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Abstract

Background: Prompted by the revolution in high-throughput sequencing and its potential impact for treating
cancer patients, we initiated a clinical research study to compare the ability of different sequencing assays and
analysis methods to analyze glioblastoma tumors and generate real-time potential treatment options for physicians.

Methods: A consortium of seven institutions in New York City enrolled 30 patients with glioblastoma and
performed tumor whole genome sequencing (WGS) and RNA sequencing (RNA-seq; collectively WGS/RNA-seq); 20
of these patients were also analyzed with independent targeted panel sequencing. We also compared results of
expert manual annotations with those from an automated annotation system, Watson Genomic Analysis (WGA), to
assess the reliability and time required to identify potentially relevant pharmacologic interventions.

Results: WGS/RNAseq identified more potentially actionable clinical results than targeted panels in 90% of cases,
with an average of 16-fold more unique potentially actionable variants identified per individual; 84 clinically
actionable calls were made using WGS/RNA-seq that were not identified by panels. Expert annotation and WGA
had good agreement on identifying variants [mean sensitivity = 0.71, SD =0.18 and positive predictive value (PPV) =
0.80, SD =0.20] and drug targets when the same variants were called (mean sensitivity = 0.74, SD = 0.34 and PPV =
0.79, SD =0.23) across patients. Clinicians used the information to modify their treatment plan 10% of the time.

Conclusion: These results present the first comprehensive comparison of technical and machine augmented
analysis of targeted panel and WGS/RNA-seq to identify potential cancer treatments.
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Background

Oncology is one of the first areas where next-generation
sequencing is being applied [1-3]. Sequencing is used to
identify genetic variants that could be pharmacologically
targeted, allowing identification of drug effects in strati-
fied populations that may otherwise be missed [2, 4].
Panel-based sequencing, using hybridization and capture
of specific regions of key genes or of all genes (whole
exomes; WES), versus whole genome sequencing (WGS)
are different technologies with different costs that have
not previously been directly compared. 10,000 cancer
patients sequenced with the MSK-IMPACT panel identi-
fied potentially clinically actionable calls in 36.7% of
individuals sequenced [5]. Deep sequencing coverage in-
creases sensitivity for rare variants in heterogeneous tu-
mors. WGS, however, does not rely on hybridization and
capture, a source of potential bias, and is able to identify
non-coding variants such as enhancer bindings sites [6]
and increases sensitivity for small copy number variants
(CNVs) and missense mutations, indels, [7] intronic var-
iants, [8] and gene fusions [9]. The relative impact of of
these technologies on making clinically actionable vari-
ant calls is unknown.

Panel-based sequencing is used to identify treatment tar-
gets in tumors including glioblastoma (GBM) [10-13], the
most common adult brain malignancy with a median sur-
vival of 14.2 months [14]. The Cancer Genome Atlas
(TCGA) analyzed GBM and established four molecular sub-
types [15] defined by IDH1 mutation and methylation sta-
tus, [16] and more recently three subtypes which takes into
consideration tumor purity and heterogeneity, [17] but has
not yet led to new therapies. Panel sequencing and WGS/
RNA-sequencing (WGS/RNA-seq) provide logical paths for-
ward to identify variants. However, the process of sequence
analysis and prioritizing variants is laborious, requiring
highly trained experts, particularly in WGS/RNA-seq; this
prompted prompting assessment of automated analyses.

The New York Glioblastoma Genome Consortium
(NY-GGC) was organized in 2013 at the Rockefeller
University and New York Genome Center (NYGC) to
conduct a feasibility study of using WGS/RNA-seq to
identify tumor-specific variants and potential drug tar-
gets, to compare WGS/RNA-seq to panels, and to assess
the reliability of automated versus manual analyses.
Here, we describe an integrated analysis of 30 GBM pa-
tients recruited through seven participating institutions.

Methods

Study design

The NY-GGC was formed in 2013 through a collaboration
initiated at Rockefeller University, and included Memorial
Sloan Kettering Cancer Center, New York University Med-
ical School, Northwell Health (Lenox Hill Hospital and
North Shore University Hospital), Columbia University
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Medical Center and New York Genome Center, sharing
tumor and blood samples for sequencing, relevant clinical
histories, and raw sequence data (BAM files). Variant call
files (VCFs) were analyzed by NY-GGC and by WGA.

Patients

Entry criteria for this study were: minimum age of three,
histologically confirmed GBM at referring institution
with no requirement for central pathology review, Kar-
nofsky score of at least 60, life expectancy of at least 6
months, and potential interest in further treatment.
Clinical data was collected including results of any other
clinical sequencing.

All participants provided written informed consent. Pro-
tocols were approved by local or central Institutional Re-
view Boards at: Rockefeller University, Biomedical Research
Alliance of New York (on behalf of Northwell Health), Me-
morial Sloan Kettering Cancer Center, New York University
School of Medicine, and Weill Cornell Medicine.

WGS and RNA-seq

Paired tumor and normal (blood) samples were sequenced
from each individual and analyzed by WGS at 80X tumor
and 40X normal coverage as previously described [18].
Ploidy values were used to estimate chromosome, gene,
and allele copy number. We analyzed TERT promoter
variants, intronic splice site variants (annotated by
SnpEff), and exonic variants. Single nucleotide variants
(SN'Vs) were classified by Tiers. Tier 1 variants are defined
as variants with known clinical significance in GBM as de-
fined by CIVIC (v.alpha, 3/2015). Tier 2 variants are
known to be clinically significant in another tumor type as
defined by CIViC. Tier 3 are variants of unknown signifi-
cance (VUS) in known actionable cancer genes with asso-
ciated drugs. Tier 4 are VUS mutations in Cosmic Cancer
Census Genes (v.75) [18].

Where RNA was available, RNA-seq was performed as
previously described, [18] with the addition that when
the RNA integrity number (RIN) score [19] was less than
7, we used the KAPA Stranded RNA-seq with RiboErase
(P/N: KK8483) with Agilent SureSelectXT v6 + Cosmic
(P/N: 5190-9308). We used RNA-seq data to annotate
variants discovered in WGS according to the level of ex-
pression of each variant, estimated by identifying the
number of supporting reads and allelic fraction. Gene
expression in the tumor samples was assessed and com-
pared with 169 GBM samples from TCGA and a modi-
fied z-score was calculated as previously described [18].
Modified z-scores of RNA-seq normalized expression
data per gene was used as proxy for differential gene ex-
pression. Modified z-score per gene was calculated by
subtracting the median transcripts per million (TPM)
value (over the TCGA GBM cohort) from each sample’s
TPM and dividing by the TCGA median absolute
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deviation. The z-score therefore represents the number
of standard deviations each sample is from the median
expression value of a specific gene of the TCGA GBM
cancer cohort. For tumor-normal comparisons of splice
site variants, percent spliced in (PSI) was calculated as
the number of reads supporting the unannotated alter-
native splicing event divided by the number of canonical
reads supporting the annotated event [20] and fusion
transcript discovery was performed using RNA-seq data
and FusionCatcher [21] as previously described [9].

When associating variants with potential therapies, we
prioritized variants of high copy number focal gains and
two copy homozygous loss over lower copy number
whole arm gains or heterozygous losses. However, at
times, lower copy number changes (<5 copy gains or
heterozygous losses) were also reported as others have
done [22].

Comparison with Watson Genomic Analytics (WGA) and
targeted tumor panels

WGA is an IBM Research proof-of-concept environment of
Watson for Genomics described previously, [18, 23, 24] with
the addition of algorithmic updates that include basic pro-
cessing of structural variants (SVs) (version 11/2016). WGA
is a cloud-based cognitive system capable of analyzing muta-
tion, gene expression, copy number alteration (CNA) and
SV data provided as VCFs by leveraging 20+ structured and
unstructured data sources. WGA first performs a Molecular
Profile Analysis (MPA) to identify possible driver mutations
and drug response biomarkers in a disease-specific manner.
MPA evaluates mutations using data from structured data-
bases such as COSMIC and ExAC to search for known vari-
ants and remove possible benign germline mutations. It also
uses evidence extracted from literature using both
machine-based and expert-based manual curation. These
data sources are used to create a system capable of categor-
izing alterations as pathogenic, benign, or VUS in a disease
specific manner. WGA performs a similar analysis for CNAs
and gene expression changes and takes into the account the
functional annotation of a gene when assessing the rele-
vance of a CNA or differential expression. WGA also pro-
cesses SVs using DNA breakpoints data output by
the structural event detection program Delly [25].

From the MPA results, pathogenic and likely patho-
genic alterations are assessed for potential direct and in-
direct (i.e. via pathway mechanisms) therapeutic options.
WGA’s pathway and drug analysis identifies which ther-
apies are most applicable and categorizes therapies by
different levels of evidence from strongest, which in-
cludes FDA-recognized marker or mutations predictive
of response, to the weakest, which can represent a nor-
mally appropriate therapy with a clinically supported re-
sistance marker present in the patient. For each
potential treatment option that WGA identifies, it
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provides all supporting evidence for the use of that ther-
apy, mechanism of action and information on eligible
clinical trials if available. WGA currently limits available
treatments to molecularly targeted therapies.

To access unstructured data, particularly from literature,
clinical trial information and drug label data, WGA ap-
plies Natural Language Processing (NLP). In brief, NLP
requires a training phase on a high-quality corpus of pa-
pers and text that have been manually annotated by sub-
ject matter experts for terms and relationships relevant for
WGA to understand, including genes, proteins, mutations,
drugs, and effect. After this training phase, the NLP model
is applied to the full unstructured data set, and after valid-
ation by automated methods and subject matter experts,
the information is integrated into WGA.

NY-GGC provided VCFs, including CNV and gene ex-
pression files as input to WGA. Over the course of this
study, IBM and NY-GGC periodically reviewed results
and discussed differences between NY-GGC and WGA.
Insights and feedback from these sessions along with
similar sessions for other studies [24] were used to im-
prove the process of automated curation, for example by
identifying additional data sources for consideration and
adjusting parameter weights. As new GBM samples be-
came available, the entire cohort to that date was reana-
lyzed by the then current version of WGA.

Using NY-GGC calls as a truth set, we compared
mean sensitivity and positive predictive value (PPV)
across patients to determine similarity between manual
and automated systems for reported variants and drug
targets based on VCFs.

Comparison with targeted panels

Prior targeted NGS panel testing results were available for
20 patients and were compared with WGS results. The per-
centage of variants that were in common, that were uniquely
called by WGS, or that were uniquely called by the targeted
panel were calculated and shown in a heatmap. Targeted
NGS panel testing was done by Memorial Sloan Kettering
Cancer Center IMPACT (Panel 1), FoundationOne (Panel
2), New York University Next Generation Sequencing
Tumor 50 Panel (Panel 3), Weill Cornell Medical Center
Precision Medicine’s whole exome sequencing assay
(Panel 4), University of San Francisco’s 500 Cancer Gene
Panel (Panel 5) and Caris Molecular Intel (Panel 6).

Therapeutic targets and drug recommendations
After annotating the tumor-specific gene variants, rela-
tive to normal germline DNA, based on SNV, CNV, SV,
and RNA-seq data, [18] variants were associated with
drugs in the NYGC database.

NYGC database was assembled by manual curation of
publically available data from the National Comprehensive
Cancer Network, (https://www.nccn.org/), US Food and


https://www.nccn.org/

Frank et al. BMC Medical Genomics (2019) 12:56

Drug Administration (https://www.fda.gov/Drugs/Infor-
mationOnDrugs/ApprovedDrugs), CIViC - Clinical Inter-
pretations of Variants in Cancer (civic.genome.wustl.edu),
Precision Cancer Therapy-MD Anderson (https://pct.
mdanderson.org/), OncoKB (oncokb.org), canSar (https://
cansar.icr.ac.uk), Pharmacogenomics Knowledgebase -
PharmGKB (www.pharmgkb.org), Clinical Trials.gov (clin-
icaltrials.gov) and from directed literature searches. The
current NYGC drug to gene database contains 260 genes
associated with a least one drug.

Prioritization and rationale of drug recommenda-
tions was based on further manual assessment by the
NY-GGC including but not limited to: variant Tier,
quality of data supporting variant call, interpretation
of the consequences of VUS in light of literature re-
search (structural and functional analysis of protein
interactions, prior knowledge of analogous variants),
including analysis of X-Ray crystallographic structures,
drug FDA approval status, drug identification in a
current GBM trial, and record of drug success in the
treatment of GBM and/or other cancer types specific
to the variant.

Each individual’s results from NY-GGC were first
discussed in an internal tumor board comprised of
those involved in development of the analytic pipe-
line, bioinformaticians, project managers, pathway an-
alysts, and clinical experts, and subsequently at a
NY-GGC tumor board with that same team together
with referring physicians and collaborating physicians
and scientists. Further clinical use of the results pro-
vided were at the sole discretion of the referring
physician.

Statistical analysis

Mean tumor purity and ploidy were calculated with
standard deviations (SD). Median number of SNVs are
reported with interquartile range (IQR). Correlation be-
tween RNA-seq and exonic SNV variant allele frequency
(VAF) was assessed using Pearson’s correlation coeffi-
cient. Mean number of alternative splice variants was
calculated with SD. Mean sensitivity and PPV were cal-
culated to compare agreement between the number of
calls made between WGS and WGA.

Results

Patients and study process

Between March 2015 and July 2016, 36 patients were
screened and 30 were enrolled (Table 1). Four were ex-
cluded due to final pathology indicating diagnosis other
than GBM and 2 others died before sequencing began.
Three participants had two separate tumor samples se-
quenced; one from tumors resected from two distinct
brain areas, another from an enhancing and
non-enhancing region on MRI, and a third from samples
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Table 1 Patient characteristics

n=30

Age, median (range) 63 (25-81)

Female, no. (%) 12 (40%)

Resections, no. (%)

Initial 19 (63%)
Biopsy only 2 (7%)
Re-resection 7 (23%)
Re-resection of subtotal 2 (7%)

Prior treatment of 7 recurrent tumors, no.

RT/TMZ 6
Bevacizumab 3
Cetuximab 2
RT/Nivolimab 1
RT/Rindopepimut 1
CCNU 1
Gamma knife 1
Prior cranial RT, unrelated to GBM 1

Days from initial resection to sample submission, 67 (266)

median (IQR)

Sample preservation, no. (%) n=33
Fresh frozen 13 (40%)
OCT embedded 12 (36%)
Formalin-fixed paraffin-embedded 8 (24%)

Tumor biomarkers, no./no. assessed
EGFR amplification 8/20
MGMT methylation 12/30
IDH1 R132H mutation 2/30

All tumors were histologically confirmed as WHO grade IV gliomas. However,
one had focal sarcomatous features, another was initially reviewed as
pleomorphic xanthoastrocytoma with anaplastic features then as an epitheliod
GBM upon re-revew, and a third had a PNET-like component. SD = standard
deviation, IQR = interquartile range, RT = radiation therapy,

TMZ = temozolomide, CCNU = Lomustine

representing  different  histological  characteristics.
Throughout the study, we refined our processes for sam-
ple collection, squencing, analysis, interpretation, and dis-
semination of information to referring physicians. The
average time from sample receipt to the tumor board meet-
ings was 4.5 months (SD = 2.1) and the average time from
post bioinformatic pipeline analysis to the tumor board
meetings was 1.9 months (SD = 1.1).

Tumor purity and ploidy

Tumor purity ranged from 15 to 95% (mean=71%, SD =
16%) for all samples. Two samples had tumor purity <20%
(15 and 19%). The average estimated ploidy was 2.03 (range
1.59 to 4.06, SD = 1.235). Four samples were hyperploid and
three were hypoploid.
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WGS analysis

Samples from only three patients contained a Tier 1
SNV, two with the IDHI1 R132H variant and one with
BRAF V600E, similar to the incidence of these variants
in 591 GBM patient samples in MSKCC'’s cBioPortal (2
and 1% respectively). Samples from three patients con-
tained one Tier 2 variant: TP53 R175H, TP53 R273C,
and PIK3CA E542K. In contrast, there were 163 Tier 3
variants in 90 genes across 29 samples. There were 143
variants in Tier 4 genes, but none were deemed target-
able. Only one sample had no SNVs in targetable genes.
In total, 44 genes and 32 samples contained targetable
SNVs, the vast majority of which were Tier 3 variants.

Among clinically actionable SNVs, PIK3RI and RBI
were mutually exclusive, consistent with previous obser-
vations [26, 27]. Ten SNVs were identified in PIK3CA
and PIK3RI1. Of the three variants identified in PIK3CA,
one was assigned to Tier 2 (E542, within the catalytic
subunit), and the other two were assigned to Tier 3.
Seven Tier 3 variants were identified in PIK3RI, all of
which were in the iISH2 regulatory domain.

All but one sample had CNVs that were considered
targetable. We observed 24 arm-scale and nine focal
losses of chromosome 10 that included PTEN, consistent
with previous observations in GBM [28-30]. Of those
24, we observed 10 cases containing a secondary SNV.
EGER focal amplifications were observed containing the
EGFRvIll, EGFRvV and A289V variants. Six patients
were previously treated with temozolomide; two had
copy number losses of CDKN2A, and one also had a
copy number loss of RB1 [26].

TERT promoter mutations, which can have prognostic
consequences depending on factors such as MGMT pro-
moter methylation status, were found in 19 of 33 sam-
ples, consistent with prior studies. [31-34] There were
35 to 5881 (median =157, IQR =111) exonic SNVs per
sample, of which two were exceptionally high (1954 and
5881), one previously treated with temozolomide and
one not. Missense mutations accounted for 43% of calls
that resulted in drug associations, and CNV and SV data
were used in 23% of therapeutic associations (Fig. 1a).

RNA analysis

Of 30 samples, sufficient RNA quantity for library prep-
aration was extracted from 27 and high quality se-
quences with sufficient coverage were obtained from 26.
There was good correlation in the VAF between
RNA-seq and exonic SNVs identified by WGS (Pearson’s
correlation coefficient r=0.622, p-value=1.899%¢-13,
Fig. 2). RNA-seq identified 113 of 155 (73%) variants
identified by WGS. We observed more similarity in al-
lelic frequencies in DNA and RNA data for genes with
higher read count in a specific sample (i.e. overamplified
DNA and higher RNA transcript count).
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Fig. 1 Somatic alterations associated to potential therapy in NY-GGC
study. a Distribution of therapeutic associations with single nucleotide
variants (SNV), copy number variations (CNV), insertions/deletions (Indel)
and structural variations (SV) discovered from whole genome sequencing
(WGS) data in the NY-GGC study 33 sample data set. b Matrix outlining
the types of variants per gene discovered by WGS across the cohort. Blue
boxes indicate copy number losses, orange boxes indicate copy number
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RNA-seq revealed an average of seven alternative splice
variants (PSI > 10%) in Cancer Census genes per individual
(SD =5.02, range 1 to 26). One variant (c.2419-274_2443del)
in NYGC-GBM1 disrupted a splicing acceptor site and gen-
erated an exon 11 skipping event in the MET transcript.
[18] Additionally, both EGFRVIII and EGFRvV exon dele-
tions were confirmed in RNA-seq data (Fig. 3). We also dis-
covered a CHST11-PKP2 fusion (NYGC-GBM13, Fig. 4).
One of the breakpoints disrupted CHST1I and the other
was in the intergenic region just upstream of PKP2. The
CHST11 promoter may drive a high expression of this fu-
sion transcript (modified z-score of RNA-seq normalized ex-
pression =3.01). PKP2 is associated with EGFR regulation
and this fusion may result in activation of EGER signaling
pathway [35].

Identification and utilization of potentially clinically
actionable information

We identified one or more potential treatment targets in
all 30 tumor samples. WGS/RNA-seq identified 61 dis-
rupted genes, including both SN'Vs and CNVs, which were

associated with 87 targeted treatment options including
62 clinical trials for 39 therapies (Table 2). The most com-
monly identified therapeutic targets were PTEN, EGER,
CDKN2A, and MET (Fig. 1b). Two samples with high mu-
tation burden were found to have Tier 4 variants in
MSH2, a mismatch repair (MMR) gene for which check-
point inhibitors were identified as having potential utility
to increase immune response to tumors with high neoan-
tigen load [36].

We identified potentially synergistic combination ther-
apy options such as those targeting multiple mutations
occurring in the same pathway or targeting multiple
arms of the same pathway in seven patients. Three vari-
ant types, EGFR amplification, PTEN loss, and PIK3R1
SNVs were most frequently associated with potential
combination targets. In NYGC-GBM24, EGFR gain and
PTEN loss were identified, which could independently
activate the PISK/AKT pathway. Cetuximab and everoli-
mus were suggested to inhibit activation of EGFR and
mTOR downstream of AKT, respectively [37]. In
NYGC-GBM1, PTEN loss, MET gain and PI3KR1 variants
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were present, and associated with a PI3K inhibitor
(BKM120) and a MET inhibitor (INC280). [18, 38, 39]
NYGC-GBM9 had a PIK3R1 variant and PTEN loss and a
PI3K inhibitor (BKM120) and everolimus were suggested

[40]. In NYGC-GBM17 with BRAF V600E, PIK3RI loss,
and MET and EGFR gain, the combination of vemurafenib
and INC280 were identified, aiming to avoid resistance to
inhibitors targeting BRAF V60OE [41-44].
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CHST11
352aa

(Arm) is preserved

CHST11-PKP2

Fig. 4 CHST11-PKP2 fusion in NYGC-GBM13. Fusion transcript between the amino-acids 1 to 35 of CHST11 and amino-acids 75 to 881 of PKP2.
Breakpoints are: CHST11: Chr12:104851292:+ and PKP2: Chr12:33031966:-The fusion is predicted to be in-frame and PKP2's Armadillo domain

PKP2

G75 881aa

We considered levels of expression in pathways down-
stream of potentially targetable variants. NYGC-GBM7
contained an EGFR gain and a nonsense SNV in the
gene Smoothened (SMO), which is directly targetable by
vismodegib. The SMO variant (p.Argd21*/c.1261C>T)
is of unknown function. It was confirmed by RNA-seq
and Sanger sequencing, however no significant alteration
in SMO transcript level (z-score=-093) was identified.
SMO activation leads to release of GLI1 from SUFU-medi-
ated cytoplasmic sequestration and to nuclear translocation
and transcription activation [45]. Nonsense mutations are
often not directly associated with RNA decay, however
RNA-seq analysis showed significant upregulation of
downstream transcripts in the SMO-SUFU-GLI pathway,
including those encoding MDAM?2 and IGFBP6, which are as-
sociated with tumor proliferation [46]. Vismodegib, was well
tolerated, but not efficacious in recurrent GBM [47] but
given that this study did not stratify enrollees based on gen-
omic variants, it was considered potential therapeutic option.

Of 30, there were four patients in whom the WGS/
RNA-seq done in this study were used to make treatment
decisions. NYGC-GBM17 was a 33 year-old female whose
initial pathology was reviewed as a low-grade pleimorphic
xanthroastrocytoma (PXA), later re-reviewed as an epithe-
liod glioblastoma. She was treated with radiation, temozo-
lomide, and multiple procedures for cyst drainage.
NY-GGC identified a BRAF V600E variant, also found by
FoundationOne, which has been reported to occur in both
PXA and epitheliod GBM tumors, and this finding sup-
ported a recent case report suggesting that epithelioid
GBM may arise from a PXA with a BRAF V600E mu-
tation [48]. After presentation at the NY-GCC tumor
board, the patient was treated with drugs targeting
BRAF (dabrafenib and trametinib) for 12 months. At
the time of this writing, she was 18 months post ini-
tial diagnosis, free of focal neurologic deficits with
stable disease on MRIL.

NYGC-GBM25 was a 24 year-old man with a partially
resected GBM that recurred and was re-resected 1
month later. He was treated with chemoradiation and
intra-arterial Bevacizumab on a clinical trial (NCT
01811498). NY-GGC identified a high mutational bur-
den, which was likely due to a truncating mutation in a
MMR gene, MSH2 [49-51] and a missense VUS in
POLA1, which combined with MMR defects can lead
to higher rates of mutation than MMR defects alone
[52]. At NY-GGC tumor board, checkpoint inhibitors
were identified as possible targeted treatments, based
on evidence that they are effective against MMR-defect-
ive tumors and that there may be potential benefit of
concurrent therapy [53, 54]. The referring physician
stopped adjuvant temozolomide, in light of evidence
that MSH6 protein loss could lead to progression on
temozolomide in GBM, [55, 56] and started nivolumab.
Shortly thereafter, the patient underwent re-resection
and this sample was submitted for resequencing in an-
other study. This sample, collected 7 months after the
initial sample, had a similarly high mutation burden
with many of the same potentially targetable variants.
The hypermutation phenotype was again chosen by the
physician as the focus of treatment, discontinuing nivo-
lumab and starting pembrolizumab. The patient later
suffered multiple central nervous system infections and
seizures and died 6 months after the third resection.

NYGC-GBM12 was a 64 year-old male treated with tem-
ozolomide, bevacizumab, intra-arterial cetuximab (based on
FISH evidence of EGFR amplification) and multiple resec-
tions. NY-GGC identified an extreme focal EGFR amplifica-
tion, and suggested erlotinib despite pre-treatment with
cetuximab. He received 3 cycles of erlotinib but did not
have a significant clinical response and died 5 months later.

Overall, NY-GGC tumor boards occured at an average
of 4.5 months (SD = 2.1 months) after sample submission
and follow up indicated that results were utilized in the
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Table 2 Key targetable variants and associated drugs and clinical trials

Sample Key Therapeutic Variants Associated Drugs Clinical Trials
GBM1  PIK3R1 R562del, MET R755fs MET 11, focal gain BKM120, NCT01870726
INC280 NCT02386826
GBM3  PIK3CA V344G BKM120 NCT01870726
NCT01349660
GBM4  EGFR gain, PTEN W111C, whole arm loss Cetuximab, Everolimus NCT01238237
NCT01870726
GBM5  PDGFRA/KIT/KDR gain Nilotinib NCT01140568 NCT01871311
GBM6  PIK3CA G542K, PTEN N59fs, EGFR whole arm BKM120, Everolimus, Cetuximab NCT02142803
gain NCT01349660
NCT01238237
GBM7  SMO R421* NF1 Q270* Vismodegib, MEK162 NCT00980343
NCT01885195
GBM8*  POLE P1505S, MSH2 splice site donor ¢.366 + Pembrolizumab, Nivolumab NCT02337686
1G> A, High mutation burden NCT02017717
GBM9  EGFR gain, KDR R1022%, PIK3R1 E443del Cetuximalb, ABT41, Bevacizumab, NCT02573324
BKM120 NCT01349660
GBM10  MGMT loss, PTEN R130* whole arm loss NF1 Temozolomide, Everolimus, MEK162 NCT01885195
E1722%
GBM12  EGFR A289V, focal gain, PIK3R1 D560G BKM120, Afatanib NCT01349660 NCT01934361
GBM13  MDM2 focal gain, CDK4 focal gain, PTEN R47S RG7112/RG7388, AMG232, Palbociclib, NCT01877382 NCT02143635 NCT01227434
Everolimus NCT01870726
GBM14  EGFR A289V, focal gain, PIK3R1 W597G, PTEN BKM-120, Everolimus NCT01349660 NCT01934361 NCT01870726

whole arm loss and focal deletion

GBM15  PIK3R1 T473P, EGFR whole arm gain, CDKN2A BKM-120, Cetuximab, ABT-414, Afatanib, NCT01339052 NCT02423525 NCT02573324

homozygous focal deletion, PTEN whole arm ABBV-221, Palbociclib, Ribociclib, NCT02365662 NCT01227434 NCT02345824
loss Everolimus
GBM16 PTEN Y16*, EGFR focal gain, PDGFRA focal gain Everolimus, Cetuximab, ABT-414, Afata-  NCT02423525 NCT02573324 NCT02365662
nib, ABBV-221, Nilotinib, Crenolanib NCT02626364 NCT01140568 NCT01871311
GBM17 BRAF V600E, EGFR gain Vemurafanib, Cobimetinib, ABT414 NCT02537600 NCT02573324 NCT02423525

GBM21  EGFR R222C, focal gain, MET P791L, focal gain, Cetuximalb, ABT-414, Afatanib, ABBV-221  NCT02423525 NCT02573324 NCT02365662
PTEN whole arm loss, CDKN2A homozygous Crizotinib, INC280, Everolimus, Palboci- ~ NCT02540161 NCT02034981 NCT02386826

focal deletion clib, Ribociclib NCT01227434
GBM22 PTEN V119F, whole arm loss, STAG2 focal Everolimus, Olaparib, Veliparib, MEK162,  NCT01390571 NCT02152892
deletion, NF1283fs, focal loss, TP53 R158H Temsirolimus/Docetaxel
GBM23 IDHT R132H, RPTOR A578G AG-120, AG-881, BAY-1436032, Everoli- NCT02073994 NCT02481154 NCT02746081
mus, INK128 NCT01434602 NCT02142803

GBM24  PIK3CA R93W, EGFR whole arm ampilification, BKM-120, Cetuximab, ABT-414, Afatanib, NCT01870726 NCT01339052 NCT02423525
MET focal gain, PTEN R335%, T2771, whole arm ABBV-221, Crizotinib, INC280, Everolimus, NCT02573324 NCT02365662 NCT02386826
loss, CDKN2A homozygous focal deletion, PALB2  Palbociclib, Ribociclib, Olaparib, Veliparib  NCT01227434 NCT02345824 NCT01390571

whole arm loss NCT02152982
GBM25 POLAT G1178, MSH2 splice site donor ¢.366 + Pembrolizumab, Nivolumab, Paclitaxel, NCT02337686 NCT02017717 NCT02379416
1G> A, TP53 R175H, G245S, PDGFRA Y375H, Nilotinib NCT01140568 NCT01871311
PDGFRA/KIT/KDR focal gain, High mutation
burden
GBM26  PIK3CA R88Q, MDM2 focal gain, CDK4 focal gain, BKM-120, RG-7112, AMG-232, Palbociclib, NCT01249660 NCT01339052 NCT01877282
PTEN whole arm loss Ribociclib, Everolimus NCT01723020 NCT01390571 NCT02152982
NCT02255461
GBM27  EGFRVIII, EGFR focal gain, CDKN2A homozygous  Afatnib, Rindopepimut, CAR-T, Cetuxi- NCT01480479 NCT02423525 NCT02664363
focal deletion, PTEN whole arm loss mab, ABT-414, Afatanib, Palbociclib, NCT02573324 NCT02423525 NCT00703625
Ribociclib, Everolimus NCT01390571 NCT02152982
GBM28 PIK3R1 Q579fs, PIK3CA D939G, MET focal gain, BKM-120, Crizotinib, INC280, Nilotinib NCT01870726 NCT01339052 NCT01870726
PDGFRA focal gain, CDKN2A homozygous focal  Palbociclib, Ribociclib, Everolimus NCT01339052 NCT02365662 NCTO1140568
deletion, PTEN whole arm loss NCT01390571 NCT02152982
GBM29 EGFR A289V, EGFR focal gain, PTEN R130%, whole Cetuximab, ABT-414, Afatanib, NCT02573324 NCT02423525 NCT0070362

arm loss, CDKN2A homozygous focal deletion, Everolimus, Palbociclib, Ribociclib NCT01390571 NCT02152982 NCT01390571
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Table 2 Key targetable variants and associated drugs and clinical trials (Continued)

Sample Key Therapeutic Variants

Associated Drugs

Clinical Trials

CDK4 focal gain

mus, Temsirolimus, MLNO128, Temsiroli-
mus/Docetaxel, Palbociclib, Ribociclib

BKM-120, Olaparib, Veliparib, Everolimus

Everolimus, Temsirolimus, Palbociclib,

Cetuximab, ABT-414, Afatanib, Everoli-
mus, Temsirolimus, Docetaxel, CP-0610,

Cetuximab, ABT-414, Afatanib, BKM-120
Palbociclib, Ribociclib, Everolimus, Ima-

NCT02152982

NCT02073994 NCT02481154 NCT02746081
NCT002238946 NCT02142803 NCT01390571
NCT02152982

NCT01870726 NCT01390571 NCT02152982
NCT01434602

NCT01390571 NCT02152982

NCT02573324 NCT02423525 NCT00703625
NCT02698176 NCT02630251 NCT01877382

NCT02573324 NCT02423525 NCT02345824
NCT01390571 NCT02152982

NCT00703625

GBM31 IDH1 R132H, TSC2 P1215fs, TP53 R175H, CDKN2A  AG-120, AG-881, BAY-1436032, Everoli-
homozygous focal deletion
GBM32 PIK3R1 A483P, STAG2 focal deletion, PTEN
M198R, whole arm loss
GBM33  PTEN Q97*, whole arm loss, CDKN2A focal loss
Ribociclib
GBM34  EGFR gain, PTEN whole arm loss, TP53 C242S,
V143 M, MYCN gain
MK-8628, GSK2820151
GBM35  EGFR focal gain, PIK3R1 L372dup, CDKN2A
homozygous loss, PTEN whole arm loss, KIT
A207V tinib, Nilotinib
GBM36 NF1 ¢.1062 + 1 Splice Site Donor, TP53 T211I MEK162, Temsirolimus, Docetaxel

* Final therapeutic association performed post-mortem

care of at least three patients at the time of this writing.
At least eight patients died or experienced significant
functional decline before their physicians received
NY-GGC results.

Concordance of WGS/RNA-seq and panel-based
diagnostic reports

Twenty of the 30 GBM patients had targeted panel-based
sequencing performed (Fig. 5). Significantly, we identified
targetable variants not identified by panels in 18 of 20
(90%) cases. There were a median of 4 (IQR=2) WGS/
RNA-seq unique treatment targets, 5 (IQR =5.5) calls in
common, and 0 (IQR =0.25) panel-unique calls per case.
The number of common calls varied by panel type; WGS/
RNA-seq and Panel 1, which incorporates a matched nor-
mal, had 82% of calls in common. Thirteen percent of calls
were in common with Panel 3, which does not include a
matched normal; we identified germline variants falsely de-
scribed as tumor variants by the panel in two of five indi-
viduals. Panel 2, which also does not sequence a matched
normal, reported a total of 10 tumor variants across five re-
ports (providing therapeutic implications for one) which
WGS/RNA-seq identified as germline variants. In four of
the 20 cases, the panel identified one unique variant that
WGS/RNA-seq did not, largely due to low VAF.

In sum, 84 additional clinically actionable calls were made
using WGS/RNA-seq that were not identified by panels,
compared to four made by panels and missed by WGS/
RNA-seq. Of all 200 potentially actionable variants identi-
fied, panels did not identify 39.5%, and WGS/RNA-seq did
not identify 2.5%. Out of the 44 calls made by two panels
without matched normals, 13 (30%) were germline.

Concordance with WGA
WGA achieved good agreement with NY-GGC when
comparing the reported variants (mean sensitivity = 0.71,

SD =0.18/PPV =0.880, SD = 0.20 across patients, Fig. 6a).
WGA and NY-GGC maintained different thresholds for
identifying certain types of variants. For example,
NY-GGC often identified genes with copy number gains
of less than five and heterozygous losses as potentially tar-
getable while WGA did not. NY-GGC normalized some
CNV calls, for example to account for tumor purity.
NY-GGC also manually reviewed known cancer genes to
identify SNVs that were below threshold (15% VAF) and
had at least 40 total read count. Moreover, at the time of
initial analysis, WGA was just beginning to be trained to
identify SVs as targetable, whereas NY-GGC comprehen-
sively noted SVs and associated therapies.

There was also good agreement in the drugs recom-
mended when the same variants were identified and when
considering similarly scoped therapies (mean sensitivity =
0.74, SD = 0.34/PPV =0.79, SD = 0.23 across patients, Fig.
6b). As an example of one discrepancy, in NYGC-GBM13,
NY-GGC prioritized MDM?2 amplification as a potential
targetable variant, while WGA selected CDK4 amplifica-
tion. WGA did not associate MDM?2 with an inhibitor be-
cause open trials were not for patients with GBM.
NY-GGC prioritized MDM2 over CDK4 therapy based on
in vitro studies that CDK4 amplification alone is not suffi-
cient for CDK4 inhibitor sensitivity in cell lines. [57] The
CDK4 inhibitor, palbociclib, also had contradicting evidence
regarding blood-brain barrier penetration, [58] and tumor
board discussions of preliminary data of the GBM clinical
trial of palbociclib, later terminated, revealed that the physi-
cians were less likely to recommend this drug. WGA fo-
cused on reporting only molecularly targeted therapies;
thus chemotherapies and immunotherapies were outside its
scope. WGA also did not offer therapeutic options for VUS
where NY-GGC did, based on literature suggesting poten-
tial oncogenicity and targetability. Finally, in creating drug
databases, WGA used an automated, comprehensive, and
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Calls per
Subject WGS Panel
(no.) Common  Only Only Panels
0
4 0% 0% 3 100%
6 0% 0% 6
6 0% 0% 3
11 0% 0% 3
5 20% 0% 4
7 29% 0% 3
9 33% 0% 2
6 33% 0% 3
21 24% 43% 5% 2
11 36% 9% 1
9 44% 33% 11% 2
12 33% 8% 1
15 33% 0% 1
9 33% 0% 5
11 27% 0% 2
11 27% 0% 2
14% 0% 1
9 11% 0% 1
34 0% 3% 1
0,
10 0% 0% 1 0%
Fig. 5 WGS vs focused NGS panel comparison. Number of calls made based on WGS versus calls made by focused NGS panel testing per patient. Blue
indicates variant calls made uniquely by NY-GGC, green indicates variant calls made uniquely by panel testing, yellow indicates common calls made, purple
indicates germline variants called as tumor variants by panel testing; *panel testing done on subsequent sample, **panel testing done on prior sample,
Apartial report of panel testing available, Panel 1 =Memorial Sloan Kettering Cancer Center IMPACT Panel, Panel 2 = FoundationOne, Panel 3 =NYU Next
Generation Tumor 50 Panel, Panel 4 =Weill Cornell Institute of Precision Medicine's whole exome sequencing assay, Panel 5= University of California San
Francisco’s 500 Cancer Gene Panel, Panel 6 = Caris Molecular Intelligence’s profile which includes next generation sequencing analysis of 44 genes as well as
other assays such as immunohistochemistry

unbiased approach that included scanning PubMed ab-
stracts with minimal manual filtering and incorporated
publically available drug information resources, while
NY-GGC'’s was created by manual review of the literature
and refined through tumor boards and interdisciplinary dis-
cussions often including unpublished data. Therefore,
NY-GGC’s therapeutic associations adapted with know-
ledge and insight gained throughout the study.

Discussion
We undertook a comparative genomic-based study of
GBM patients to investigate the utility of targeted panels

versus WGS/RNA-seq and evaluated the feasibility and re-
liability of results obtained with manual versus automated
curation by IBM’s WGA. Together, WGS/RNA-seq was
more sensitive than panels, detecting 39.5% more calls
than panels, and 97.5% of the calls found by panels. Des-
pite these findings, potentially clinically actionable calls,
made in 100% of cases, altered treatment plans in only
10% of cases. This is likely a consequence of a number of
factors, including availability of drug and concern of side
effect profiles, lack of familiarity and slow acceptance of
new technology, appropriate timing of sequencing within
the patient’s clinical course, lack of prior clinical
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A B Drug
Calls per targets per
Subject NYGC WGA Subject NYGC WGA
(no.) Common Only Only (no.) Common Only Only
10 22% 100% 0 0% 0% 0% 100%
13 31% 2 0%
3 33% 3 0%
15 33% 27% 40% 7 0%
11 36% 8 13%
13 38% 7 14%
5 40% 40% 20% 6 17%
10 40% 40% 6 17%
9 0% 6 17%
20 10% 3 33%
15 0% 3 33%
6 0% 6 33%
16 13% 6 33% 33% 33%
4 25% 10 40% 10%
15 7% 4 25% 25%
13 31% 4 0%
13 38% 6 0%
9 33% 6 0%
7 14% 6 33% 17%
7 14% 6 17% 33%
15 0% 8 13% 25%
13 23% 6 0% 33%
8 0% 7 14% 14%
17 6% 4 0% 25%
6 0% 4 0% 25%
6 17% 5 0% 20%
12 17% 5 0% 20%
6 33% 10 20% 0%
7 0% 7 0% 14%
5 0% 2 0% 0%
10 10% 3 0% 0%
8 13% 3 0% 0%
9 11% 0% 5 0% 0% 0%
Fig. 6 Expert manual versus automated treatment target curation comparison. a Variants identified by expert manual versus automated
treatment target curation. b Drug targets identified by NY-GGC's expert manual versus WGA's automated processing when the same variants
were identified

information to rigorously assess risk-vs-benefits concerns,
and clinician perception of the usefulness and relevance of
the sequencing data based on time elapsed between resec-
tion and sample submission; further research is warranted
to identify the biggest barriers to implementation and
ways to overcome them.

The majority of potentially therapeutic associations
were identified in targetable genes (Tier 3) but with a
variant unknown to be actionable. Such variants were
prioritized when there was evidence that they would
likely affect protein function, similarly to Tier 1-2 vari-
ants. These findings were typically complex and required
manual curation of information from the literature, ne-
cessitating many person-hours per case. [18] The inter-
pretation of splicing variants and structural variants
resulting in splicing aberrations, only detected by

combining WGS [59] and RNA-Seq remains challenging,
especially in the context of individual sample or small
cohort analyses. There may also be additional connec-
tions between variants and pathways that we did not
identify. Furthermore, the therapeutic associations made
are based on what was available in the literature and in
clinical trials at the time of analysis and interpretation of
that individual sample and will evolve with new drug
development.

Hence a critical component of improving scalability of
data interpretation will be with automation. Here we ex-
plored this approach through a comparative analysis of
manual expert with automated curation. The time re-
quired for WGA to match VCF calls with drug options
improved to within 6 min over the course of the study,
while manual expert curation was an average of 1.9
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months. While WGA requires further development, for
example, to consider SVs as targets routinely or to ex-
pand the drug database beyond molecularly targeted
therapies, the potential usefulness of this timeframe in
the clinical setting is clear.

The per-patient cost of targerted panels at cancer cen-
ters are generally about $1000 and FoundationOne is cur-
rently ~$5800 [60]. By comparison, the all-in cost of
clinical WGS/RNAseq and analysis by all platforms in the
current study was ~$10,000. While financial cost-benefit
analysis may currently favor panels or WES, our results
suggest an imminent future in which the technical advan-
tages and breadth of WGS/RNA-seq will increasingly
provide improved cost-benefits by returning the most
comprehensive analysis of tumor mutations. As costs and
efficiencies improve, it may become reasonable to con-
sider how to routinely apply WGS/RNA-seq to benefit
cancer patients.

In addition to lowered cost and timely interpretation
of sequencing data, other strategies towards improved
implementation of WGS/RNA-seq include submission
of samples as soon as possible after resection so that re-
sults are available for consideration at the time treat-
ment decisions are made. This requires both clinician
education about the utility of such an assay as well as
the availability of clinically approved tests. NYGC has re-
cently obtained such regulatory approval from the New
York State Department of Health. One of the biggest
challenges in doing so in WGS was in demonstrating re-
producibility at far less depth (80X/40X for tumor nor-
mal pair) than depths of 100-200X for exomes and 500X
for panels. Specifically, true negatives remain elusive
even with very high depths because oncology variant cal-
lers look for variants and not for correct base calls, and
remain a limit of this assay. It will be interesting to see
how this influences adoption of WGS/RNA-seq for som-
atic variants in the coming months.

Limitations of this study include the inclusion of mul-
tiple sample preservation methods. This may have affected
the variant calls, although previous studies have shown
that 98% of actionable calls made in fresh frozen samples
can also be made in FFPE samples. [61] Although action-
able calls were made for all samples, some calls may have
been missed in those samples that had tumor purity of less
than 20%. [62] Another limitation is the small sample size.
This sample may not have been representative of other pa-
tients with GBM. Furthermore, only 20 of the 30 patients
enrolled had prior targeted panel with which the WGS
analysis could be compared. To address this, we are con-
ducting a follow-up study of 200 patients.

Conclusion
In sum, when we compared manual and automated
searches for therapeutic options, WGA offered a broader
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array of options with a much faster processing time while
maintaining significant sensitivity. Meanwhile, NY-GGC’s
manual curation associated clinical significance to a
broader array of variants, suggested combination therap-
ies, and incorporated feedback regarding individual pa-
tient clinical data as well as physician concerns discussed
at tumor board meetings. Taken together, this study points
to the potential of WGS/RNA-seq, combined with auto-
mated curation, to maximize therapeutic options which
can be used in clinical decision making for the benefit of
cancer patients.
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