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Abstract

Background: Ultra-Deep Sequencing (UDS) enabled identification of specific changes in human genome occurring
in malignant tumors, with current approaches calling for the detection of specific mutations associated with certain
cancers. However, such associations are frequently idiosyncratic and cannot be generalized for diagnostics.
Mitochondrial DNA (mtDNA) has been shown to be functionally associated with several cancer types. Here, we
study the association of intra-host mtDNA diversity with Hepatocellular Carcinoma (HCC).

Results: UDS mtDNA exome data from blood of patients with HCC (n = 293) and non-cancer controls (NC, n = 391)
were used to: (i) measure the genetic heterogeneity of nucleotide sites from the entire population of intra-host
mtDNA variants rather than to detect specific mutations, and (ii) apply machine learning algorithms to develop a
classifier for HCC detection. Average total entropy of HCC mtDNA is 1.24-times lower than of NC mtDNA (p = 2.84E-
47). Among all polymorphic sites, 2.09% had a significantly different mean entropy between HCC and NC, with 0.
32% of the HCC mtDNA sites having greater (p < 0.05) and 1.77% of the sites having lower mean entropy (p < 0.05)
as compared to NC. The entropy profile of each sample was used to further explore the association between
mtDNA heterogeneity and HCC by means of a Random Forest (RF) classifier The RF-classifier separated 232 HCC
and 232 NC patients with accuracy of up to 99.78% and average accuracy of 92.23% in the 10-fold cross-validation.
The classifier accurately separated 93.08% of HCC (n = 61) and NC (n = 159) patients in a validation dataset that was
not used for the RF parameter optimization.

Conclusions: Polymorphic sites contributing most to the mtDNA association with HCC are scattered along the
mitochondrial genome, affecting all mitochondrial genes. The findings suggest that application of heterogeneity
profiles of intra-host mtDNA variants from blood may help overcome barriers associated with the complex
association of specific mutations with cancer, enabling the development of accurate, rapid, inexpensive and
minimally invasive diagnostic detection of cancer.
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Background
Cancer is the leading cause of morbidity and mortality
worldwide, with the estimated 14 million new cases and
8.2 million cancer-related deaths in 2012, and this num-
ber is predicted to rise by ~ 70% over the next two de-
cades [1]. Successful clinical management of cancer
patients is largely contingent on early tumor detection
and accurate assessment of treatment efficacy [2]. Cur-
rently, the standard diagnostic procedure for cancer is
histological analysis of tissue biopsy. However, biopsies
have several disadvantages, as they are invasive, costly
and time-consuming. Only highly trained pathologists
can perform histological detection and characterization
of cancer from the sampled tissue. In addition, although
generally safe, biopsies may cause complications such as
bleeding, infection and accidental injury to adjacent
structures [2].
Further improvement of cancer patient care greatly de-

pends on development of accurate, minimally invasive,
inexpensive and rapid diagnostic techniques. Recent pro-
gress in the identification of cancer biomarkers opened a
new field of cancer diagnostics (see [2] for a review).
The rapid, cheap and non-invasive nature of the “liquid
biopsy” has the potential to bring fundamental change
to cancer care by allowing for a repeat sampling and
testing of blood for the early disease detection and ef-
fective monitoring of treatment responses [3].
Tumors shed nucleic acids into blood, a phenomenon

that was exploited since the early discovery of
cancer-related DNA mutations [4–7]. Screening of the
whole human genome, the exome or mitochondrial
DNA allows for the detection of mutant DNA species
associated with different malignant tumors (see [3] for a
review). Detection of tumor DNA circulating in blood
provides a direct measure of cancer rather than an indir-
ect assessment of the effects of cancer. However, low
concentration of the tumor DNA in blood hampers its
use in diagnostics. Recently, ultra-deep sequencing
(UDS) has been applied to the efficient detection of the
tumor DNA [8], thus significantly facilitating early can-
cer detection in asymptomatic individuals. Such mutant
DNA species can be detected even at a very low concen-
tration in blood of patients [9]. However, the complex
and variable genetic nature of cancer in each patient
often hinders the identification of mutations suitable for
cancer diagnostics (see [3] for a review).
Here, we show that heterogeneity profiles of the

intra-host mtDNA population are strongly associated
with Hepatocellular Carcinoma (HCC). The small size of
mtDNA is especially suitable for the accurate assessment
of such profiles, application of which to the HCC detec-
tion overcomes the often-idiosyncratic association of
specific mutations to cancer. The findings in this study
suggest that genetic diversity of intra-host mtDNA in

blood may serve as a generalizable marker for the accur-
ate, rapid, inexpensive and minimally invasive diagnostic
detection of cancer.

Methods
Datasets
The dataset was obtained from The Cancer Genome
Atlas (TCGA) Research Network [10] and tested under
the TCGA approved project #9811. TCGA generated the
Illumina exome data from 11,079 patients and 34 differ-
ent cancer types, including 376 patients with Hepatocel-
lular Carcinoma (HCC). For detailed information on the
clinical definition of HCC please refer to The Cancer
Genome Atlas (TCGA) Research Network [10]. Figure 1
shows demographic characteristics of the HCC samples.
For non-cancer controls (NC), data were obtained from
the 1000 Genomes project [11]. This project holds UDS
data from 2504 individuals of 26 human populations.
From these, 293 samples were selected that satisfied the
following criteria: (i) unrelated to each other; (ii) col-
lected from same geographic regions as the HCC sam-
ples; (iii) same technology (Illumina) and same exome
library preparation as HCC (Nimblegen); (iv) mtDNA
genome coverage > 95%, and (v) overall match to HCC
samples by gender and mtDNA lineages.

Pre-processing
Figure 2 shows the bioinformatics pipeline implemented
here for pre-processing of sequence files. The input is an
exome sequence file in the fastq format. The output is a
standardized mtDNA entropy profile (SMEP). The pipe-
line is implemented in Python and optimized to run on
a Linux cluster, taking in average of 30 min per set of 16
samples. The pipeline includes the following steps:

1. Reads were mapped to the mtDNA reference [12]
using recommendations and parameters
implemented in MTOOLBOX [13, 14]. Reads
mapped to mtDNA were retained for further
analyses.

2. Reads were further mapped to nuclear human
genome to remove NUMTs (nuclear mitochondrial
DNA segments) following the recommendations
and parameters described in [13, 14].

3. PCR duplicates were removed using Picard
MarkDuplicates (http://broadinstitute.github.io/
picard/)

4. Quality trimming was performed using FAQCS
[15].

5. A read count profile was created using BAM-read
Count (https://github.com/genome/bam-
readcount).

6. Low frequency variants were separated from
Illumina sequence errors following the procedure
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Fig. 1 Demographic characteristics of the cancer samples. a Risk factors; b Detail of Viral Hepatitis risk factors; c Neoplasm histological grade;
d Gender

Fig. 2 Outline of the pre-processing of sequence files
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described in [16]. A variant is removed if the
probability that it is an error was > 0.00001.

7. The total mtDNA coverage and the depth at each
position were caHCCulated.

8. Samples with a total coverage of < 95% of mtDNA
are removed.

9. To reduce differences in genetic heterogeneity
among files that were solely due to sampling depth,
100 random samples of 50 reads were taken at each
mtDNA position. The target number of reads was
chosen as this was the average depth found in the
HCC dataset (n = 49.6).

10. Genetic heterogeneity at each nucleotide site for each
of the 100 random samples was caHCCulated as an
average of Shannon entropy [17] over all random
samples. The Shannon entropy H of a nucleotide site
j with n different variants is given by:

H j ¼ −
Xn

i¼1
xi logbxi

Where xi is the fraction of reads covering that position
that show variant i and b is the base of the logarithm (in
this case, b = 2).

11. Finally, to make the profiles more comparable and,
thus, to increase the generalization power of the
test, we transformed each heterogeneity profile into
a set of Z-scores, the signed number of standard de-
viations by which each observation is above or
below the mean of the sample. We found that this
standardization greatly improved the accuracy of
the classifier.

Comparison of mtDNA from liver and blood of HCC
patients
The samples available from HCC patients included
tumor (n = 358), normal liver (n = 85) and blood (n =
293). We performed a detailed comparison of the
mtDNA variants showed in the liver and blood of the
same HCC patients, in terms of average number of
reads, average depth of mtDNA sequencing, total
mtDNA entropy, percentage of the mtDNA genome
covered, percentage of all reads that map to mtDNA,
and number of polymorphic positions. The purpose of
this comparison is to show the extent of mtDNA
changes observed in tumors and (ii) the degree of homo-
geneity of these mutations among HCC patients.

Machine learning
After obtaining SMEP for each sample, we studied the
association between SMEP and HCC/NC using the fol-
lowing steps:

1. We measured how the association level of each of
the 16,569 nucleotide sites with the HCC/NC
grouping my means of Iterative Relief [18, 19].
Machine learning was repeated with different
percentages of the 16,569 mtDNA sites (top 1%, 5,
10 …, 95 and 100%), with the top 1% showing the
best results (1% =166 sites).

2. Supervised machine learning was performed using
the Random Forest (RF) technique [20] as
implemented in Sci-kit [21]. Although other
methods, such as Nearest Neighbors, Nearest cen-
troid, Support Vector Machine, Logistic regression,
Gaussian Naïve Bayes, Decision trees and a Percep-
tron, were also tested, RF identified best genetic as-
sociations to the HCC and NC groups.

3. A grid search of the best combination of
parameters was performed. The performance of
each combination of parameters was measured
using the 10-fold cross-validation (10xCV). The
final parameters of the classifier were the following:
Number of trees: 101; Maximum tree depth: 4;
Minimum number of instances to perform a split:
19. Splitting criterion: entropy; minimum number
of instances in a leaf: 1; class weight: balanced.

4. Classifier with the highest 10xCV accuracy was
used to test a validation dataset that was not used
for the parameter optimization.

In addition, we also tested the most heterogeneous
mitochondrial genomic regions, HVS1 (positions
15,977–16,391 bp), which has been extensively used in
many genetic studies. Reads covering this region were
extracted from the exome data and used to generate the
RF classifier using the same procedure described above.

Results
mtDNA from liver and blood of HCC patients
Figure 3 shows comparison among the samples’ average
number of reads, average depth of mtDNA sequencing,
total mtDNA entropy, percentage of the mtDNA gen-
ome covered, percentage of all reads that map to
mtDNA, and number of polymorphic positions. Pairwise
comparison among 3 tissues in each HCC patient
showed that, with the exception of the number of reads,
the above parameters are significantly higher in normal
liver (paired t-test; p < 0.05), while the lowest values were
detected in blood (Table 1), indicating a lower repre-
sentation of mtDNA in blood as compared to liver
and reduction in mtDNA in tumor as compared to
normal liver.
Consensus sequences of mtDNA were generated for

each tissue in each of the samples. On average, the con-
sensus sequences of mtDNA found in tumors and blood
of same patient differ at 0.92 sites, being identical in
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42.23% of the patients. Consensus sequences from tumor
and normal tissue differ at 1.17 sites, being identical in
only 37.04% of the individuals. Consensus sequences
from blood and normal liver tissue of the same patient
were much more similar, with an average difference at
0.16 sites and consensus sequences being identical in
84% of patients.
Pairwise comparison of UDS data from the three tissue

samples identified 492 sites, entropy of which was sig-
nificantly different between tumor and normal liver
(paired t-test; p < 0.05). However, only 38 of the sites dif-
fered between tumor and blood (paired t-test; p < 0.05),

while blood and tumor mtDNA differ at 319 sites (p <
0.05). Despite significant similarity of consensus se-
quences, entropy of 468 sites differed in mtDNA from
blood and normal liver (p < 0.05), indicating differences
in intra-host mtDNA heterogeneity between these two
tissues.
The consensus sequences from tumor and blood dif-

fered at 169 sites (“tumor-specific” sites) scattered across
the entire genome (Fig. 4c). Mutations at these sites
(“tumor-specific” mutations) were, however, present at
low frequency in the blood of 7.03% of patients and in
18.95% of patients with a normal liver. Most of the

Fig. 3 Comparison between tissues of cancer patients. a Number of reads, all pairwise comparisons have a p value; b mtDNA average depth; c
mtDNA total entropy; d Percentage of the mtDNA genome covered; e Percentage of all reads that map to the mtDNA genome; f Number of
polymorphic sites
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Table 1 Comparison between tissues of HCC patients. Ratio of the averages and p value of the paired samples t-test

Blood vs Normal
liver

p value Blood vs
Tumor

p value Normal liver vs
Tumor

p value

Number of patients 25 N/A 277 N/A 81 N/A

Number of reads (log10) 1.02 8.78E-
01

0.99 7.82E-
01

1.02 7.82E-
01

mtDNA average depth 0.14 9.96E-
05

0.49 8.30E-
12

1.86 6.68E-
04

mtDNA total entropy 0.49 1.40E-
03

0.75 2.22E-
03

1.26 2.44E-
01

Percentage of the mtDNA genome covered 0.98 1.06E-
06

1.00 1.95E-
06

1.00 4.87E-
04

Percentage of all reads that map to the mtDNA
genome

0.19 1.45E-
06

0.50 2.02E-
12

1.72 3.33E-
04

Number of polymorphic sites. 0.18 3.17E-
04

0.50 8.29E-
04

2.09 2.52E-
03

Number of different sites (p < 0.05) 468 N/A 319 N/A 492 N/A

Fig. 4 Tumor-specific sites and variants in different HCC patients. a Percentage of tumor-specific sites that are present in several HCC patients; b
Percentage of tumor-specific variants that are present in several HCC patients; c Distribution of tumor-specific sites along the genome

Campo et al. BMC Medical Genomics 2019, 12(Suppl 4):74 Page 6 of 11



tumor-specific mutations (88.16%) were found only once
in other HCC patients. Only one tumor-specific muta-
tion at site 310 was present in 14.44% of the HCC pa-
tients (Fig. 4a). Both observations indicated a low
association of these mutations with HCC.

mtDNA in HCC and NC patients’ blood
Considering that mtDNA was tested in blood from all
cases studied here, analyses on genetic differences in
mtDNA between HCC and NC were focused on data
from blood. The number of available samples, gender
and mtDNA lineages between the HCC and NC groups
were equalized to ensure statistical significance of obser-
vations on differences between these two groups. The
two groups showed small but statistically significant dif-
ferences in average entropy of mtDNA, percentage of
exome reads mapped to mtDNA, percentage of all reads
mapped to mtDNA, and number of polymorphic sites
(Table 2).
When compared with NC, HCC have 1.24-times lower

average total entropy (p = 2.84E-47) and 3.6-times lower
percentage of all reads mapped to mtDNA (p =
8.23E-19) (Table 2 and Fig. 5). Among all mtDNA poly-
morphic sites, 2.09% showed a significantly different
mean entropy between HCC and NC. These selected
sites were evenly distributed across the entire mtDNA.
Only 0.32% of the sites had a higher mean entropy (p <
0.05) but 1.77% had a lower mean entropy in HCC (p <
0.05). Thus, certain polymorphic sites scattered along
mtDNA differed in the degree of diversity between HCC
and NC patients, indicating their potential application as
markers of HCC.

Genetic association with HCC
The top 1% of the mtDNA 16,569 nucleotide sites (n =
166) with the highest Iterative Relief scores were used
for the classifier optimization (Fig. 6a). These sites were
not clustered in any gene but spread over mtDNA. The
samples were separated into two groups, the first was
used for the classifier optimization in 10-fold
Cross-Validation (10xCV), and the second, which was
not used for the optimization, was used for the final
classifier testing. Figure 6b shows the number of samples
in each set. Using the first set, the RF-based classifier

showed accuracy of up to 99.78% and an average accur-
acy in 10xCV of 92.23%. Finally, the RF classifier yielded
an accuracy of 93.08% on the test dataset (Fig. 6c). All
these data indicate that the mtDNA heterogeneity is
strongly associated with HCC and NC.
Among the top 1% HCC-specific sites (n = 166) se-

lected by ReliefF, only 11 (6.6%) are shared with the
“tumor-specific” sites (n = 169) selected using consensus
sequences. Thus, although both are scattered across the
entire mtDNA, individual sites from both groups are
very different.

HVS1 association with HCC
Although polymorphic sites of significance found here are
distributed along the entire mtDNA, we tested the per-
formance of only the most heterogeneous mitochondrial
genomic region, HVS1. The average 10xCV accuracy was
83.22%, indicating that, although at the reduced rate, the
distribution of sites’ entropy in this region alone is strongly
associated with HCC. However, it should be noted that in-
crease in the coverage depth might help to identify more
polymorphic sites in this region, thus potentially improving
accuracy of classification. Application of UDS to a small
genomic region could offer a greater control over sequen-
cing depth, which is important for accurate assessment of
genetic heterogeneity, especially in mtDNA extracted from
blood where its concentration is low.

Assessment of the neoplasm histologic grade
In the TCGA HCC dataset, 292 samples had available
information regarding the neoplasm histologic grade: 41
samples were classified as stage 1 cancer, 134 samples
were stage 2, 104 samples were stage 3 and 13 samples
were stage 4 (Fig. 2c). In 10xCV, the RF Regression
yielded an average absolute error of 0.61, which is only
2X better than the average absolute error of a random
assignment (1.249), showing only a moderate association
of SMEPs with the grades. Implementation of binary
classification schemes instead of regression (e.g. Stage 1
vs all others) didn’t improve classification accuracy.

Discussion
Analyses conducted in this study indicate that hetero-
geneity profiles of the intra-host mtDNA variants from

Table 2 Comparison between HCC and NC samples. Ratio of the averages and p value of the paired samples t-test

HCC NC Ratio p value

Number of reads (log10) 7.7429 7.4892 0.9672 2.62E-15

mtDNA average depth 49.6176 120.0060 2.4186 1.73E-12

mtDNA total entropy 0.0011 0.0014 1.2798 1.96E-05

Percentage of the mtDNA genome covered 99.4562 99.6885 1.0023 0.004217

Percentage of all reads that map to the mtDNA genome 0.0073 0.0388 5.3349 2.78E-30

Number of polymorphic sites. 68.4334 129.8362 1.8973 5.86E-06
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blood are strongly associated with HCC. Although can-
cer detection is usually focused on genetic analysis of
nuclear DNA [2], mtDNA has been shown to be func-
tionally associated with several cancer types [22]. Owing
to its clonal nature, high copy number and high muta-
tion rate [23], mtDNA has many practical advantages
over nuclear DNA in application to cancer detection.
Mitochondria supply energy for all metabolic processes
and control apoptosis, and as such are essential for
multiplication of cancer cells. The mitochondrial oxida-
tive phosphorylation system has a major effect on tumor
progression [22, 24]. In addition, enhanced progression
to malignancy was observed in cells with compromised
mitochondrial integrity [22, 24]. mtDNA mutations are

significantly associated with the development of various
types of cancer (for a review see [22]).
Clonal expansion of mutant mtDNA species was re-

ported in 27–80% (average 54%) of malignant tumor
samples (for a review see [25]). In concert with this ob-
servation, we found that consensus sequences of
mtDNA differ between tumor and blood from ~ 58% of
patients. Both particle-associated and free mtDNA are
present in blood [26], potentially providing a convenient
and minimally invasive way for the detection of
cancer-related mitochondrial mutants [7]. As many can-
cer types, HCC is associated with clonally expanding
mtDNA mutations [27–33]. The clonal expansion
should affect genetic composition of mtDNA variants in

Fig. 5 Differences between HCC and NC samples. a Average entropy; b Average entropy over the mtDNA genome. Sliding moving window =
201 bp, step = 1; c Percentage of all exome reads that map to the mtDNA genome; d Percentage of mtDNA sites with high average entropy; e
Percentage of all reads that map to the mtDNA genome; f Number of polymorphic sites
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blood. However, such an effect is not straightforward be-
cause mtDNA in blood has a very complex origin [26].
Moreover, requirements for efficient energy supply to
rapidly replicating malignant cells constrains genetic
composition of mitochondria in tumors [34].
The clonal expansion and genetic constraints coupled

with a small size (16,569 bp) make mtDNA especially
suitable for the accurate assessment of association of
intra-host genetic heterogeneity, rather than specific mu-
tations, with cancer. Application of heterogeneity pro-
files implemented here to the HCC detection overcomes
the often-idiosyncratic presentation of specific mutations
in cancer. Indeed, most tumor-specific variants (99.4%)
found in this study were present in less than 5% of HCC
patient, thus impeding their use as general cancer
markers. Complex and variable genetic nature of cancer
is well established. It hinders the identification of spe-
cific mutations suitable for cancer diagnostics [3, 35, 36].
However, measures of intra-host genetic diversity in
place of specific states of nucleotide sites mitigate the
contribution of host-specific genetics to the detection of
associations with cancer.
Tumor-specific mutations were present at low fre-

quency in the blood of only 7.03% of patients. This find-
ing indicates that the direct contribution of the tumor to
the genetic composition of mtDNA in blood is limited,
thus potentially confounding the detection of

tumor-specific genetic variants in blood for cancer diag-
nostics. This concern becomes especially relevant when
one considers a significant drop in mtDNA load in blood
observed in this study and also reported elsewhere [37].
Nevertheless, the RF-classifiers generated here separated
HCC and NC patients with accuracy exceeding 93%, in-
dicating the existence of a strong HCC-specific genetic
signal in intra-host mtDNA populations.
Genetic factors used in the RF-classifiers are funda-

mentally different from tumor-specific mutations identi-
fied from consensus mtDNA sequences. Only 11
tumor-specific sites were among the top 166 sites se-
lected by entropy as relevant to the HCC/NC classifica-
tion, despite the fact that both sets of sites scattered
along the entire mtDNA. Site entropy or its Z-score do
not have information on a specific nucleotide state of a
site, rather both measure nucleotide diversity at each
site, thus reducing strong effects of specific mutations
on associations captured by our models. There are many
genetically diverse lineages of mtDNA. Although the
HCC and NC datasets were matched by geographic loca-
tion and mtDNA lineages, genetic differences among dif-
ferent genetic types of mtDNA may impede the
identification of cancer-specific mutations, especially in
a limited dataset. Entropy, however, represents a more
general genetic information that can adequately trim
genetic differences among mtDNA lineages, focusing

Fig. 6 Machine learning results. a Importance of each nucleotide position entropy in separating cancer and control samples. Only the sites within
the top 1% scores (in red) were used for machine learning; b Distribution of samples; c Accuracy of the Random Forest classifier
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nucleotide heterogeneity analyses on the identification of
other than lineage-specific traits. Models generated
using Z-scores performed as well as the entropy-based
models. However, contribution of standardization
achieved by application of Z-score to accuracy of models
may become more apparent on more heterogeneous
datasets.
Here, we applied machine-learning algorithms to ex-

tract genetic information from mtDNA for discriminat-
ing between HCC and NC. Application of the
algorithms is routine in industrial and technological ap-
plications and only recently became successfully ex-
plored in clinical field [38, 39]. Machine learning
presents a new opportunity to cancer diagnostics by
shortcutting research from learning molecular mecha-
nisms before developing applications to direct identifica-
tion of reliable markers, thus accelerating development
of accurate cancer detection.
We showed that tumor-specific mutant mtDNA spe-

cies may be present at a very low concentration in blood.
The detection of such minority variants can be achieved
by UDS. Indeed, UDS has been applied to the efficient
detection of tumor DNA [8] and to the detection of mi-
nority cancer-specific DNA variants [9]. However, a sig-
nificant depletion of mtDNA has been reported for
several cancer types such as bladder, breast, kidney, and
liver cancer [37] making the detection of minority
tumor-specific variants especially challenging. In agree-
ment, we observed a ~ 2-fold decline in the number of
reads mapped to mtDNA from tumor as compared to
normal liver tissue, which further emphasizes potential
difficulties in identification of specific mutant variants in
tested blood. These observations indicate that consistent
detection of minority variants is strongly contingent to a
very high depth of sequencing. However, in difference to
the detection of specific mutations, accurate estimation
of site heterogeneity can be done at a moderate sequen-
cing depth, thus providing a more reliable source of
cancer-specific markers.
Uniform and adequate read coverage of the entire

mtDNA can be challenging for the shotgun-based UDS.
Sequencing of a single amplicon offers a greater control
over the read coverage. However, it limits the mtDNA
presentation to a single genomic region. Taking these
observations in consideration, we hypothesized that such
highly heterogeneous region of mtDNA as HVS1, may
have sufficient genetic information to identify associ-
ation with HCC. Indeed, the model constructed using
HVS1 alone identified HCC versus NC with 83.22%
10xCV accuracy, indicating its applicability to the detec-
tion of HCC.
Finally, the observations presented here indicate sig-

nificant differentiation of mtDNA heterogeneity between
HCC and NC patients. Although showing separation

between these 2 groups of patients, the data, however,
do not allow to ascertain the strict HCC specificity of
the classifiers. Detection of specific types of cancer ver-
sus general malignancy warrants additional investigation.

Conclusions
Sites contributing most to the association with HCC are
scattered along the mtDNA genome, affecting all mito-
chondrial genes. The findings suggest that application of
heterogeneity profiles of intra-host mtDNA variants
from blood overcomes the complex association of spe-
cific mutations with cancer for the development of ac-
curate, rapid, inexpensive and minimally invasive
diagnostic detection of cancer.
The findings in this study suggest that genetic diversity

of intra-host mtDNA in blood may serve as a
generalizable marker for the accurate, rapid, inexpensive
and minimally invasive diagnostic detection of cancer.
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