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Abstract

Background: Colorectal cancer (CRC) is one of the leading causes of death by cancer worldwide and in need of
novel potential diagnostic biomarkers for early discovery.

Methods: We conducted a two-step study. We first employed bioinformatics on data from The Cancer Genome
Atlas to obtain potential biomarkers and then experimentally validated some of them on our clinical samples. Our
aim was to find a methylation alteration common to all clusters, with the potential of becoming a diagnostic
biomarker in CRC.

Results: Unsupervised clustering of methylation data resulted in four clusters, none of which had a known
common genetic or epigenetic event, such as mutations or methylation. The intersect among clusters and
regulatory regions resulted in 590 aberrantly methylated probes, belonging to 198 differentially expressed genes.
After performing pathway and functional analysis on differentially expressed genes, we selected six genes: CEP55,
FOXD3, FOXF2, GNAOT, GRIA4 and KCNAS5, for further experimental validation on our own clinical samples. In silico
analysis demonstrated that CEP55 was hypomethylated in 98.7% and up-regulated in 95.0% of samples. Genes
FOXD3, FOXF2, GNAOI, GRIA4 and KCNA5 were hypermethylated in 97.9, 81.1, 80.3, 98.4 and 94.0%, and down-
regulated in 983, 98.9, 98.1, 98.1 and 98.6% of samples, respectively. Our experimental data show CEP55 was
hypomethylated in 97.3% of samples and down-regulated in all samples, while FOXD3, FOXF2, GNAOT, GRIA4 and
KCNA5 were hypermethylated in 100.0, 90.2, 100.0, 99.1 and 100.0%, and down-regulated in 68.0, 76.0, 96.0, 95.2 and
84.0% of samples, respectively. Results of in silico and our experimental analyses showed that more than 97% of
samples had at least four methylation markers altered.

Conclusions: Using bioinformatics followed by experimental validation, we identified a set of six genes that were
differentially expressed in CRC compared to normal mucosa and whose expression seems to be methylation
dependent. Moreover, all of these six genes were common in all methylation clusters and mutation statuses of CRC
and as such are believed to be an early event in human CRC carcinogenesis and to represent potential CRC
biomarkers.
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Background

Colorectal cancer (CRC) is one of the leading causes of
death by cancer in both genders [1]. CRC occurs
through a process of malignant transformation, when
numerous genetic and epigenetic events transform nor-
mal colon mucosa to adenocarcinoma [2]. It is a very
heterogeneous disease, in which three major molecular
pathways have been identified. The most common path-
way is the chromosomal instability (CIN) pathway,
which is characterized by an accumulation of mutations
in specific genes (e.g., APC, KRAS, BRAF, TP53) [2], and
accounts for 65-70% of sporadic CRC cases [3]. The
microsatellite instability (MSI) pathway accounts for
approximately 15% of sporadic CRC, and is character-
ized by deficiency in DNA mismatch repair (MMR)
genes (e.g. MLHI, MSH2, MSH6, PMS2) [4]. Silencing of
MMR genes in the MSI type of CRC occurs through
promoter hypermethylation, a common molecular alter-
ation at epigenetic level. In more than 80% of MSI cases,
promoter hypermethylation occurred in the MLHI gene
[5]. The third molecular pathway is the CpG island
methylator phenotype (CIMP); an epigenetic instability
pathway. One of these three pathways is usually predom-
inant but they are not mutually exclusive [6, 7].

CIMP has been extensively studied, not only in CRC but
also in bladder, gastric, lung and breast cancer [8]. Some
researchers have proposed three CIMP subtypes: CIMP
high (CIMP-H), CIMP low (CIMP-L), and non-CIMP sub-
types [5]. The CIMP-H subtype is significantly associated
with the proximal colon and mutations in gene BRAF,
whereas the CIMP-L subtype has intermediate methyla-
tion levels and is associated with mutations in KRAS gene
[9]. Moreover, The Cancer Genome Atlas (TCGA) consor-
tium describes four epigenetic subtypes (CIMP-H,
CIMP-L, Cluster 3, and Cluster 4), of which Clusters 3
and 4 are defined as non-CIMP subtypes [10].

Whereas two research groups, Shen et al [11] and Yagi
et al [12], reported three epigenetic subtypes and some
genes as hypermethylation markers, Hinoue et al. identi-
fied four subtypes based on hierarchical clustering of
DNA methylation at loci exhibiting high inter-tumor
variability [13]. Two loci, representing CIMP-H and
CIMP-L tumors, were associated with BRAF and KRAS
mutations, respectively. Tumors in the third cluster were
associated with TP53 mutations and prevalence in the
distal colon, while the fourth cluster was enriched for
tumors from the rectum, with low rates of KRAS and
TP53 mutations. Moreover, previous studies have sug-
gested that differences in the CIMP status are associated
with differences in the transcriptomic level across several
tumor types [8].

Using bioinformatics approach to select and validate
markers aberrantly methylated in CRC has been attempted
many times. Integration of epigenomics and genomics data
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identified 27 genes with hypermethylation/down-regulation,
of which ADHFEI, BOLL, SLC6A 15 and TFPI2, and TFPI2,
EYA4, NPY, TWIST1, LAMAI and GAS7 were experimen-
tally validated [14, 15]. Another study suggested 8 genes,
ADHFEI, Clorf70, SND1, OPLAH, TLX2, ZFP64, NR5A2
and COL4A with diagnostic potential in CRC [16].

Our aim was also to identify new aberrantly methyl-
ated gene promoters and observe their expression. Our
approach however was different. We used the data from
TCGA, in which the DNA methylation experiment was
done using microarrays, containing over 450.000 sites
within the genome. Unsupervised clustering of methyla-
tion data resulted in four clusters and each was
compared to the methylation data of normal mucosa
samples. The aberrantly methylated probes were inter-
sected among all clusters to obtain the probes common
to all clusters. The common methylation sites in all
clusters were integrated with gene expression analysis,
to identify novel candidate biomarkers, some of which
we tested on our experimental set of samples. Finding
common epigenetic alterations in all CRC types, regard-
less of tumor stage, could be a starting point for testing
these methylation changes on cfDNA obtained from
patient’s blood and/or novel therapeutic targets.

Methods

Bioinformatics methods

Patients and data

Colon adenocarcinoma (COAD) and rectum adenocar-
cinoma (READ) data were obtained from The Cancer
Genome Atlas (TCGA). Data were downloaded from the
Broad GDAC Firehose portal (https://gdac.broadinsti-
tute.org/) and contained clinical information, methyla-
tion, gene expression and mutation data. Platform used
for DNA methylation experiment was Illumina Infinium
HumanMethylation450k BeadChip array (HM450),
which covers 482,421 CpG sites within the human
genome. For methylation analysis level 3 data was used,
which is already normalized and contains beta-value
calculations, genomic coordinate, chromosome number
and HUGO gene symbol for each CpG site on the array.
For gene expression analysis mRNAseq experiment
performed on Illumina HiSeq platform was used. Gene
expression levels were obtained through RNAseqV2
pipeline, which uses a combination of MApSplice and
“scaled estimate” (RSEM) to determine expression levels.
RNAseqV2 data contains a normalized read count,
which represents normalized RSEM count estimates
from the upper quartile. Mutation data was obtained
through variant calling from DNAseq experiment using
MuTect2 pipeline. There were 381 tumor samples with
methylation data on HM450 platform and complete
mutational profile. From these 381 samples, 359 samples
had also Illumina mRNAseqV2 gene expression data.
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There were 45 normal samples used for comparison in
methylation data and 51 normal samples used for
comparison in the gene expression dataset.

Probes and genes

The coordinates of protein-coding genes were down-
loaded from Ensembl, release 89 (http://www.ensembl.
org/). The nomenclature of genes was unified according
to The HUGO Gene Nomenclature Committee (HGNC)
(http://www.genenames.org/). We mapped the HM450
probes to the GRCh38/hg38 genome using recently
published study [17]. Location of mapped probes were
overlapped them with promoter regions of regulatory
build of genome and assigned to their nearest genes.
The genes where transcription start site was within 5 kb
of the mapped promoter region were used for further
analysis.

Unsupervised clustering

We used the recursively petitioned mixture model
(RPMM) for the identification of colorectal tumor
subgroups based on the HM450 DNA methylation data.
RPMM is a model-based unsupervised clustering ap-
proach developed for beta-distributed DNA methylation
measurements that lie between 0 and 1 and is imple-
mented as the RPMM Bioconductor package [18]. We
removed probes mapped on X and Y chromosome and
the probes containing “NA” values and performed
RPMM clustering on 4165 probes, that showed the most
variable DNA methylation levels (standard deviation >
0.25). A fanny algorithm (a fuzzy clustering algorithm)
was used for initialization and level-weighted version of
Bayesian information criterion (BIC) as a split criterion
for an existing cluster as implemented in the R-based
RPMM package.

Differentially methylated probes and differentially expressed
genes

Differentially methylated probes and differentially
expressed genes were obtained using TCGAbiolinks
package in R [19]. Differentially methylated probes were
obtained by comparing beta-values of probes between
each methylation cluster and probes in normal samples.
First, the mean methylation of each group for each
probe was calculated, second, p-value was calculated
using Wilcoxon test using Bonferroni adjustment
method. The cutoff parameters were set to: absolute dif-
ference in methylation was larger than 0.2 and adjusted
p-value less than 0.01. For obtaining differential gene
expression general log-linearized model was used, with
cutoff parameters: absolute fold change was larger than
1.0, and false discovery rate (FDR) adjusted p-value less
than 0.01. For each cluster, we selected methylation
probes mapping to promoter regions and had absolute
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methylation difference more than 0.3 compared to
normal. We selected hypermethylated promoter probes
(methylation difference more than 0.3) and down-regu-
lated genes with logarithmic fold change of at least — 1.0.
Our selection also included hypomethylated promoter
probes (methylation difference was less than -0.3) and
up-regulated genes with logarithmic log fold change
more than 1.0. This selection was overlapped among all
resulting clusters to obtain the genes with aberrant
methylation and differential expression common to all
four clusters.

Data visualization, text mining and survival analysis

The HM450 DNA methylation B-values of 4165 most
variable probes along with methylation cluster, location,
gender, tumor stage, MLHI promoter methylation and
mutations in BRAF, KRAS, APC and TP53 were repre-
sented graphically using heatmap visualization from
ComplexHeatmap package in R programming software
[20]. For construction of protein-protein interaction net-
works the STRING database (version 10.5) was used
which produces a functional association network, using
interaction sources, such as text mining, experiments,
database, co-expression, neighborhood, gene fusion and
co/occurrence. To identify gene ontology processes
enriched within our 198 set of genes from the intersec-
tion of all resulting clusters the STRING database was
used [21]. We used the GeneRIF (Gene Reference into
Function) database as the source text for finding
gene-disease associations previously published and
stored on PubMed system. We performed several quer-
ies using different conditions and terms such as: “can-
cer”, “colorectal”’, “colon”, “methylation”, “expression”
and identification numbers for all 198 genes. For the
Cox proportional hazard model package survival in R
software was used [22]. The influence of the different
clinical and genetic parameters was determined with
logrank test, where p-value was less than 0.05. Some
hazard ratios could not be computed, since gene was
up/down regulated or hypo/hypermethylated in all
samples. Hazard ration can be computed when there are
two groups.

Experimental validation

Clinical samples

Samples used for experimental validation in our study
are presented in Table 1. Our study was comprised of
115 samples, of which 90 were fresh frozen tissue sam-
ples and 25 tissue samples were stabilized in RNAlater
solution (Ambion). All the samples (n = 115) were used
in the methylation experiment, however, the latter 25
samples, that were stored in RNAlater, were of sufficient
quality to be used also for gene expression experiment.
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Table 1 Clinical data for samples used in validation

Methylation set Expression set

(n=115) (n=25)
n (%) n (%)
Gender
Female 54 (47) 10 (40)
Male 61 (53) 15 (60)
Location
Ascending colon 27 (23.5) 5 (20)
Transverse colon 14 (122) 3(12)
Descending colon 6 (5.2) 1(4)
Sigmoid colon 18 (15.7) 3(12)
Rectum 50 (43.5) 13 (52)
T
T 12 (104) 14
T2 28 (24.3) 3(12)
T3 61 (53.0) 20 (80)
T4 14 (12.2) 1(4)
N
NO 56 (48.7) 15 (60)
N1 53 (46.1) 5 (20)
N2 5(43) 4(16)
Nx 1(09) 1(4)
M
MO 84 (73.0) 18 (72)
M1 13 (11.3) 2 (8)
Mx 18 (15.7) 5 (20

T tumor size, N lymph node infiltration, Nx lymph node infiltration not
determined, M distant metastasis, Mx distant metastasis not determined, n
number of samples

The latter 25 samples were collected during surgical
colectomy of patients diagnosed with primary colorectal
adenocarcinoma. The patients’ whose samples were col-
lected had no other cancer than CRC, and no previous
radio- or chemotherapy. From each patient tumor and
normal sample was collected, where normal samples of
healthy colon mucosa were collected at least 20 cm away
from tumor site. Both tumor and normal mucosa sam-
ples were placed in RNAlater solution, which stabilizes
tissue and enables DNA and RNA extraction. Samples
were submerged in RNAlater and incubated for 24 h at
4°C to allow the solution to penetrate through the
sample. After incubation period, the samples were stored
at - 20°C.

For all 115 samples data about gender, tumor location,
size, nodal infiltration, distant metastasis, and survival
data was obtained from Cancer Registry of Slovenia. Pa-
tients enrolled in the study signed an informed consent
form agreeing to participate in the study. The National
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Medical Ethics Committee of the Republic of Slovenia
approved this research.

RNA/DNA isolation

DNA and RNA from tissues stored in RNALater solution
were isolated with All prep DNA/RNA Mini Kit (Qiagen),
according to the manufacturer’s recommendations. DNA
and RNA quantity and quality were determined spectro-
photometrically by NanoDrop ND-1000 (Thermo Fisher
Scientific). DNA (# = 90) was isolated from fresh frozen
samples with QIAamp DNA Mini Kit (Qiagen), according
to the manufacturer’s recommendations. DNA quantity
and quality were determined spectrophotometrically by
NanoDrop ND-1000 (Thermo Fisher Scientific).

Bisulfite conversion and MS-HRM experiment

After DNA extraction, 1000ng of DNA was used in
bisulfite conversion with innuCONVERT Bisulfite Basic
Kit (Analytik Jena AG). Twenty ng of bisulfite converted
DNA was used in methylation-sensitive high resolution
melting experiment (MS-HRM). Primers for MS-HRM
were designed in Methyl Primer Express Software v1.0
(Thermo Fisher Scientific) (Additional file 1: Table S1) to
amplify both, methylated and unmethylated DNA. Ampli-
con length was designed to cover the specific CpG sites in
the 5" UTR region of selected genes differentially methyl-
ated from the bioinformatics analysis. For some genes one
amplicon covers more than one CpG site. As controls,
completely methylated and completely unmethylated
commercially available bisulfite converted DNA (EpiTect
PCR Control DNA Set, Qiagen) were used in each
MS-HRM run, to help with assessment of methylation
status of the samples. The amplification was performed
using the following protocol: 2.00 uL bisulphite converted
DNA, 1.00puL of each primer, 0.50 uL. dNTP, 1.00 uL
HotStart Taq Plus Buffer (10x), 0.05 uL. HotStart Taq Plus
Polymerase (5 U/pL), and 0.3 pL. Syto9 with Nuclease-free
water to obtain a total PCR reaction volume of 10 pL.
Optimized cycling protocol for HRM analysis on the
Rotor-Gene Q (Qiagen) was preformed including: initial
denaturation at 95 °C for 5 min; 45 times at 94 °C for 155,
annealing temperature (Additional file 1: Table S1) for 30
s, extension at 72°C for 30s (using Fluorescence data
acquisition on the “HRM” channel at this step). HRM
analysis was performed immediately after PCR under the
following conditions: 60—-99 °C with 0.1 °C ramp rate. This
step requires fluorescence data acquisition on the “HRM”
channel. All amplifications were performed in duplicate,
using Rotor-Gene Q (Qiagen), following the manufac-
turer’s recommendations.

Reverse transcription and qPCR experiment
Gene expression levels were determined using SYBR
Green-based quantitative polymerase chain reaction
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(qPCR), which was performed on Rotor-Gene Q (Qia-
gen) detection system. All the reagents were from Qia-
gen, except where otherwise indicated. For investigated
genes and four endogenous controls (ACTB, GAPDH,
RNN18S, and RPLI13A) in qPCR experiment, primers
were all predesigned and used according to manufac-
turer’s instructions (Qiagen) (Additional file 2: Table S2).

Total RNA (300ng) was reverse transcribed using
QuantiTect Reverse Transcription Kit according to man-
ufacturer’s instructions (Qiagen). The resulting cDNA
was diluted 100-fold, and 3 pl was used for each qPCR
reaction in 10 ul PCR master mix (5pl 2x QuantiTect
SYBR Green PCR Master Mix, 1 pl of forward and 1 pl
of reverse primer). All the qPCR reactions were
performed in duplicates or triplicates. The signal was
collected at the endpoint of every cycle. Following amp-
lification, melting curves analysis of PCR products were
acquired on the SYBR channel using a ramping rate of 1
°C/60 s for 60-95 °C.

For expression calculation, geometrical average of
threshold cycle (C,) of four endogenous controls (ACTB,
GAPDH, RNN18S, and RPL13A) was subtracted from ct
of investigated gene to obtain the difference of threshold
cycles AC.. The comparative threshold cycles (AAC,)
were obtained by subtracting AC; of tumor sample from
AC; of paired normal sample. The comparative threshold
cycle is comparable with logFC, which is used for easier
comparison with bioinformatics data.

Results

Study design

The study consisted of two major parts — bioinformatics
analysis and experimental validation (Fig. 1). Bioinfor-
matics analysis was performed on samples from projects
COAD and READ obtained from TCGA. Methylation
data was collected by experiment with HM450, which is
the most comprehensive methylation data collection
available on TCGA. Methylation data were obtained on
the HM450 platform of 381 tumor tissue samples, to-
gether with 45 normal samples. HM450 covers 482,421
CpG sites within the genome, which were mapped to
regulatory regions that are likely to be involved in gene
regulation: the open chromatin region, predicted enhan-
cer region, predicted promoter, predicted promoter
flanking region and transcription factor binding site.
Altogether we obtained 190,920 probes located in 81,467
regulatory regions. Specifically, 14,718 probes mapped
into the open chromatin region, 9513 into the enhancer,
122,576 into the promoter, 42,150 into the promoter
flanking region, and 13,670 probes mapped into the
transcription factor binding site. Some regulatory re-
gions can overlap, so some probes belong to more than
one regulatory region.
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Unsupervised clustering on methylation data resulted
in four clusters. Probes in samples of each cluster were
compared to probes of normal samples to obtain signifi-
cant differentially methylated probes for each cluster.
Differentially methylated probes with significant p-values
of each cluster were intersected among all clusters. The
location of the intersected probes was compared to a list
of 190,920 probes in regulatory regions, which resulted
in 3513 probes that were both in intersect among
clusters and in regulatory regions. Gene expression data
of the same samples were available from an Illumina
mRNAseq V2 experiment. From the set of 381 tumor
samples used in methylation analysis, gene expression
data were available for 359 tumor samples. The samples
in gene expression of each cluster was then compared to
gene expression of 51 normal samples. The intersect
among all four clusters gave 2422 differentially expressed
genes. Integrating methylation in regulatory regions and
gene expression data, considering hypermethylation/
down-regulation and hypomethylation/up regulation
combinations, resulted in 590 aberrantly methylated
probes belonging to 198 genes. The resulting 590
aberrantly methylated probes belong to 373 regulatory
regions, in which 72 probes are located in the open
chromatin region, 5 probes in the enhancer, 439 probes
in the promoter, 97 probes in the promoter flanking
region and 66 probes in the transcription factor binding
site.

The second part of the study consisted of experimental
validation of six selected genes. For this purpose, we
tested DNA methylation status on 115 tumor tissue
samples, of which 25 were paired tumor and normal
tissue samples of sufficient quality for both DNA methy-
lation and gene expression experiment.

Clustering of methylation data

Unsupervised clustering analysis was performed on the
methylation data of 381 samples from COAD and
READ. The clustering resulted in four separate clusters,
denoted CIMP-H, CIMP-L, Cluster 3 and Cluster 4, ac-
cording to the names used in the literature [10] (Fig. 2).
As established previously, CIMP-H CRCs have a higher
rate of hypermethylated promoter of the MLHI gene
and higher mutation rate in gene BRAF. Similarly, we
found MLHI hypermethylation is present in 49.2% of
samples in CIMP-H but only 13 samples out of 222
(5.8%) from the other three clusters combined (Table 1).
Almost all mutations in gene BRAF were found in the
CIMP-H cluster (35.6%), a few were found in CIMP-L
(4.8%) and Cluster 3 (3.2%), while none were found in
Cluster 4. Cluster CIMP-L was characterized by a high
frequency of KRAS mutations, with rare mutations in
BRAF, and low rate of TP53 mutations. Indeed, the rate
of KRAS mutations in this cluster was the highest
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Fig. 1 Workflow of the study. Bioinformatics approach was composed of DNA methylation and gene expression analysis. DNA methylation data
was obtained from experiment using lllumina Infinium HumanMethylation450k BeadChip (HM450) array from 381 tumor samples and 45 normal
samples. Unsupervised clustering of tumor samples resulted in four clusters (CIMP-H, CIMP-L, Cluster 3 and Cluster 4). Probes of each cluster were
compared to probes in normal samples group with Wilcoxon test to obtain differentially methylated probes. HM450 array contains 482,421 CpG
sites, of which 190,920 CpG probes are located in promoter regions. The intersect of differentially methylated probes among all four methylation
clusters and probes located in promoter region resulted in 3513 probes. Gene expression data was obtained from lllumina mRNAseq V2
experiment, which contains gene expression for 20,338 genes. From 381 tumor samples used in methylation analysis, 359 had gene expression
data. For comparison of gene expression, 51 normal samples were used. Using gene expression data, tumor samples were divided into the same
clusters as samples of methylation data and each cluster was compared to normal group using general log-linearized model to obtain
differentially expressed genes. Intersect among all clusters in expression analysis gave 2422 differentially expressed genes. The bioinformatics
approach resulted in 590 differentially methylated probes belonging to 198 differentially expressed genes, which exhibit hypermethylation/down-
regulation or hypomethylation/up regulation. After literature mining, gene ontology, pathway analysis and protein-protein interactions we
selected CEP55, FOXD3, FOXF2, GNAOT, GRIA4 and KCNAS for further experimental validation. For experimental validation we used 115 samples in
methylation experiment and 25 samples in gene expression experiment. After RNA/DNA isolation, DNA was bisulfite converted and used in
methylation-sensitive high-resolution melt experiment (MS-HRM), and RNA was reverse transcribed to cDNA and used in quantitative real-time
PCR (gPCR) experiment. Gene CEP55 was hypomethylated and up regulated, while FOXD3, FOXF2, GNAOT, GRIA4 and KCNA5 were
hypermethylated and down-regulated, consistent with our bioinformatics analysis. Figure was prepared in Microsoft Power Point software.
Legend: COAD, Colon adenocarcinoma; READ, rectum adenocarcinoma; logfFC, logarithm of fold change
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Fig. 2 Heatmap representing methylation, some clinical and genetic data. RPMM-based classification of 381 of tumor samples from colon
adenocarcinoma (COAD) and rectum adenocarcinoma (READ) project in TCGA and heatmap representation of HM450 DNA methylation data.
DNA methylation profiles of 4165 probes with most variable DNA methylation values (standard deviation > 0.25) in the 381 colorectal tumor
sample set. The DNA methylation 3-values are represented by a color scale from blue (low DNA methylation) to red (high DNA methylation). The
probes are arranged based on the order of unsupervised hierarchal cluster analysis. Four subgroups were derived by RPMM-based clustering and
are indicated below the heatmap: (red) CIMP-H cluster (n = 59); (black) CIMP-L cluster (n = 104); (blue) Cluster 3 (n = 124); (green) Cluster 4 (n =
94). Below methylation cluster is location: (dark green) ascending colon, (light blue) descending colon, (yellow) transverse colon, (purple) sigmoid
colon, (orange) rectum, (grey) NA — data not available; gender: (light brown) female, (dark gray) male; tumor stage: (navy blue) stage |, (pink)
stage I, (light green) stage Ill, (turquoise) stage IV, (gray) NA — data not available; MLHT methylation (gold bars), BRAF mutation (olive bars), KRAS
mutation (dark red bars), APC mutation (dark brown bars) and TP53 mutation (violet bars). On the right side of the heatmap are methylation
levels of the samples from normal colorectal mucosa (n =45) for comparison. The average age of patients is 64.2 and the average age of patients
with normal mucosa is 68.8. Figure was prepared using library ComplexHeatmap in R programming software

(26.9%) although not nearly as high as reported in the
literature (92%). Mutations in TP53 were found in 22.1%
of samples (Table 2). CIMP-H and CIMP-L clusters are
both associated with tumor presence in ascending colon,
where in our case, tumor presence in the ascending
colon was 73.6% in CIMP-H and 52.5% in CIMP-L.

The both non-CIMP clusters, Cluster 3 and Cluster 4,
had lower frequencies in mutations in BRAF (3.2 and
0%) and KRAS (16.1 and 9.6%), respectively. There was a
higher rate of TP53 mutations, 34.7% in Cluster 3 and
39.4% in Cluster 4. Both of these clusters had a higher
rate of tumor presence in sigmoid colon, 27.6% of sam-
ples in Cluster 3 and 39.6% in Cluster 4, and rectum,
37.4% in Cluster 3 and 34.1% in Cluster 4. High micro-
satellite instability was more pronounced in CIMP-H
(47.5%), while low microsatellite instability was most
frequent in CIMP-L (22.1%). Microsatellite stability was
predominant in Cluster 3 (82.3%) and Cluster 4 (77.4%)
but it is also quite high in CIMP-L cluster (65.4%). Fig. 2

shows there is no distinct feature (i.e, mutation, pro-
moter methylation) common to all samples in any clus-
ter or common to all clusters.

Aberrantly methylated probes and differentially
expressed genes

Our analysis resulted in 590 aberrantly methylated
probes found at the intersect between clusters and
mapped to regulatory regions. These probes belong to
198 differentially expressed genes, which were differen-
tially expressed in each cluster when compared to
normal tissue samples (Additional file 3: Table S3).
Using these 198 protein-coding genes, we performed
protein-protein interaction network (PPIN), functional
and literature mining analysis.

The 198 differentially expressed genes were uploaded
to the STRING database to construct a PPIN (Add-
itional file 4: Figure S1). Since genes were selected based
on aberrant methylation and differential gene expression
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Table 2 Genetic and clinical features of all samples from TCGA and samples from TCGA belonging to each of the four methylation-

based clusters

CIMP-H (n =59)
n (%)

CIMP-L (n =104)
n (%)

Cluster 3 (n =124)
n (%)

Cluster 4 (n =94)
n (%)

ALL (n =381)
n (%)

APC/WT

KRAS/WT
TP53/WT
BRAF/WT

MLH1T Methylated/Unmethylated

Gender Female/Male

Location
Ascending colon
Transverse colon
Descending colon
Sigmoid colon
Rectum

No data

T
T2
T3
T4
Tis
No data

NO
N1
N2
Nx
No data
M
MO
M1

No data
MSI
MSI-H
MSI-L
MSS
Indeterminate
Stage
Stage |
Stage |l
Stage Il
Stage IV
No data

19/40 (32.2/67.8)
12/47 (20.3/79.7)
15/44 (25.4/74.6)
21/38 (35.6/64.4)
29/30 (49.2/50.8)
30/29 (50.8/49.2)

39 (73.6)
8 (15.1)
2(38)
36.7)

38 (644)
12 (20.3)
9(153)

46 (79.3)
3(52)
9 (15.5)

28 (47.5)
9(153)
22 (37.3)

43/61 (41.3/58.7)
28/76 (26.9/73.1)
23/81 (22.1/77.9)
5/99 (4.8/95.2)
8/96 (7.7/92.3)
46/58 (44.2/55.8)

53 (52.5)
16 (15.8)
5(5.0)

13 (129
14 (13.9)

63 (60.6)
22 (21.2)
19 (183)

71 (69.6)
11 (108)
20 (19.2)

12 (11.5)
23 (22.1)
68 (654)

17 (17.0)
43 (43.0)
29 (29.0)
11 (1.0
4

49/75 (39.5/60.5)
20/104 (16.1/83.9)
43/81 (34.7/65.3)
4/120 (3.2/96.8)
2/122 (1.6/984)
51/73 (41.1/589)

23 (187)
18 (14.6)
2(1.6)
34 (27.6)
46 (37.4)
1

4(33)
7(5.7)
91 (74.0)
21(17.1)

60 (48.8)
40 (325)

83 (68.0)
23 (189)
16 (13.1)

6 (4.8)
16 (129)
102 (82.3)

6(5.2)
48 (414)
40 (34.5)
22 (190)
8

42/52 (44.7/55.3)
9/85 (9.6/90.4)
37/57 (394/60.6)
0/94 (0.0/100.0)
3/91 (3.2/96.8)
47/47 (50.0/50.0)

332
15 (16.1)
67 (72.0)
8 (8.6)

43 (46.2)
29 (31.2)
21 (226)

58 (63.7)
16 (17.6)
17 (187)

7(75)
14 (15.1)
72 (77.4)

15 (17.0)
23 (26.1)
32 (36.4)
18 (20.5)
6

153/228 (40.2/59.8)
69/312 (18.1/81.9)
118/263 (31.0/69.0)
30/351 (7.9/92.1)
42/339 (11.0/89.0)
174/207 (45.7/54.3)

125 (34.2)
48 (13.2)
14 (3.8)
86 (23.6)
92 (252)
16

11 (29)
52(137)
266 (70.2)
49 (129
1(03)

2

204 (53.8)
103 (27.2)
70 (18.5)
2(0.5)

2

258 (69.2)
53 (14.2)
62 (16.6)
8

53 (14.0)
62 (16.4)
264 (69.7)
2

52 (14.5)
138 (38.1)
118 (32.6)
54 (14.9)
19

CIMP the CpG island methylator phenotype, n number of samples, MUT mutation, WT wild-type, MSI microsatellite instability, MSS microsatellite stable,
T tumor size, N lymph node infiltration, Nx lymph node infiltration not determined, M distant metastasis, Mx distant metastasis not determined
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present in all four clusters, some of the proteins coded
by those genes are connected to networks, while others
do not interact. To get some information about the
biological functions of selected genes, we conducted
gene ontology and pathway analysis (Additional file 5:
Table S4). Pathway analysis reviled 12 significant KEGG
pathways, of which the first three were neuroactive
ligand-receptor interaction, cholinergic synapse and cir-
cadian entrainment. The circadian entrainment pathway
has previously been associated with rectum adenocarcin-
oma [23]. We therefore selected two genes, GRIA4 and
GNAOI, involved in this pathway, as well as gene
KCNAS5. KCNAS is indirectly associated with this pathway
through neighboring proteins KCNIP1 to NOSI1. Accord-
ing to our PPIN analysis, there is another set of proteins
with many interactions, of which BMP4 is the hub, which
is involved in Hedgehog and TGEF-beta signaling path-
ways. Moreover, our literature mining analysis revealed
that the expression of gene BMP4 had already been stud-
ied (Additional file 6: Table S5), so we decided to select
the genes FOXD3 and FOXF2 for experimental validation,
whose proteins interact with BMP4 and both of which are
transcription factors. We selected gene CEPS5 on the
basis of hypomethylation/up regulation, which is involved
in biological process of cell cycle.

We constructed child PPIN with the six selected pro-
teins described above, presented in Fig. 3, whereby b), )
and d) were constructed using the neighboring proteins
that are coded by genes from our list, and a) was
constructed with the first interacted protein added, since
CEP55 had no interactions in PPIN constructed from
our gene set. Gene CEPS5S is involved in cell division
and the cell cycle process, GNAOI and GRIA4
participate in signal transduction, FOXD3 and FOXF2
take part in stem cell differentiation and embryonic
organ development, while KCNAS5 is involved in nega-
tive regulation of cytosolic calcium ion concentration,
protein oligomerization and action potential.

According to our in silico analysis, gene CEP55 was
hypomethylated and up-regulated, while the other five
genes, FOXD3, FOXF2, GNAOI, GRIA4 and KCNAS,
were hypermethylated and down-regulated (Table 3).
The genes expressed various levels of difference in
methylation and expressions. The most down-regulated
gene, regardless of cluster, was FOXD3 (logFC = - 3.05).
It was down-regulated in 98.3% of samples. The methy-
lation difference was high (0.4), although present in
fewer samples (91.9%). The highest methylation differ-
ence was present in all four promoter probes of gene
GRIA4 (from 0.46 to 0.54), with two of them present in
98.4% of samples. Regardless of cluster, GRIA4 was
down-regulated (logFC = - 2.41) in 98.1% of samples.

We evaluated the aberrant methylation of regulatory
region per sample. In cases of GNAOI and GRIA4, with
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which there was more than one methylation probe per
gene, at least one of the probes had to be hypermethy-
lated to conclude that the section was hypermethylated.
No sample had less than two markers aberrantly methyl-
ated. There were two samples (0.5%) with two markers
and six samples (1.6%) with three markers aberrantly
methylated, 97.9% samples had at least four markers
aberrantly methylated. Specifically, 33 samples (8.7%)
had four, 88 samples (23.1%) had five and 252 samples
(66.1%) had all six markers aberrantly methylated.

To test the clinical data available in TCGA, we
performed survival analysis using the Cox proportional
hazards model (Table 4). Using univariate analysis, we
found that late stage compared to early stage tumor has
the highest hazard ratio. The second highest hazard ratio
was observed with the presence metastasis, followed by
presence of polyps and age above 60. By multivariate
analysis, we obtained two significant hazard ratios,
presence of metastasis and age above 60. Overall model
was significant, with p-value 2.475e-06.

Experimental validation
Based on the bioinformatics analysis results described
above, we experimentally validated six selected genes.
Experimental validation of the methylation results of the
in silico analysis was performed using a larger cohort of
samples (n=115). Results revealed CEP55 to be hypo-
methylated in 97.3% of CRC cases and FOXD3, FOXF2,
GNAOI, GRIA4 and KCNAS being hypermethylated in
100, 90.2, 100, 97.3 and 99.1% of CRC cases, respectively.
The methylation and expression profile of 25 samples
on which both experiments could be performed are
shown on Fig. 4. Consistent with the bioinformatics
analysis, our experimental data on expression analysis
on 25 RNAlater stored samples showed an overall ex-
pression of gene CEP55 as up-regulated (logFC =7.47,
p < 0.001), while FOXD3 (logFC=-0.66, p =0.027),
FOXF2 (logFC =-1.33, p =0.021), GNAOI (logFC = -
4.78, p< 0.001), GRIA4 (logFC = -3.25, p< 0.001) and
KCNAS (logfC=-2.81, p< 0.001) were down-regulated
in CRC compared to corresponding normal mucosa.
Methylation analysis on the same cohort of samples
(n =25) revealed that, in CRC compared to normal mu-
cosa, gene CEP5S was completely hypomethylated and
up-regulated. Gene GRIA4 had one sample hypomethy-
lated and slightly up-regulated, all other samples were
hypermethylated and down-regulated. Gene GNAOI had
one sample that was hypermethylated and up-regulated,
all the other samples were hypermethylated and
down-regulated. We obtained mixed results for FOXD3,
FOXF2, and KCNAS5 genes. FOXD3 had one sample
hypomethylated and down-regulated, while seven
samples were hypermethylated and up-regulated, the
rest being hypermethylated and down-regulated. FOXF2
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TSG101

Fig. 3 Protein-protein interaction networks and presentation of biological processes from Gene ontology. Lines: (cyan) from curated databases,
(magenta) experimentally determined, (green) gene neighborhood, (red) gene fusions, (blue) gene co-occurrence, (yellow green) texmining,
(black) co-expression, (purple) protein homology; circles: proteins; a) protein-protein network for CEP55 gene: (red) GO:0007067 mitotic nuclear
division, (blue) GO:0051301 cell division, (green) GO:0022402 cell cycle process, (yellow) GO:0000281 mitotic cytokinesis; b) protein-protein
network for GNAOT and GRIA4 gene: (red) GO:0007268 synaptic transmission, (blue) GO:0035235 ionotropic glutamate receptor signaling pathway,
(green) GO:0035249 synaptic transmission, glutamatergic, (yellow) GO:0007165 signal transduction; ¢) protein-protein network for FOXD3 and
FOXF2 gene: (red) GO:0003156 regulation of organ formation, (blue) GO:0048762 mesenchymal cell differentiation, (green) GO:0048863 stem cell
differentiation, (yellow) GO:0048568 embryonic organ development; d) protein-protein network for KCNA5 gene: (red) GO:0071286 cellular
response to magnesium ion, (blue) GO:0051481 negative regulation of cytosolic calcium ion concentration, (green) GO:0051259 protein
oligomerization, glutamatergic, (yellow) GO:0001508 action potential. Figure was downloaded from STRING web application (string-db.org)

GRIN2A

had two samples hypomethylated and up-regulated, four
hypermethylated and up-regulated, while the others were
hypermethylated and down-regulated. KCNAS5 had no
hypomethylated samples; four samples were hyper-
methylated and up-regulated, while the rest were hyper-
methylated and down-regulated.

Comparing the expression and methylation status of
RNAlater stored samples (1 =25) showed that gene
GNAOI1 had the most down-regulated gene expression and
was also hypermethylated in all samples (Table 5). Gene
GRIA4 showed hypermethylation and down-regulation in
97.3 and 95.2% of samples, respectively. Up-regulation in
all samples and hypomethylation in 97.3% of samples was
observed in gene CEPSS. The performance of other genes
in terms of the correlation of their expression to

methylation status was less encouraging, with FOXD3,
FOXF2, and KCNAS5 exhibiting down-regulation in fewer
than 90% of samples, even only 68% for FOXF3.

Additionally, the number of aberrant methylation
markers of six genes CEP55, FOXD3, FOXF2, GNAOI,
GRIA4 and KCNAS per sample was noted. There were
no samples with fewer than three markers aberrantly
methylated. Three samples (2.6%) had three markers ab-
errantly methylated. There were 97.4% of samples with
at least four markers aberrantly methylated. Specifically,
11 samples (9.6%) had four, 22 samples (19.1%) had five
and 79 samples (68.7%) had all six markers aberrantly
methylated.

To test our clinical data, we performed survival ana-
lysis using the Cox proportional hazards model (Table 6).
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Table 4 Cox proportional hazards model on TCGA dataset
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Univariate analysis

Multivariate analysis

hazard ratio 95% confidence p-value hazard ratio 95% confidence p-value (p-value
interval interval of model)
Cluster (CIMP vs. 1.182 0.6763-2.065 0.5593
Non-CIMP (n = 180)
Age (260) (n =180) 2.328 1.193-4.544 0.007842 3.693 (n =155) 1.634-8.349 0.00169 (2.475e-06)
Polyps present (n = 138) 2518 1.03-6.155 0.03877
Gender (Male vs. 1.662 0.930-2.967 0.07991
Female) (n = 180)
Location (rectum vs. 1.07 04935-2.318 0.8656
Colon) (n =176)
Stage (IIl/IV vs. 1/11) 1.95 1.073-3.543 0.0251
(n=176)
Metastasis presence 3.398 1.82-6.343 0.0002934 3813 (n =155) 2.032-7.156 3.08e-05 (2.475e-06)
(n=155)
Lymph node infiltration 1.725 0.978-3.042 0.05665
(n=179)
Tumor size (T3/T4 vs. 1.746 0.6899-4.417 0.206
T1/T2) (n =179)
MSIvs. MSS (n =179) 1.076 0.5948-1.947 0.8092
Late stage vs. early stage 3.876 0.9389-16 0.04349
(n=164)
Methylation (methylated vs unmethylated) (n = 165)
CEP55 - cg25314624 1.3444 0.3213-5.626 0.6842
FOXD3 - cg15617155 ND
FOXF2 - cg12221475 1.893 0.8455-4.236 0.1146
GNAOT- cg00866976 0.8484 04304-1.673 0.6347
€g10273340 0.8404 04161-1.697 06275
GRIA4 - cg00343633 04816 0.1483-1.563 02138
€g03225817 0.6222 0.1924-2.012 04238
cg07972135 06185 0.2206-1.734 0.3564
€g23559689 0.6887 0.1662-2.853 0.605
KCNAS - cg16897114 191 0.4558-8.002 0.3682
Expression (upregulated vs down-regulated)
CEP55 1.089 0.3344-3.549 0.8871
FOXD3 1.859 04483-7.711 03853
FOXF2 ND
GNAO1 0.9207 0.2222-3.815 0.9092
GRIA4 3409 0.8084-14.38 0.07561
KCNAS5 1.859 04483-7.711 0.3853

CIMP the CpG island methylator phenotype, n number of samples, MSI microsatellite instability, MSS microsatellite stable, ND not determinable

Using univariate analysis, we found that the presence of
metastasis had the highest hazard ratio, followed by can-
cer progression, both with the highest significance. The
next two highest hazard ratios were tumor size and
lymph node infiltration, with lower significance than the
previous two. By multivariate analysis, we obtained four
significant hazard ratios, presence of metastasis, age
above 60, lymph node infiltration and cancer

progression. The overall model had a p-value signifi-
cance of 5.453e-04.

Discussion

The vast database of experimental data (TCGA) was
used in our bioinformatics study. Interestingly, we ob-
served that some samples have no mutations in the most
commonly mutated tumor suppressors and oncogenes
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Fig. 4 Gene expression and methylation status of CEP55, FOXD3, FOXF2, GNAOT, GRIA4, and KCNAS in our samples. For the 25 samples used in
methylation and gene expression experiment, results are shown for gene: a) CEP55, b) FOXD3, ¢) FOXF2, d) GNAO], e) GRIA4, and f) KCNA5. Figure
was prepared in Microsoft Excel software. Legend: logFC, logarithm of fold change; U, unmethylated; M, methylated

BRAF, KRAS, TP53, APC, nor do they exhibit methyla-
tion in promoter of the MLHI gene. According to the
data from the literature, only 30% of CRCs harbor the
KRAS mutation, 8-15% of CRCs the BRAF mutation,
60% of CRCs the APC mutation, up to 40-50% of CRCs
the TP53 mutation and 10-15% CRCs MLHI promoter
methylation. Furthermore, we observed that neither
BRAF mutations nor methylation in the MLHI promoter
can accurately describe the CIMP-H cluster, since a
change in BRAF was present in roughly one third and

MLHI methylation in roughly 50% of samples in
CIMP-H. Both changes also had a small presence also in
the other three clusters.

In search of a common epigenetic change, we performed
bioinformatics study of methylation and expression ana-
lysis based on TCGA data, which resulted in 198 sets of
genes. We performed pathway and gene ontology analysis
on these genes. Pathway analysis resulted in 12 significant
KEGG pathways, of which the first four were neuroactive
ligand-receptor interaction, cholinergic synapse, circadian

Table 5 Methylation and gene expression on our dataset. P-value was calculated between AC; of tumor and AC; of normal mucosa

samples

Gene Expression dataset (n = 25) Methylation dataset (n = 115)
Methylation Expression logFC (p-value) Methylation

CEP55 100% Unmethylated 100% up-regulated 747 (<0.001) 97.3% unmethylated

FOXD3 96% methylated 68% down-regulated —0.66 (0.027) 100% methylated

FOXF2 88% methylated 76% down-regulated —1.33(0.021) 90.2% methylated

GNAO1 100% methylated 96% down-regulated —4.78, (< 0.001) 1009% methylated

GRIA4 96% methylated 95.2% down-regulated —3.25 (< 0.001) 97.3% methylated

KCNAS 100% methylated 84% down-regulated —2.81 (< 0.001) 99.1% methylated

n number of samples, logFC logarithm of fold change
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Table 6 Cox proportional hazards model for our dataset. In each calculation number of samples is 115
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n=115 Univariate analysis Multivariate analysis
Clinical data Hazard ratio 95% confidence p-value Hazard ratio 95% confidence p-value (p-value
interval interval of model)
Age (260) 1.967 1.01-3.833 0.043 2825 1.330-6.000 0.007 (8.737e-12)
Gender (Male vs. Female) 1.544 0.982-2426 0.058
Metastasis presence 6.900 3.392-14.04 8.982e-10 6.692 3.137-14.278 8.8e-07 (8.737e-12)
Lymph node infiltration 2016 1.367-2.975 3.366e-4 2234 1.352-3.691 0.002 (8.737e-12)
Tumor size (T3/T4 vs. T1/T2) 1.867 1.143-3.048 0.011
Location (rectum vs. colon) 1.797 1.139-2.836 0.011 2047 1.212-3457 0.007 (8.737e-12)
Late stage vs. early stage 1.926 1.172-3.165 0.009
RT 1.134 0.534-2.409 0.743
Chemotherapy 1.148 0.653-2.018 0.632
Cancer progression 2573 1.583-4.184 8.385e-05
Methylation (methylated vs unmethylated)
CEP55 1.276 0.312-5.217 0.734
FOXD3 ND
FOXF2 1.335 0.579-3.077 0.500
GNAO!1 ND
GRIA4 0.339 0.106-1.092 0.05729
KCNAS 0.0704 0.009-0.572 0.001
Expression (upregulated vs down-regulated)
CEP55 ND
FOXD3 1.664 0.485-5.702 0413
FOXF2 0.267 0.034-2.086 0.176
GNAO!1 4.277 0.4992-36.65 0.148
GRIA4 4478 0.4999-40.11 0.142
KCNAS5 3.699 0.9577-14.29 0.042

ND not determinable

entrainment and calcium signaling pathway. These path-
ways included altogether 26 of our genes. Gene Ontology
resulted in 137 significant biological processes, in which
all the pathways together included 155 genes from our list.
The first most significant biological process pathways were
mostly related to the nervous system and its development
in one part, and in the other part pathways were related to
cell differentiation, adhesion and development. Gene
ontology molecular function revealed that genes in our
selected set are involved in receptor activity, whereas the
gene ontology cellular component showed that most of
genes in our set are part of plasma membrane.

Among prominent identified genes were CEP5S5, in-
volved in the cell cycle process, FOXD3 and FOXF2,
which are involved in stem cell differentiation, GNAOI
and GRIA4, which participate in signal transduction and
KCNAS, which is a part of the regulation of the calcium
ion concentration. We experimentally validated these six
genes on our own CRC tissue samples, confirming the
prediction of expression and methylation status. Using

both approaches, we found gene CEPSS5 to be hypomethy-
lated and up-regulated, while the other five genes, FOXD3,
FOXF2, GNAOI, GRIA4 and KCNAS, were hypermethy-
lated and down-regulated. A number of studies have
already described CEPSS5 as an overexpressed gene in can-
cer tissue samples. It maps to chromosomal regions 10q23
and encodes centrosome- and midbody-associated protein
[24]. It is the latest member discovered in the centrosomal
relative protein family and it has an important role in cell
mitosis [25]. Overexpression of gene CEPS55 has been ob-
served in variety of solid tumors, including colon cancer
[26], bladder cancer [27], hepatocellular carcinoma [28],
gastric cancer [29], esophagus adenocarcinoma [30] and
ovarian carcinoma [24]. A previous study reported overex-
pression of CEP55 in 60% (9/15 samples) of CRC tissue
samples [26]. Overexpression of CEP55 activates p21 and
enhances the cell cycle transition. In contrast, the knock-
down of CEP55 inhibits cell growth in gastric [29] and
breast cancer [31]. Moreover, CEPS5 has an important
role in final stage division, which involves the separation
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of two daughter cells [25, 32]. Overexpression of CEP55
leads to an increase in the number of multinucleated cells
and defect in cytokinesis, which may lead to tumorigen-
esis. In our set of genes, FOXD3 and FOXF2 have had a
few studies performed on colon or gastric cancers. First,
forkhead box D3 (FOXD3) was found to be a suppressor
of colon cancer formation. While transcriptional repressor
FOXD3 is expressed in many types of embryonic cells, its
knockdown dramatically increases human colon cancer
cell proliferation, affecting the EGFR-Ras-Raf-MEK-ERK
signaling pathway [33]. Methylation in the promoter region
of another tumor suppressor FOXF2 has previously been
associated with shorter survival in gastric cancer patients.
Through the FOXF2-IRF2BPL-B-catenin axis, FOXF2
inhibits Wnt signaling by binding to E3 ligate IRF2BPL
promoter and up-regulates IRF2BPL, which interacts with
B-catenin for its ubiquitination and degradation [34].
Methylation of both tumor suppressors, FOXD3 and
FOXF2, could be responsible for their down-regulation,
thus disturbing their interaction with other proteins.

The second set of three genes, GNAOI, GRIA4 and
KCNAS, has been less researched, with only a few stud-
ies related to cancer. Gene GNAOI was found to be
overexpressed in 62.9% of patients with gastric cancer
[35], while in our CRC tissue samples gene GNAOI was
down-regulated. An association had been shown
between overexpressed gene GNAOI and tumor size,
tumor differentiation, TNM stage and poor prognosis.
Their findings also demonstrated that knockdown of
GNAOI leads to reduced proliferation and promotes the
apoptosis of gastric cancer cells [35]. However, statistical
evaluation of an effect of methylation status or expres-
sion of gene GNAOI on tumor size and TNM status in
our case is impossible, since gene methylation was ob-
served in the majority of samples. The second gene from
this set, GRIA4, was the most methylated gene in our in
silico study, with two probes being present in 98.4% of
samples. Moreover, its down-regulation was experimen-
tally confirmed in 98.1% of CRC tissue samples. A
recently published study reported detecting a change in
methylation in all CRC tissue samples, results similar to
ours, and methylated cfDNA of GRIA4 in 68.5% of
metastatic CRC patients [36]. Potassium voltage-gated
channel subfamily A member 5 (KCNAS5) is a protein
coding gene involved in tumor cell proliferation in
Ewing sarcoma [37], while its role in CRC is still
unknown. In our study, gene KCNAS5 was methylated in
all studied samples, while its expression was decreased
in 84% of our CRC tissue samples. Speculatively, as well
as Ewing sarcoma, methylation of KCNAS could be re-
sponsible for stable silencing of this gene in CRC, thus
contributing to proliferation of tumor cells.

We were not able to perform survival analysis, since
the majority of samples had either a hypermethylated or

Page 15 of 17

hypomethylated promoter region of validated gene. Since
expression analysis was performed on a small cohort of
samples (n = 25), it did not seem reasonable to do survival
analysis, e.g., for gene FOXD3, with which 68% of tumors
had down-regulation of these gene and the remaining 32%
had either no change or up-regulation.

A limitation of the study was that there were 115 sam-
ples available for experimental methylation analysis and
only 25 for experimental expression analysis. There were
also small discrepancies when comparing the methyla-
tion statuses of the entire cohort of 115 samples and 25
samples (Table 4). The biggest difference in methylation
status was observed in the FOXD3 gene, with which the
discrepancy was 4%. Methylation status of CEPSS,
FOXF2, GRIA4 and KCNAS, exhibited 2.7, 2.2, 1.3 and
0.9% discrepancy, while GNAOI was methylated in all
samples, so showing no discrepancy.

Conclusions

In summary, using bioinformatics on TCGA data
followed by experimental validation we identified a set
of six genes, CEP55, FOXD3, FOXF2, GNAOI1, GRIA4
and KCNAS, being differentially expressed in CRC com-
pared to normal mucosa and whose expression seemed
to be methylation dependent. The results of both ap-
proaches revealed that their change is frequent in CRC,
regardless of their subtype, methylation clusters and the
mutation status of CRC. As such, these six genes are be-
lieved to be an early event in human CRC carcinogenesis
and to be potential CRC biomarkers.

Additional files

Additional file 1: Table S1. Primers used for quantitative PCR
experiment. (DOCX 15 kb)

Additional file 2: Table S2. Aberrantly methylated and differentially
expressed genes. A list of probes aberrantly methylated belonging to
differentially expressed genes in each cluster when compared to normal
tissue samples. (DOCX 15 kb)

Additional file 3: Table S3. Aberrantly methylated and differentially
expressed genes. A list of probes aberrantly methylated belonging to
differentially expressed genes in each cluster when compared to normal
tissue samples. (TIF 15 kb)

Additional file 4: Figure S1. Protein-protein interaction network (PPIN).
The PPIN was performed using 198 differentially expressed genes from
our study. (XLSX 372 kb)

Additional file 5: Table S5. Primers used for methylation-sensitive high
resolution melting experiment. (XLSX 36 kb)

Additional file 6: Table S6. Literature mining analysis for differentially
expressed genes from our study. (XLSX 10 kb)

Abbreviations

COAD: Colon adenocarcinoma; READ: rectum adenocarcinoma;

logFC: logarithm of fold change; MS-HRM: Methylation-sensitive high
resolution melting; MSI: Microsatellite instable; MSI-H: Microsatellite instable-
high; MSI-L: Microsatellite instable-low; MSS: Microsatellite stable;

gPCR: Quantitative polymerase chain reaction; TCGA: The Cancer Genome
Atlas; CRC: colorectal cancer


https://doi.org/10.1186/s12920-019-0501-z
https://doi.org/10.1186/s12920-019-0501-z
https://doi.org/10.1186/s12920-019-0501-z
https://doi.org/10.1186/s12920-019-0501-z
https://doi.org/10.1186/s12920-019-0501-z
https://doi.org/10.1186/s12920-019-0501-z

Hauptman et al. BMC Medical Genomics (2019) 12:54

Acknowledgments

The authors acknowledge Alenka Matjasi¢, PhD and Andrej Zupan, PhD for
their help on MS-HRM method. NH, DJS, and EB are sincerely grateful to Prof.
Nina Zidar, M.D., and Prof. JoZe Pizem, M.D,, for creating a positive work
environment.

Funding

NH, DJS, EB, and DG acknowledge the financial support from the Slovenian
Research Agency through research core funding No. P3-0054. NH
acknowledges the financial support from the Slovenian Research Agency
through project Z3-6797. The funders had no role in study design, data
collection, analysis and interpretation of data, or in the writing of the
manuscript.

Availability of data and materials

The datasets analyzed in this study are available from Broad Institute (https.//
gdac.broadinstitute.org/). All data generated during this study are included
in this published article and its supplementary information files.

Authors' contributions

NH: Concept, collection of data, bioinformatics analysis, experimental design,
data analysis, writing; DJS: bioinformatics analysis, writing; ES: experimental
design, data analysis; EB: experimental design, data analysis, writing; DG:
patients collection, writing. All the authors have read and approved the
manuscript.

Ethics approval and consent to participate

Patients enrolled in the study signed an informed consent form agreeing to
participate in the study. The National Medical Ethics Committee of the Republic
of Slovenia approved this research (approval reference number. 70/04/09).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova
2, SI-1000 Ljubljana, Slovenia. Agricultural Institute of Slovenia, Hacquetova
ulica 17, SI-1000 Ljubljana, Slovenia.

Received: 5 November 2018 Accepted: 3 April 2019
Published online: 15 April 2019

References

1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of
worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;
127(12):2893-917.

2. Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal
cancer pathogenesis. Gastroenterology. 2008;135(4):1079-99.

3. Pino MS, Chung DC. The chromosomal instability pathway in colon cancer.
Gastroenterology. 2010;138(6):2059-72.

4. Boland CR, Goel A. Microsatellite instability in colorectal cancer.
Gastroenterology. 2010;138(6):2073-87 e3.

5. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA,
et al. CpG island methylator phenotype underlies sporadic microsatellite
instability and is tightly associated with BRAF mutation in colorectal cancer.
Nat Genet. 2006;38(7):787-93.

6. Wong JJ, Hawkins NJ, Ward RL. Colorectal cancer: a model for epigenetic
tumorigenesis. Gut. 2007;56(1):140-8.

7. Yamagishi H, Kuroda H, Imai Y, Hiraishi H. Molecular pathogenesis of
sporadic colorectal cancers. Chin J Cancer. 2016;35:4.

8. Moarii M, Reyal F, Vert JP. Integrative DNA methylation and gene expression
analysis to assess the universality of the CpG island methylator phenotype.
Hum Genomics. 2015;9:26.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

Page 16 of 17

Ogino S, Kawasaki T, Kirkner GJ, Loda M, Fuchs CS. CpG island methylator
phenotype-low (CIMP-low) in colorectal cancer: possible associations with
male sex and KRAS mutations. J Mol Diagn. 2006;8(5):582-8.

Cancer Genome Atlas N. Comprehensive molecular characterization of
human colon and rectal cancer. Nature. 2012;487(7407):330-7.

Shen L, Toyota M, Kondo Y, Lin E, Zhang L, Guo Y, et al. Integrated genetic
and epigenetic analysis identifies three different subclasses of colon cancer.
Proc Natl Acad Sci U S A. 2007;104(47):18654-9.

Yagi K, Akagi K, Hayashi H, Nagae G, Tsuji S, Isagawa T, et al. Three DNA
methylation epigenotypes in human colorectal cancer. Clin Cancer Res.
2010;16(1):21-33.

Hinoue T, Weisenberger DJ, Lange CP, Shen H, Byun HM, Van Den Berg D,
et al. Genome-scale analysis of aberrant DNA methylation in colorectal
cancer. Genome Res. 2012;22(2):271-82.

Kim YH, Lee HC, Kim SY, Yeom YI, Ryu KJ, Min BH, et al. Epigenomic analysis
of aberrantly methylated genes in colorectal cancer identifies genes
commonly affected by epigenetic alterations. Ann Surg Oncol. 2011;18(8):
2338-47.

Kok-Sin T, Mokhtar NM, Ali Hassan NZ, Sagap |, Mohamed Rose |, Harun R,
et al. Identification of diagnostic markers in colorectal cancer via integrative
epigenomics and genomics data. Oncol Rep. 2015;34(1):22-32.

Naumov VA, Generozov EV, Zaharjevskaya NB, Matushkina DS, Larin AK,
Chernyshov SV, et al. Genome-scale analysis of DNA methylation in
colorectal cancer using Infinium HumanMethylation450 BeadChips.
Epigenetics. 2013;8(9):921-34.

Zhou W, Laird PW, Shen H. Comprehensive characterization, annotation and
innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids
Res. 2017,45(4).e22.

Houseman EA, Christensen BC, Yeh RF, Marsit CJ, Karagas MR, Wrensch M, et
al. Model-based clustering of DNA methylation array data: a recursive-
partitioning algorithm for high-dimensional data arising as a mixture of
beta distributions. BMC Bioinformatics. 2008:9:365.

Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al.
TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA
data. Nucleic Acids Res. 2016;44(8)e71.

Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations
in multidimensional genomic data. Bioinformatics. 2016,32(18):2847-9.
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J,
et al. STRING v10: protein-protein interaction networks, integrated over the
tree of life. Nucleic Acids Res. 2015;43(Database issue).D447-52.

Therneau TM, Grambsch PM. Modeling Survival Data: Extending the Cox
Model. New York: Springer; 2000.

Hua Y, Ma X, Liu X, Yuan X, Qin H, Zhang X. Abnormal expression of mRNA,
microRNA alteration and aberrant DNA methylation patterns in rectal
adenocarcinoma. PLoS One. 2017;12(3):0174461.

Zhang W, Niu C, He W, Hou T, Sun X, Xu L, et al. Upregulation of
centrosomal protein 55 is associated with unfavorable prognosis and tumor
invasion in epithelial ovarian carcinoma. Tumour Biol. 2016;37(5):6239-54.
Fabbro M, Zhou BB, Takahashi M, Sarcevic B, Lal P, Graham ME, et al. Cdk1/
Erk2- and Plk1-dependent phosphorylation of a centrosome protein, Cep55,
is required for its recruitment to midbody and cytokinesis. Dev Cell. 2005;
9(4):477-88.

Sakai M, Shimokawa T, Kobayashi T, Matsushima S, Yamada Y,
Nakamura Y, et al. Elevated expression of C100rf3 (chromosome 10
open reading frame 3) is involved in the growth of human colon
tumor. Oncogene. 2006;25(3):480-6.

Singh PK; Srivastava AK, Rath SK, Dalela D, Goel MM, Bhatt ML. Expression
and clinical significance of Centrosomal protein 55 (CEP55) in human
urinary bladder transitional cell carcinoma. Immunobiology. 2015;220(1):
103-8.

Chen CH, Lu PJ, Chen YC, Fu SL, Wu KJ, Tsou AP, et al. FLJ10540-¢elicited cell
transformation is through the activation of PI3-kinase/AKT pathway.
Oncogene. 2007,26(29):4272-83.

Tao J, Zhi X, Tian Y, Li Z, Zhu Y, Wang W, et al. CEP55 contributes to
human gastric carcinoma by regulating cell proliferation. Tumour Biol.
2014;35(5):4389-99.

Jiang W, Wang Z, Jia Y. CEP55 overexpression predicts poor prognosis in
patients with locally advanced esophageal squamous cell carcinoma. Oncol
Lett. 2017;13(1):236-42.

Wang Y, Jin T, Dai X, Xu J. Lentivirus-mediated knockdown of CEP55 suppresses
cell proliferation of breast cancer cells. Biosci Trends. 2016;10(1):67-73.


https://gdac.broadinstitute.org/
https://gdac.broadinstitute.org/

Hauptman et al. BMC Medical Genomics

32.

33.

34.

35.

36.

37.

(2019) 12:54

Zhao WM, Seki A, Fang G. Cep55, a microtubule-bundling protein,
associates with centralspindlin to control the midbody integrity and cell
abscission during cytokinesis. Mol Biol Cell. 2006;17(9):3881-96.

Li K, Guo Q, Yang J, Chen H, Hu K, Zhao J, et al. FOXD3 is a tumor
suppressor of colon cancer by inhibiting EGFR-Ras-Raf-MEK-ERK signal
pathway. Oncotarget. 2017;8(3):5048-56.

Higashimori A, Dong Y, Zhang Y, Kang W, Nakatsu G, Ng SS, et al. Forkhead
box F2 suppresses gastric cancer through a novel FOXF2-IRF2BPL-beta-
catenin signaling axis. Cancer Res. 2018.

Liu Z, Zhang J, Wu L, Liu J, Zhang M. Overexpression of GNAOT1
correlates with poor prognosis in patients with gastric cancer and plays
a role in gastric cancer cell proliferation and apoptosis. Int J Mol Med.
2014;33(3):589-96.

Barault L, Amatu A, Siravegna G, Ponzetti A, Moran S, Cassingena A, et al.
Discovery of methylated circulating DNA biomarkers for comprehensive
non-invasive monitoring of treatment response in metastatic colorectal
cancer. Gut. 2018,67(11):1995-2005.

Ryland KE, Hawkins AG, Weisenberger DJ, Punj V, Borinstein SC, Laird PW, et
al. Promoter methylation analysis reveals that KCNAS lon Channel silencing
supports Ewing sarcoma cell proliferation. Mol Cancer Res. 2016;14(1):26-34.

Page 17 of 17

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Bioinformatics methods
	Patients and data
	Probes and genes
	Unsupervised clustering
	Differentially methylated probes and differentially expressed genes
	Data visualization, text mining and survival analysis

	Experimental validation
	Clinical samples
	RNA/DNA isolation
	Bisulfite conversion and MS-HRM experiment
	Reverse transcription and qPCR experiment


	Results
	Study design
	Clustering of methylation data
	Aberrantly methylated probes and differentially expressed genes
	Experimental validation

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

