp
for tumor and lymph node tissues and 151 bp – for
blood. The obtained coverage was at least 300×. Raw se-
quencing data have been deposited at the NCBI SRA
under accession number PRJNA476932.
Raw reads were trimmed and adapter sequences were

removed with Trimmomatic [35]. We aligned 100 K ran-
domly selected reads to bacterial genomes (NCBI, all bac-
terial genomes submitted up to 2014) with BWA [36] in
order to evaluate contamination levels. All the samples
demonstrated no greater than 0.1% bacterial DNA ratios.
Next, reads were mapped to the reference human genome
GRCh37.75 (Ensembl) with BWA. The derived BAM files

Table 1 Clinicopathologic characteristics of the patients with CBT

Patient Gender Age (years) Family history of
paragangliomas

Metastasis
(lymph node/distance)

Multifocal growth Comments

Pat100 Female 35 N/A No No –

Pat101 Female 46 N/A No No Tumor recurrence was diagnosed in
a year after surgery*

Pat102 Female 31 N/A No No –

Pat103 Male 57 N/A No No –

Pat104 Female 58 N/A No Yes Carotid body tumor and vagal
paraganglioma were diagnosed*

Pat105 Female 67 N/A No No –

* - In the study, only primary CBT from Pat101 and CBT (not vagal paraganglioma) from Pat104 were analyzed
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were processed with picard-tools (reordered, supplied with
group names, and duplicated reads were marked). Then,
we performed base quality score recalibration (BQSR)
using GATK4 (version 4.0.8.1) and dbSNP (common
variants, 2015-06-05). To call somatic variants, two algo-
rithms, VarScan [37] and Mutect2 [38], were used.
First, we applied VarScan to reveal somatic variants in

paired (‘tumor versus normal’) mode. We merged BAMs
for blood and lymph nodes per each patient and submit
pileups (bcftools) from these BAMs to VarScan. Reads
with mapping quality lower than 20 and the bases with
base calling quality lower than 20 were filtered out. Only
regions with 20x or higher coverage (for both tumor and
‘merged’ norm) were included in the analysis.
Second, we used Mutect2 (from GATK 4.0.8.1) to

identify somatic variants, SNVs and indels. Before calling
somatic variants, we ran Mutect2 in ‘tumor-only’ mode
with all the 12 normal samples (lymph nodes and blood)
to create a panel of norms (PoN). Next, we merged
BAMs for blood and lymph nodes per each patient and
used these BAMs along with PoN to call somatic vari-
ants with Mutect2 in ‘tumor versus normal’ mode. The
derived VCFs were analyzed with GATK FilterMutect-
Calls, and only passed somatic variants were included in
the further analysis. We have decided to also include in
the analysis clustered events, which are filtered out with
FilterMutectCalls by default. Additionally, we called vari-
ants in artificial comparisons ‘lymph node (FFPE) versus
blood’, ‘tumor (FFPE) versus blood’, ‘blood versus tumor
(FFPE)’, etc.
The derived list of somatic variants was annotated

using Annovar [39]. We included allele population fre-
quency databases (gnomAD, 1000 Genomes Project,
Kaviar, ESP 6500, and ExAC), public variant databases
(dbSNP, ClinVar, and COSMIC), phastCons containing
conservation data for vertebrates, primates, and placen-
tal mammals [40], and InterPro to analyze the localiza-
tions of variants in protein domains [41]. Additionally,
prediction tools such as SIFT [42], PolyPhen2 [43],
MutationTaster [44], LRT [45], InterVar [46], PRO-
VEAN [47], M-CAP [48], MetaSVM, and MetaLR [49]
were used to assess the pathogenicity of the variants. Var-
iants were considered to be likely pathogenic if they were
predicted as deleterious by at least three algorithms. How-
ever, in most cases the majority of algorithms gave consist-
ent results.
We excluded variants with population frequency greater

than 1%. Worth noting, the overall number of such vari-
ants comprised only 0–7% of all the exonic somatic vari-
ants (variants in gene coding regions) passed after analysis
with FilterMutectCalls. Additionally, the list of somatic
variants was filtered according to the minimal read cover-
age threshold (min 20 reads for a merged norm and min
10 reads for the tumor sample).

Results
Mutational load in CBT
First, we should mention once more that we used blood
and FFPE samples taken from tumor and lymph node
tissues. The accurate detection of variants in FFPE sam-
ples is often problematic because of DNA fragmentation
and the occurrence of sequence artifacts resulted from
fixation of tissues in formaldehyde [50]. To evaluate the
effect of FFPE artifacts on the results, we compared
‘lymph node (FFPE) versus blood’ and revealed a great
number of variants (hundreds) that was almost equal to
the number of somatic variants found in the ‘tumor
(FFPE) versus blood’ comparison (including variant with
low alternative allele (AF) frequency). In contrast, when
comparing either ‘blood versus tumor (FFPE)’ or ‘blood ver-
sus lymph node (FFPE)’, a very moderate number of variants
(dozens) was revealed. This pronounced trend was observed
for all six patients. It suggests that the most of variants
identified in FFPE samples may be formalin-induced DNA
artifacts. However, there were a variety of SNVs (A >T, C >
A, G >A, A >G, etc.); and only a moderate bias towards the
typical FFPE-induced transition, C >T, was observed. About
25% of all SNVs were represented with C > * substitutions,
and approximately 40–60% of them were C >T transitions
(10–15% of all SNVs).
When ‘tumor versus lymph node’ was compared, e.g.

two FFPE samples, we derived about 1.3–1.5-fold lower
amount of somatic variants relatively ‘tumor (FFPE) ver-
sus blood’ comparison, because read coverage for FFPE
lymph node samples was 2-fold greater (on the average)
than the coverage for blood samples. Additionally, this
may suggest slight co-occurrence of formalin-induced
variants, which are partially ‘subtracted’ when comparing
two FFPE samples.
Among Mutect results, there are several false-positive

somatic variants with low AF (5–10%) but high coverage
(10–30 reads for alternative allele; the total coverage was at
least 300x) observed in tumor, lymph node and blood sam-
ples. These variants obviously are neither germinal (too low
AF), nor somatic (they are present in norms and tumors),
nor FFPE artifacts (they are present in blood samples). Re-
markably, 20–40% of reads that support the alternative al-
leles (AA) have low base quality score (before and after
BQSR). This strongly suggests the presence of
context-dependent sequencing errors that are not
eliminated with BQSR procedure and are not suffi-
ciently addressed by a variant calling algorithm (either by
Mutect2 or VarScan). Indeed, we observed many of these
variants in polyN-tracts (especially polyG), e.g.
GGGT>GGGG, CCCCG>CCCCC, susceptible for Illu-
mina NextSeq-specific sequencing errors.
To eliminate such artifacts, we applied three ap-

proaches. First, we used strand bias filter (StrandOddsRa-
tio annotation provided with GATK Mutect2 or
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HaplotypeCaller). The presence of reads bearing a variant
on only one strand indicates a false-positive. However, this
option alone does not allow eliminating artifacts when
they come from both strands (e.g. GGGTGGG>GGGG
GGG). Second, we filtered out variants with abnormal dis-
tribution of base quality scores across the reads (GATK
BaseQualityRankSumTest annotation). In other words, we
excluded variants that were abnormally supported with
too many reads with low base quality score at a current
position, even if there were also many reads with high
base quality score at this position. Third, we manually fil-
tered out variants that were observed after/before four or
more identical nucleotides (mainly, C/G). In most cases,
when we are calling somatic variants on various types of
cancer, their number may significantly exceed the ratio of
the described false-positives. In contrast, when analyzing
tumors with a low ML, this issue becomes especially
important.
Totally, we found 70–130 potentially somatic variants

in each patient comparing ‘tumor (FFPE) versus matched
lymph node (FFPE) and blood + PoN’. Most of these
variants have low AF (Fig. 1). Only 5–20% of variants
passed threshold of AF > 15%.
When calculating the total mutational load, it is incor-

rect to consider a somatic variant that is observed only in
a fraction of the tumor cells (such variants are featured
with low AF) as a “whole one”. Otherwise, the higher se-
quencing coverage, the more we can find variants with
very low AF values, and the higher calculated mutational
load will be. The weight of such somatic variants should
be adjusted for AF. Hence, we re-estimated the number
of variants “in terms of heterozygous ones” as the sum
of all AFs multiplied by 2 (Fig. 2, weighted somatic vari-
ants count).

As can be seen from Fig. 2, two of six patients demon-
strated an elevated number of potentially somatic vari-
ants. These differences are much more pronounced
when an elevated AF threshold is set (AF > 0.2, e.g. >
40% of cells are for heterozygous variant). Nevertheless,
it is worth noting that the initial number of tumor cells
in the tumor samples did not reach 100%, and it could
vary from 70 to 90%.
To finally assess the weighted mutational load (wML)

in CBT, we should reasonably pick up the AF threshold.
For most patients, a significant reduce in the number of
variants occurs in the region of AF = 10–15%. Therefore,
wML may be estimated as 4–12 variants per genome or
0.09–0.28 variants per megabase taking into account the
fact that we have used TruSeq Exome Library Prep Kit
(the total length of target regions is 43Mb). It should be
noted that the evaluation of ML in such cases is close to
the limit of sensitivity/specificity of the method.
Considering the structure of a list of potential somatic

variants, 25–73 variants (SNVs and indels) are located ei-
ther in coding regions or splice sites and are supported
with at least three reads corresponding to the alternative
allele (Fig. 3). Remarkably, 2–18% of these ones have
already been annotated in COSMIC databases, and only
2–7% of variants have maximal population frequency
(across multiple databases) greater than 1% (before filter-
ing). The total number of all variants (including UTRs, in-
tronic, and intergenic) was 2-fold greater on the average
than the number of variants in the coding regions.

Pathogenic and likely pathogenic somatic variants
Across six patients, we revealed 50 likely pathogenic
variants, and among them several potential driver
variants were observed (Fig. 4). In two patients (Pat103

Fig. 1 Somatic variant count depending on minimum AF threshold
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and Pat104) we found two co-occurred variants in
TP53 gene, NM_000546.5: c.842A > T, p.Asp281Val
(chr17: 7,577,096, rs587781525) and NM_000546.5:
c.A170A > G, p. Asp57Gly (chr17: 7,579,517). The first
variant was described in dbSNP as both germline and
somatic one, and has a pathogenic clinical significance
according to the ClinVar database. The germline variant
was associated with hereditary cancer-predisposing syn-
drome; the somatic variant has been found in many
neoplasms, including neuroendocrine tumors (neuro-
blastoma and glioblastoma). Variant NM_000546.5:
c.A170A > G, p. Asp57Gly (chr17: 7579517) was not
previously described in databases and in the literature.
In our study, this variant was found with high AF (0.55
and 0.23 for Pat103 and Pat104, respectively) and was
classified to be likely pathogenic by most prediction tools.
These two variants can be associated with biallelic inacti-
vation of TP53 gene and are involved in the pathogenesis
of CBT.

Potential driver variant NM_003002: c.A1A > T, p.
Met1Leu (chr11: 111,957,632, rs104894307) in SDHD
gene was revealed for Pat103. It was annotated in dbSNP
and ClinVar databases as germline pathogenic variant
associated with hereditary cancer-predisposing syndrome
and pheochromocytomas/paragangliomas. This somatic
variant was also described as pathogenic in sporadic
paraganglioma [51].
We also observed somatic variants in several known

cancer-associated genes (for example, JAG1, PRDM2,
PRDM8, SETD2, ASPM, ZIC, GRIK1, etc.), which may
be important for cell growth and proliferation. They did
not overlap between the patients. These variants have
low AF values (5–10%) occurring in low fraction of cells
(10–20%), but they may represent driver events. This
demonstrates genetic intra-tumor heterogeneity of CBT.
Apparently, they occurred after tumor onset and initial
progression. Having received these variants, such cells
could gain an advantage in their clonal expansion.

Fig. 2 Weighted somatic variant count depending on minimum AF threshold

Patient
CDS and 

somatic splice 
site variants

SNVs* Indels*
Variants annotated 

in COSMIC*
Variants with max. 

popFreq > 1%*

All variants (including 
intergenic and 

intronic)

All variants (including 
intergenic and 

intronic), norm DP > 
20

Pat100 40 32 8 4 1 129 98
Pat101 25 20 5 1 0 113 97
Pat102 43 32 11 8 3 127 113
Pat103 34 32 2 2 0 89 72
Pat104 47 37 10 6 2 141 117
Pat105 52 42 10 1 2 162 129

Fig. 3 A number of somatic variants located in coding regions or splice sites (SNVs and indels) across six patients. The threshold of minimal
number of high-quality reads supporting an alternate allele was set as 3. CDS – coding sequence; DP – depth (the sum of alt+ref read coverage)
* - The number of SNVs, indels, and annotated variants are calculated for the subset of CDS/splice variants
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Pathogenic and likely pathogenic germline variants in
causative genes
We analyzed germline variants in 42 genes (VHL, SDHA,
SDHB, SDHC, SDHD, NF1, RET, HRAS, KRAS, EPAS1
(HIF2A), ATRX, CSDE1, BRAF, FGFR1, FGFR2, FGFR3,
FGFR4, FGFRL1, SETD2, ARNT, TP53, TP53BP1, TP53BP2,
TP53I13, KMT2D, BAP1, IDH1, IDH2, SDHAF1, SDHAP2,

FH, EGLN1, MDH2, TMEM127, MAX, KIF1B, MEN1,
GDNF, GNAS, CDKN2A, BRCA1, and BRCA2) reported
previously to be involved in the development of paragan-
gliomas/pheochromocytomas [34, 52]. Three pathogenic
and two likely pathogenic germline variants were found
across six patients with CBT according to the predicted
algorithms and public databases (Table 2, Fig. 5). These
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Fig. 4 Pathogenic/likely pathogenic somatic variants in six samples of carotid body tumor
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variants were characterized by high conservation scores
(PhastCons) and had an allele frequency less than 0.01% in
1000 Genomes Project, ESP 6500, and ExAC databases.

Discussion
The frequency of somatic mutations and neoantigen
production correlates with responses to immunotherapy.
In high mutated cancer, the ML was considered as a
prognostic factor of prolonged survival with immune
checkpoint inhibitors [20, 21]. However, this association
has not been observed for tumors with low ML. In the
present work, we estimated the ML in CBT. CBT be-
longs to rare neoplasms, and it is difficult to collect a
representative set of CBT samples. Moreover, matched
morphological normal tissues (“conventional norm”) are
unavailable due to the tumor localization. We collected
and performed exome sequencing of tumor samples with
matched lymph node tissues and peripheral blood from
six patients with CBT. This revealed actual somatic vari-
ants and allowed estimating the ML in the six samples
studied. CBT carried low ML (0.09–0.28/Mb) compared
to other common cancers [15]. Even though high ML is
a factor for immunotherapy, it also generally indicates
high aggressiveness of the tumors and correlates with in-
creased genetic instability and poor prognosis [53–56].
CBT is usually a slow-growing tumor, and in 10% of cases,
it can become aggressive and metastatic [57]. Thus, low
ML in CBT is possibly associated with its non-aggressive
behavior and probably indicates inefficiency of immune
checkpoint blockade therapy.
Paragangliomas/pheochromocytomas can be caused by

germline and somatic variants in at least 42 known genes
[52]. Potential driver somatic variants were found in SDHD
(Pat103) and TP53 (Pat103 and Pat104) genes. Likely
pathogenic variants were revealed in EPAS1 (HIF2A)
(Pat104) and SETD2 (Pat105) genes, and no somatic vari-
ants were observed in other known genes. However, several
pathogenic and likely pathogenic germline variants in
SDHB, SDHC, SDHD, and RET genes were detected. A ma-
jority of them were identified in SDHx genes that are often
associated with hereditary pheochromocytomas/paragan-
gliomas [58]. Two variants were observed in SDHB gene in
different patients (Pat101 and Pat102): a novel mis-
sense variant NM_003000.2: c.463C > A, p.Pro155Thr
(chr1: 17,354,321) and a nonsense high-impact variant
NM_003000.2: c.136C > T, p.Arg46* (chr1: 17,371,320,
rs74315370). The latter was described in the dbSNP
and ClinVar databases as a pathogenic germline variant as-
sociated with hereditary cancer predisposition syndrome,
paragangliomas/pheochromocytomas, and gastrointestinal
stromal tumor [59–62]. Notably, this variant has been re-
ported in patients with aggressive extra-adrenal paragan-
glioma in the chest and CBT and has been considered as a
high-risk factor for malignancy or recurrence of

paragangliomas/pheochromocytomas [63–66]. Indeed, the
patient tested (Pat101) was characterized by the tumor re-
currence that is one of the features indicating aggressive
phenotype of CBT. The variant NM_003001.3: c.149G >A,
p.Arg50His (chr1: 161,298,257, rs769177037) in SDHC was
also found in Pat102. It was described in dbSNP as a vari-
ant of uncertain clinical significance. Germline variants in
SDHC are more rarely associated with the development of
paragangliomas/pheochromocytomas than variants in
SDHB or SDHD [58]. It should be noted that in Pat102 we
observed two somatic likely pathogenic variants in GRIK1
and NT5DC2 genes. Therefore, according to our previous
data, the formation of CBT can be probably caused by the
cumulative effect of several highly or not highly pathogenic
variants [34]. In this particular case, it seems that the main
driver is the pathogenic germline variant in SDHB gene.
The germline variant NM_003002.3: c.305A > G,

p.His102Arg (chr11: 111,959,726, rs104894302) in SDHD
was identified in two patients – Pat100 and Pat104. This
variant is found in dbSNP and ClinVar databases as a
pathogenic germline variant associated with hereditary
cancer-predisposing syndrome, paragangliomas/pheochro-
mocytomas, gastric stromal sarcoma, and Cowden syn-
drome 3 [67, 68]. This variant has been detected in
malignant CBT [69]. Data on the aggressive behavior of
the tumor in tested patients have not been reported; one
patient (Pat104) was characterized by multiple tumors
(vagal paraganglioma and CBT) with multifocal growth. In
this patient (Pat104), we also found pathogenic and likely
pathogenic somatic variants in TP53 gene.
One patient (Pat103) carried the germline variant

NM_020975.4: c.1946C >T, p.Ser649Leu (chr10: 43,609,994,
rs148935214) in the proto-oncogene RET. It was deposited
to dbSNP from the gnomAD database as a germline vari-
ant. In ClinVar, another allele was reported with conflicting
interpretations of pathogenicity found in hereditary
cancer-predisposing syndrome (uncertain significance) and
multiple endocrine neoplasia (MEN) type 2 (uncertain sig-
nificance/likely benign) characterized by medullary
thyroid carcinoma, pheochromocytomas, and hyper-
parathyroidism [70–72]. In this patient, we also identi-
fied pathogenic and likely pathogenic somatic variants
in TP53 gene (NM_000546.5: c.842A > T, p.Asp281Val
(chr17: 7,577,096, rs587781525) and NM_000546.5:
c.A170A > G, p. Asp57Gly (chr17: 7,579,517) that are
the same in Pat104. These variants can be potential
driver ones.
Interestingly, we did not reveal any pathogenic germ-

line variants in known paraganglioma/pheochromocyto-
ma-causative genes in the patient Pat105, which is
characterized with the greatest number of somatic vari-
ants and the highest ML. However, this patient was
characterized by at least two somatic variants in CBT in
one known CBT-causative gene – SETD2. This gene
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encodes for histone methyltransferase, an epigenetic
modifier with tumor suppressor functionality [73]. Mu-
tations in SETD2 are found in many tumors, including
neoplasms of the central nervous system [74].
In the previous work, we performed exome sequencing

of 52 archival FFPE samples of CBT [34]. Peripheral blood
or other normal tissues were unavailable; therefore, germ-
line variants were excluded with strong filtering using the
1000 Genomes Project and ExAC databases. We esti-
mated the ML as the number of potentially somatic dele-
terious variants per megabase of coding regions. However,
we derived an obviously elevated ML: the average ML was
6–8 variants per Mb. Therefore, such approach does not
allow efficient elimination of germline variants. Indeed,
this method excludes 96–98% or more germline variants,
but the remaining 2–3% of the germline variants may sig-
nificantly outnumber somatic ones. In this study, we fil-
tered the pool of somatic variant candidates from a
previous work (52 patients) using exome sequencing data
on blood and lymph nodes derived in the present work (6
patients). This resulted in at least 2-fold reduction of the
estimated ML, but this value was still excessively high.
Thus, the use of matched normal tissues is necessary to
be able to accurately estimate ML.
Recently, Roche (Switzerland) announced the AVE-

NIO ctDNA Analysis Kits for personalized oncology as-
says [75, 76]. The AVENIO ctDNA Surveillance Kit
targets frequently mutated regions across 197 genes
and has been optimized for monitoring of ML in lung
and colorectal cancers. This kit contains the main genes
that are associated with lung, colorectal, breast, gastric,
prostate, ovarian, thyroid, and pancreatic cancers, as
well as glioma and melanoma according to the U.S. Na-
tional Comprehensive Cancer Network (NCCN) Guide-
lines (https://www.nccn.org/). The kit did not include
genes that have been shown to be involved in the
pathogenesis of paragangliomas and pheochromocyto-
mas, except TP53, BRCA1, and BRCA2. A panel of
genes accurately reflecting the ML in CBT is also un-
known. Moreover, the kit and the appropriate analysis
software focus on quantitating ML basing on ctDNA

sequencing, and this approach is more acceptable for
malignant tumors with a high frequency of metastases,
while CBT is primarily a slow-growing tumor with inde-
terminate potential of malignancy. Thus, whole exome se-
quencing, which was used in the study, is currently the
only method for estimating the ML in CBT.

Conclusion
The ML varied in the range of 0.09–0.28/Mb in the ana-
lyzed cohort of patients with CBT (six individuals). Sev-
eral pathogenic/likely pathogenic somatic and germline
allelic variants in both known paraganglioma/pheochro-
mocytoma-causative genes and novel ones were identi-
fied. These results improve the understanding of
CBT pathogenesis.
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ML: Mutational load
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