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Abstract

cancer.

Background: The accurate screening of tumor genomic landscapes for somatic mutations using high-throughput
sequencing involves a crucial step in precise clinical diagnosis and targeted therapy. However, the complex
inherent features of cancer tissue, especially, tumor genetic intra-heterogeneity coupled with the problem of
sequencing and alignment artifacts, makes somatic variant calling a challenging task. Current variant filtering
strategies, such as rule-based filtering and consensus voting of different algorithms, have previously helped to
increase specificity, although comes at the cost of sensitivity.

Methods: In light of this, we have developed the NeoMutate framework which incorporates 7 supervised machine
learning (ML) algorithms to exploit the strengths of multiple variant callers, using a non-redundant set of biological
and sequence features. We benchmarked NeoMutate by simulating more than 10,000 bona fide cancer-related
mutations into three well-characterized Genome in a Bottle (GIAB) reference samples.

Results: A robust and exhaustive evaluation of NeoMutate's performance based on 5-fold cross validation
experiments, in addition to 3 independent tests, demonstrated a substantially improved variant detection accuracy
compared to any of its individual composite variant callers and consensus calling of multiple tools.

Conclusions: We show here that integrating multiple tools in an ensemble ML layer optimizes somatic variant
detection rates, leading to a potentially improved variant selection framework for the diagnosis and treatment of
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Introduction

One of the hallmarks of cancer is the accumulation of
somatic genomic alterations, acquired during a cell’s life
cycle and development [1]. Throughout cancer progres-
sion, some of these variants may dictate clinical response
to therapy [2]. The reliable detection of mutations in
cancer genomes is therefore key to our understanding of
the genomic basis of tumorigenesis and patient survival.
Unfortunately, the accurate prediction of somatic variants
from tumor and matched normal samples using next gen-
eration sequencing (NGS) data remains challenging [3-5].
The complex features of tumor tissue, particularly
intra-tumor heterogeneity and structural rearrangements,
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in addition to normal tissue admixtures, intrinsic sequen-
cing errors and mapping ambiguities, are sources of noise
and complexity in the analysis. As a result, the current
somatic variant calling strategies generate high false pre-
diction rates [4].

Background to the main individual variant callers:
strengths and weaknesses

The advent of NGS technologies has enabled the com-
prehensive detection of de novo DNA aberrations in a
tumor. The continued advancements in variant detection
in the last decade has resulted in a wide collection of
bioinformatics tools based on different underlying statis-
tical models. However, their results vary widely as dem-
onstrated in several benchmarking studies [3-11] and
none have emerged as a gold standard and been
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universally adopted by the field. The specific mathemat-
ical algorithms operating each variant caller plus the
enormous experimental and biological variability in
tumor samples creates ambiguities in performance
across different datasets. One of the biggest challenges is
to accurately discriminate between low allele frequencies
of true somatic variants (particularly relevant in impure
samples or heterogeneous tumors) and sequencing or
alignment artifacts.

VarScan?2 [12] and VarDict [13], apply a heuristic meth-
odology followed by a Fisher’s test to increase the reliabil-
ity of the detected somatic variants. An appropriate
parameter fine-tuning and threshold selection in heuristic
tools can achieve a good performance in low-frequency
variant detection; unfortunately optimal parameter values
are frequently unknown and dependent on the specific
dataset [14]. SomaticSniper [15], based on a joint genotype
analysis, is designed for single nucleotide variants (SN'Vs)
detection on low-coverage data. However, low-depth
coupled with the underlying diploid assumption in tumor
genomes, means that the method is not optimal for de-
tecting of low frequency variants. Modeling joint allele fre-
quencies instead of joint genotypes, as done by Strelka
[16], is a straightforward way to call low-frequency vari-
ants. Strelka2 [17], a variant calling method which builds
upon its predecessor Strelka, applies an additional random
forest based variant re-scoring step to improve accuracy
on liquid and late-stage tumours. Finally, methods like
MuTect2 (available in GATK > 3.5) [18], Freebayes [19]
and Lancet [20] follow a haplotype-based strategy, where
the reads are locally assembled representing the candidate
haplotypes in De Bruijn graphs, aiding the detection of
co-occurring variants.

Unfortunately, identifying the most appropriate variant
calling tool for each scenario, in addition to the adequate
fine-tuning of its parameters for optimal performance, is
a complex and time-consuming task [3—-9], which com-
plicates the ability to make rational clinical decisions
based on called variants in an actionable timeframe [3].

The effect of integrating variant callers: their union or
intersection

Due to the low concordance between individual tools, it
is natural to address the challenge of somatic variant
calling through the integration of two or more tools. In-
tegrating the results of two or three somatic variant cal-
lers in a consensus voting filtering strategy has emerged
as a standard protocol in many recent studies [21-24] .
However, although these consensus calling approaches
may help to increase the calling of specific candidates,
this often comes at the cost of sensitivity when candi-
dates are identified using the intersection between com-
ponent tools, and can introduce enormous amount of
false positives when they are identified using the union
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between component tools. Consensus calling may lead
to the loss of valuable true positive variants, particularly
those that are present at low variant allelic frequencies
(VAF). Recent studies have shown that some clinically
relevant mutations are miscalled using intersection
based approach, such as treatment-induced secondary
mutations [25], and thus the intersection of tools is ar-
guably a sub-optimal solution.

The emergence of machine learning approaches

A relatively recent progression in the variant calling field
to address these aforementioned problems is the applica-
tion of supervised machine learning (ML). In the ML ap-
proaches, variant calling can be reduced to a classification
problem, whereby each considered genomic position is la-
beled with its mutation status. Those base pairs that differ
from the reference genome in the tumor sample, and are
not present in the normal sample, will be subsequently la-
belled as somatic mutations.

Variant calling strategies that take advantage of super-
vised ML can be classified into two main categories: (1)
variant calling algorithms directly based on ML and (2)
ensemble ML approaches that integrate multiple variant
callers. SNooPer [26], MutationSeq [27], TNscope [28]
and DeepVariant [29] are examples of the former.
SNooPer is based on a random forest (RF) classifier pri-
marily focused on low-depth sequencing data, resulting
in a suboptimal method for low VAF detection. More-
over, SNooPer’s training dataset is based on the GATK
HaplotypeCaller [30], which is not well suited to extreme
allele frequencies and therefore not recommended for som-
atic (cancer) variant discovery. The MutationSeq study in-
volved building a feature-based classifier to provide
guidelines based on a comparison of four ML algorithms
applied to 106 manually selected features, and only focuses
on SNVs. Many of the 106 selected features are redundant
and used by several variant callers themselves, however in
one sense, this indicated an emergence toward ensemble
ML to address the problem of selecting arbitrary thresholds
by each individual tool for selected features. TNScope, like
Mutect2, is haplotype-based variant caller that applies
rule-based approach by default. TNScope also provides a
ML model trained using a RF from the Genome in a Bottle
(GIAB) data [31]. DeepVariant uses labeled true genotypes
if and when they are available and has the goal of generaliz-
ing across sequencing technologies, genome builds, and
experimental designs. It applies deep learning using convo-
lutional neural networks to achieve high sensitivity and low
specificity, and has not been developed or tested specifically
for somatic variant calling.

In the category of ensemble based variant callers it is
first worth mentioning BAYSIC [32]. While BAYSIC
uses an unsupervised learning approach based on Bayes-
ian statistics, it does also attempt to integrate four
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variant callers in a common framework. It is however re-
stricted to scale by the need to intimately understand
the estimated error rates of each individual tool, as it
produces poster probabilities based on these estimates.
Additionally, BAYSIC comes with the limitation that arbi-
trary thresholds depending on the tolerance for sensitivity
versus specificity predetermine its performance. Somatic-
Seq [33] and SMuRF [34] are tools that use the ensemble of
several variant callers in a supervised ML approach.
SMuRE, although trained on the International Cancer Gen-
ome Consortium (ICGC) community-curated data that is
not simulated, it is restricted to a limited amount of train-
ing data from only two tumors (both of them having high
tumor purity (cancer-cell fraction >0.92)) and focused on
whole genome sequencing data. SomaticSeq integrates five
third-party variant callers through the use of > 70 features
into an ensemble of decision trees. Unfortunately, as with
MutationSeq, these large number features are somewhat re-
dundant, subject to arbitrary thresholds, and variation be-
tween the individual tools and VCF formats, dramatically
affecting the portability of the tool. These limitations may
also affect the scalability of such approaches and thereby
the subsequent benefits that can be reaped from integrating
multiple callers in ensemble ML framework.

Following the concept of aggregating the results from
multiple variant calling algorithms in an ensemble ML
layer, to yield an overall improved performance com-
pared to the individual component tools or consensus of
tools, we have developed NeoMutate. In this study, Neo-
Mutate combines the relative sensitivities of 7
state-of-the-art variant calling tools, including MuTect2
[18], Strelka2 [17], SomaticSniper [15], VarScan2 [12],
VarDict [13], Lancet [20], Freebayes [19], in order to
gain improved performance. NeoMutate extracts 17 core
non-redundant biological and sequencing features from
the aligned BAM files. These features, for each candidate
site, are incorporated with only three of the essential
variant annotations provided by the individual tools.
This design facilitates the scalability of the solution to in
principle encompass an unlimited number of variant cal-
lers. Unlike the previous two ensemble based supervised
ML approaches (SMuRF and SomaticSeq), a comprehen-
sive survey of ML classifiers is profiled (including logis-
tic regression, support vector machines, Gaussian Naive
Bayes, random forests, gradient boosting decision trees
and neural networks). All of the ensemble ML models in
NeoMutate were trained with more than 3000 bona fide
cancer variants from Catalogue of Somatic Mutations in
Cancer (COSMIC) [35]. Standard 5-fold cross validation
and independent tests demonstrated an improved variant
detection accuracy compared to the individual tools and
consensus voting strategies. In particular, decision-tree
type models stood out as having surpassed the standard
filtering approaches and individual tools. Using a range of
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metrics, we demonstrate how the NeoMutate framework
optimizes simultaneously for sensitivity and specificity.
This is achieved using the minimal required, albeit precise
features that are most relevant to accurate variant calling,
rendering NeoMutate with a high degree of scalability and
portability.

Methods

Generation of synthetic tumor variant datasets and NGS
data processing

Following the methodology used by ICGC-TCGA
DREAM Somatic Mutation Calling Challenge for the
synthetic dataset generation, BamSurgeon was used to
spike mutations into three different well-known datasets
included in the 1000 Genome Project (Table 1). The
three WES sample files were downloaded in BAM for-
mat. In order to test all the functionalities of the Neo-
Mutate workflow, the BAM files were converted back to
fastq format using Picard SamToFastq (2.6.0) utility [36]
(Fig. 1). Fastq files were then processed using NeoMu-
tate, including data quality control, adapter clipping,
alignment and alignment post-processing. Quality as-
sessment of the fastq files was checked using FastQC
(v0.11.5) [37] and subsequently, adapter clipping, arte-
fact removal, quality trimming through BBduk (37.50)
[38] was conducted when required. The high quality
paired-end reads were aligned to the human hs37d5 ref-
erence genome, which included data from GRCh37, the
rCRS mitochondrial sequence, Human herpesvirus 4
type 1 and the concatenated decoy sequences, leading to
a better mapping quality. Alignment was performed
using BWA-MEM (0.7.17-r1188) [39], based on the
Burrows-Wheeler transformation. The resulting align-
ment files (BAM) were cleaned following the recom-
mended standardized GATK practices [40], including
duplicate marking, BQSR and Indel realignment. To
check the quality of the raw and intermediate BAM files
produced at each post-alignment step, several metrics
were collected and measured using SAMtools (1.5) [41],
such as: number of reads mapped/unmapped, average
length, mismatches (see Additional file 1: Table S1, for a
detailed overview of collected metrics).

The analysis-ready BAM files, one per sample, were ran-
domly sampled into two non-overlapping subsets of equal
size for NA12878 and NA12891, and in 0.4/0.6 ratio for the
NA24631 in order to slightly increase variability (Fig. 1)
(Additional file 1: Table S2). Four different simulations, S1,
S2, S3 and S4 (Additional file 2 S1 - S4) were performed
using the three genomes and non-overlapping spectrum of
synthetic mutations for an exhaustive benchmark of Neo-
Mutate (Table 2). After checking coverage using BED-
TOOLS program (v2.26.0) [42], covered cancer related
variants were randomly selected from COSMIC database
(v83) [35] for S1, S2 and S3 simulations, including SN'Vs
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Table 1 List of GIAB datasets used for NeoMutate benchmarking. The data was downloaded in BAM format and converted back to
fastq in order to fully test all the functionalities of the workflow. (WES: whole-exome sequencing; PE: paired-end)

Sample ID Lab Project Library  Read Insert  File Number of reads Number of reads after % kept
type length  size format  before trimming trimming reads
NA12878 Broad Institute ~ CEU Trio Analysis WES, PE 76 bp 155bp BAM 118,969,048 89,151,231 74.94
(son)
NA12891  Broad Institute  CEU Trio Analysis WES, PE 76 bp 155bp BAM 116,639,621 88,079,244 75.51
(father)
NA24631  Oslo University — Asian (Han chinese) WES, PE 125bp  202bp BAM 61,001,625 60,852,682 99.76

Hospital Trio (son)

and indels, and added to one of the sampled sub-BAMs
using BAMSurgeon forming the tumor bam file. The VAFs
of the synthetic added mutation ranged from 0.01 to 1,
allowing simulation of multiple subclones or sample con-
tamination. The S4 simulation was implemented using vari-
ants not present in COSMIC dataset, but those generated
at random positions in the genome to avoid the bias of
some third-party tools towards COSMIC related mutations.
Moreover, a more stringent VAF range was chosen for S4,
having all the variants VAF < =02 (730 of them falling in
the category of low allele frequency variants (VAF < =0.05)),

in order to increase the complexity of the analysis (see
Additional file 1: Table S3, for synthetic mutation spectrum
VAF detailed overview). It is important to mention that due
to the internal considerations in BAMSurgeon, not all
chosen spike-in variants were successfully added probably
because their location on low depth genomic regions or
their extremely low VAF (Additional file 1: Table S4). How-
ever, the overall successful rate for spike-in variants was
higher than 0.9 for most of the cases, as those variants were
considered as ground truth for evaluating the models
performance.

v

Trimming and QC

Alignment and
BAM cleaning

NeoMutate

Fig. 1 In silico variant simulation workflow on real data using BamSurgeon: NA12878, NA12891 and NA24631 real datasets were spiked-in with
non-overlapping variant subsets at different allele frequencies (ranging from 0.01 to 1) extracted from COSMIC database for S1, S2 and S3
simulation experiments. An additional simulation was performed using NA24631 dataset and non-COSMIC random mutations having VAF < =0.2.
Text boxes coloured with blue borders represent steps embedded in NeoMutate workflow

mutations
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Table 2 Simulation experiments design overview

Simulation ID Sample ID is_COSMIC VAF range All SNV Insertions Deletions
S1 NA12878 yes 0.01-1 3600 3000 300 300

S2 NA12891 yes 001-1 6000 5000 500 500

S3 NA24631 yes 0.01-1 6000 4000 1000 1000

S4 NA24631 no 0.01-0.2 5000 3000 1012 988

Ensemble variant calling

NeoMutate, in this study, incorporated an ensemble of 7
different state-of-the art tools, including: MuTect2,
Strelka2, VarScan2, VarDict, SomaticSniper, Freebayes and
Lancet (Table 3), which were executed having as input the
tumor-normal paired BAM files with the embedded syn-
thetic mutations. Nearly all default parameters suggested
by the developer of each caller were used for running the
tools, these are generally considered to be the optimal set-
tings for most data types. (Additional file 1: Table S5).
Each somatic caller implements its own assumptions and
has specific statistical models to exclude true genetic vari-
ations from background noise, which are optimal for cer-
tain datatypes but generate worse results for others.
Integrating the different algorithms and selecting the
union call-set seems a sensible approach for raising sensi-
tivity and adaptability to the different tumor scenarios, the
main purpose of this ensemble approach.

Feature selection

Several sequencing and biological features were extracted
at the BAM and VCF level in order to collect as much
non-redundant information as possible for each variant
candidate (Table 4). The bam-readcount program (0.8.0)
[43] was called to query and retrieve the requested metrics
directly from the BAM files. The features were classified
into four distinct groups depending on the carried informa-
tion (detailed information about each specific feature is
provided in Table 4). Each variant site reported by at least
one of the tools in the ensemble variant calling (ie. the
union of the 7 algorithms) was coupled with the different
set of features, in addition to each tool call status (detected
or non-detected). Using BAMSurgeon ground truth VCF
file, each candidate site was categorized with the proper

somatic status label (“somatic” or “non-somatic”), forming
the adequate input data for training the supervised machine
learning classifiers. To prevent over-fitting on training data,
those features represented as continuous variables were nor-
malized using MinMaxScaler module available in sklearn
python library, shrinking their range between 0 and 1.

The ensemble variant calling along with the feature set
served as input to the 7 supervised machine learning clas-
sifiers: Logistic Regression (LR), Support Vector Machine
with linear kernel (SVMI), Gaussian Naive Bayes (GNB),
Decision Tree (DT), Random Forest (RF), Gradient Boost-
ing Decision Tree (GBDT) and Neural Network (NN).

Variant evaluation by ensemble machine learning framework
Classifiers were comprehensively evaluated in CV experi-
ments and on independent tests with labelled data through
a robust and exhaustive set of performance measurements
(Table 5). The area under the curve (AUC) of a receiver op-
erating characteristic (ROC) and precision-recall (PR)
curves was calculated using the predicted probabilities for
each candidate site. PR curves were chosen as they are
known to be more informative than ROC curves when the
class distribution of the data is unbalanced [44], as is com-
mon in somatic variant calling.

Results

The NeoMutate workflow for robust and scalable ML
based ensemble variant calling

NeoMutate attempts to address the inherent complex-
ities of somatic variant calling in cancer by applying an
ensemble based supervised ML approach to improve per-
formance. Full details of NeoMutate’s methodology are
described in the methods section. NeoMutate integrates
different variant calling tools in an all-inclusive modular

Table 3 List of individual somatic variant callers embedded in NeoMutate

Tool Version Methodology

MuTect2 38 Bayesian classifier

Strelka2 284 Bayesian model of admixture

VarScan2 243 Heuristic methodology with statistical test

VarDict 14 Combined heuristic and statistical algorithm
SomaticSniper 1050 Bayesian approach for estimating genotype probabilities
Freebayes 0.12 Bayesian model with error probabilities

Lancet 1.05 Colored de Bruijn graphs
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Table 4 List of biological and sequencing features selected for downstream ML analysis

Feature name

Source Group Description

indel_or_snp
ts_or_tv
depth_TUM
alt_counts_TUM
alt_avg_MQ_TUM

alt_avg_BQ_TUM

alt_plus_TUM
alt_minus_TUM
ref_plus_TUM
ref_minus_TUM

VAF

depth_WT
alt_counts_WT
ref_counts_WT
num_of_indels_closeby
GC_content

shannon_entropy

detection_status
"Tool"_F
“Tool"_alt_counts

“Tool"_ref_counts

BAM 3
BAM 3
BAM 1
BAM 1
BAM 2

BAM 2

BAM 1
BAM 1
BAM 1
BAM 1
BAM 1
BAM 1
BAM 1
BAM 1
BAM
BAM
BAM

w w w

VCF 4
VCF 4
VCF
VCF

Is the given variant a SNP, insertion or deletion?

Transition or transversion

Coverage in tumor sample for the given variant position
Alternative read counts (number of reads supporting the variant)

Average mapping quality of reads containing the variant. Quantification of the probability that a read is
misplaced.

Average base quality of the reads containing the variant. Accuracy of a base sequenced by the sequencing
machine.

Number of reads on the plus/forward strand supporting the variant

Number of reads on the minus/reverse strand supporting the variant

Number of reads on the plus/forward strand supporting the reference allele

Number of reads on the minus/reverse strand supporting the reference allele

Variant allele frequency

Coverage in normal sample for the given variant position

Number of reads supporting the variant in normal sample (germline risk)

Number of reads supporting the reference in normal sample

Are there indels closeby? (false positive risk factor)

Number of GC bases relative to the total number of bases located + — 20 bp for the given variant position

A mathematical measure of the degree of randomness in a set of data. The smaller the entropy value, the
less complex the sequence is.

Classification status (“somatic” or “non somatic”) for the given variant caller
Quality tag in FILTER column (“PASS” or “non PASS")
Number of reads supporting the variant reported by the specific tool

Number of reads supporting the reference reported by the specific tool

pipeline to capture a more comprehensive mutational pro-
file and performs an ensemble ML based step for boosting
detection accuracy (Fig. 2). The workflow can be divided in
two main components: (1) an ensemble variant calling
pipeline and (2) an ensemble machine learning framework.
The former follows the best practices of the genome

analysis toolkit (GATK) [40] in a high-performance robust
automated workflow, which consist of data preprocessing,
alignment, post-alignment processing, followed by the inte-
gration of 7 variant calling algorithms. For the purpose of
this study, the high-quality processed BAM files are pro-
vided as input into 7 state-of-the-art somatic variant calling

Table 5 Definition of selected performance metrics used for algorithm evaluation. The four variables present in a 2 x 2 contingency
table: true positive (TP) (variants predicted and validated), true negative (TN) (variants not predicted and not validated), false positive
(FP) (variants predicted but failed in validation), and false negative (FN) (variants not predicted but validated) are used to calculate

the metrics and assess model performance

Metric Formula Definition
TP+TN » o

Accuracy TPTINPTAY The ratio of correct calls out of the total number of positions.

Precision % The ratio of correct variant calls out of the total number of variant calls.
Synonyms: Positive predictive value (PPV)

Recall ﬁ The ratio of correct variant calls out of the total number of variant positions.
Synonyms: Sensitivity, true-positive rate (TPR).

False discovery rate % The ratio of incorrect calls out of the total number of variant calls.

(FDR)

F1-Score 2xPrecision=Recall Harmonic mean of precision and recall, where 1 is the best score and 0 the worst.

(Precision-+Recall)

TP+ TN—FPFN

Matthews correlation
\/(TP+FP) (TP+FN) (TN+FP) (TN+FN)

coefficient (MCC)

Synonyms: F-score

A measure of the quality of binary (two-class) classifications. The MCC represents the
correlation coefficient between the observed and predicted binary classifications, where —1

indicates a completely wrong binary classifier while 1 indicates a completely correct classifier.
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Fig. 2 NeoMutate workflow: This figure illustrates the main steps executed during NeoMutate framework, where raw reads from nearly any
sequencing technology platform are transformed into an accurate list of prioritized somatic variants. Its modular architecture consists in quality
control of the raw data, alignment and BAM post-processing, ensemble variant calling and machine learning boosted variant filtering step. 7
machine learning models are trained using the ensemble calling plus a set of biological and sequencing relevant features. Each algorithm will

provide a mutational status classification per variant yielding a high-confidence somatic mutation call set

tools (Table 3). However, it is worth noting that NeoMu-
tate’s modular architecture confers a high flexibility and
adaptability to the incorporation of any number of variant
calling tools. NeoMutate leverages the strengths of each in-
dependent somatic variant calling tool with the aim of in-
creasing sensitivity while maintaining accuracy and capture
the full mutational profile from the sequencing data of
tumor-normal pairs. The ML based step begins with the
annotation of each candidate variant included in the com-
bined set of calls of from the entire ensemble of variant
calling with additional genomic and sequencing features.

There were 17 non-redundant features extracted from the
BAM files and four features extracted from each VCF file.
The selected features can be categorized in four groups: 1)
read depth, strand bias and allele frequency, 2) base and
mapping qualities, 3) variant type and genomic context,
and 4) detection status for each caller. The combined indi-
vidual variant caller annotations together with the add-
itional features are given as input to train the 7 models
available in NeoMutate’s ML framework (logistic regression
classifier (LRC); support vector machine classifier with lin-
ear kernel (SVMI); decision tree (DT); Gaussian Naive
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Bayes (GNB); random forest classifier (RFC); gradient
boosting decision tree (GBDT); neural network (NN)), to
attempt to capture and infer the interplays of features in
order to reduce false positive predictions without discarding
true events.

A comprehensive profiling of ML classifiers demonstrates
improved performance over standard approaches for
variant detection

In order to simulate synthetic ground truth somatic vari-
ants, we spiked in bona fide variants from the COSMIC
database [35] using BAMSurgeon [45], into three well
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studied genomes from the GIAB Consortium (NA12878,
NA12891 and NA24631). Four different simulations (S1-
S4) were conducted to probe effectiveness of the ensem-
ble ML based approaches. A total number of 3421, 5573,
5763 randomly selected COSMIC variants (SNVs and
indels, VAF range 0.01-1) were successfully added into
NA12878, NA12891 and NA24631 samples, for the S1,
S2 and S3 simulations, respectively. Additionally, 4894
non-COSMIC variants (<= 0.2 VAF) were spiked into
NA24631 dataset for the S4 simulation. The BAMSur-
geon ground truth variants allowed us to assign labels
(“somatic” or “non-somatic”’) to each candidate site

Individual variant callers

0.924
0.925
0.930
0.969
0.881
0.966

0.951
0.938

0.875
0.90!

freebayes lancet mutect2 somaticsniper

Standard filtering

strelka2 vardict varscan2

m2s2 m2s2_HQ cons_2 cons_3

~
N
&

o o

]
2 8
2 2

Ensemble machine learning

metric
BN accuracy
[ precision
recall
F1-Score
FDR
- mm MCC

cons_4 cons_5 cons_2_HQ

0 3

2
& 3
5O

0.8 |-

04 |-

0.2 |-

0.0

LRC

SVMI DT GNB

3
S

RFC GBDT NN

Fig. 3 Comprehensive performance evaluation of different approaches. Only those approaches having a sensible recall (> 0.5) were chosen for the
comparison. a) Individual variant callers raw results evaluation. b) Standard filtering results evaluation. m2 s2: mutect2 and strelka2 calls intersection; m2s2_HQ:
mutect2 and strelka2 HQ (only variants tagged as "PASS’) calls intersection; cons_n: consensus voting (intersection) of at least n tools; cons_2_HQ: consensus
voting of the HQ call sets of least 2 tools. b) ML results evaluation. LRC: logistic regression classifier; SVMI: support vector machine classifier with linear kernel;
DT. decision tree; GNB: Gaussian Naive Bayes; RFC: random forest classifier; GBDT: gradient boosting decision tree; NN: neural network
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reported in the final call sets for each experiment, allow-
ing for a correct evaluation of the performance. Each
candidate mutation was tagged with the validation status
determined by the ground truth, in addition to a call sta-
tus (detected or not detected) for each variant calling
tool, classifying them as true-positive or false-positive.

NeoMutate’s performance on somatic variant detection
was first evaluated through 5-fold cross-validation (CV)
experiments using the reported call set from the S1 simu-
lation experiment. The combined call set from all 7 callers
consisted of 12,153 variants, 3235 (26.62%) of which were
ground truth somatic mutations (see Additional file 3 for
individual and combined tool results). Each candidate
variant was annotated with the ground truth status, in
addition to the status of each variant calling tool and
additional genomic features.

The performance of all 7 ML models was compared
against commonly used standard filtering approaches
(Additional file 1: Table S6), in addition to the results
from the individual variant callers. Systematic evaluation
of the results was performed using a comprehensive set
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of performance metrics derived from contingency tables
that captured the relationship between the prediction
status assigned by the method and labels from the
ground truth data (Fig. 3, and Additional file 2: Table
S1). The winning method for each considered metric
is highlighted in bold in Fig. 3. The most stringent
considered standard filtering approach, consisting of
the intersection between MuTect2 and Strelka2 high qual-
ity variants (tagged as PASS in their correspondent
VCEF files), achieved the highest precision and there-
fore the lowest FDR. This approach removes a high
degree of false positives (FP) at the cost of true posi-
tives (TP). The somatic variant calls reported by at
least any two callers, won the performance for recall,
at the expense of poorer precision. The ML models
accomplished the highest balance retrieved TP and
FP, as shown in the F1-Score and Mathews Correl-
ation Coefficient (MCC) in Fig. 3 and Additional file
2: Table S1. While the rule-based and consensus vot-
ing approaches struggle to balance recall and preci-
sion scores, the ML models, particularly the GBDT
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Fig. 4 Correlation matrix plot: Pairwise comparison correlation matrix heatmap of some methods results. Half heatmap is represented with colors
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model, achieved a higher recall rate (>0.96) without
negatively impacting on precision (>0.98). Similar be-
havior was observed using the GBDT model in rela-
tion to the different mutation types tested, achieving
a F1-Score of 0.976, 0.952 and 0.966 for SNVs, inser-
tions and deletions respectively (Additional file 2:
Table S1).

The results between the various approaches were
further assessed in a correlation matrix between each
pair of methods (Fig. 4). As reported in previous
studies [3—-11] the individual variant callers had a
large degree of disagreement between each other.
Consensus strategies have an improved concordance
between each other, and the ML methods overall
showed a much improved and higher positive correlation
(although predictions made by the 7 ML classifiers are
from the same training data set, generated from the en-
semble results of the seven variant callers). Nevertheless,
the ML predictions were not only consistent between each
other, but also consistently accurate, with a mean accuracy
of 0.9833 (0.0031); mean precision: 0.9813 (0.0111); mean
recall 0.9555 (0.0075), mean F1-Score 0.9682 (0.0057),
mean FDR: 0.0187 (0.0111), mean MCC: 0.957 (0.0079)
and mean AUC: 0.9901 (0.0069).
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Robust performance of ensemble ML based classifiers across
mutation types and decreasing variant allelic frequencies
The effective interrogation of low-frequency mutations
has a great impact in how the performance of variant
callers results agree with each other [4, 25, 46]. Thus,
the performance of each approach was evaluated across
a range of VAFs (Fig. 5a) and different mutation types
(SNV, small insertion and deletion) (Fig. 5b). The
Fl-score was selected as a suitable metric to illustrate
both precision and sensitivity simultaneously. The ML
models outperform both the individual variant callers
and standard filtering protocols across all the VAF sce-
narios and for all mutation types. The GBDT model of-
fered improved performance overall, but considerably
greater performance for those variants thought to be dif-
ficult to detect (VAF < 0.05) (Fig. 5a).

The results of GBDT were examined in more depth
through precision-recall (PR) and standard receiver operat-
ing characteristic (ROC) curves, for each allele frequency
range, and for each variant type in order to evaluate the
classifier under the different conditions (Fig. 6). The PR
curves are more informative due to the unbalanced distri-
bution of the data, which comprised of 8918 negative and
3235 positive variants, conferring an over optimistic view in
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Fig. 5 a) F1-Scores of each evaluated method for each VAF range. b) F1-Scores of each evaluated method according to variant type. The
methods were divided in three main strategies in the x-axis: Machine learning based (blue), standard filtering based (red) and individual tools
results (green). Each VAF range considered is represented with a different color
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the ROC curves as observed in Fig. 6. As expected, an over-
all reduction in accuracy at lower VAFs and in indels was
observed, due to the additional complexity in the detection
of genomic alterations that arise in subclonal tumor cell
populations (low-frequency tumor variants), or affecting
more than one base pair in the genome.

In addition to VAF, tumor read depth was also evaluated
as having a high impact (Additional file 1: Figure S1). Not
surprisingly, the vast majority of FP calls originated in low
VAF or in those regions with low coverage. Notably, the
GBDT classifier was able to discard a substantial number
of those FP calls without losing true somatic mutations.
The importance of each feature that contributes to the
prediction of the correct somatic variant status in the high
performing GBDT model was then assessed. Figure 7
shows the computed relative importance of each feature.
Once the trees in GBDT were constructed, the importance
scores were retrieved for each feature, allowing attributes to
be ranked and compared to each other. The Strelka2 filter
status (Strelka2_F) contributed most to the learning,
followed by tool specific read counts and base and mapping
qualities. As can be observed in Fig. 7, the majority of input
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features provide useful information to the learning model
supporting the minimalized but appropriate feature selec-
tion process. Moreover, additional experiments excluding
different feature sets were carried out for the ML training
(Additional file 1: Table S7), and their exclusion had a sig-
nificant detrimental impact on predictive performance, re-
inforcing the importance of the selected feature subset.

Model consistency in independent tests

The S2, S3 and S4 simulations were used as independent
tests to evaluate further the performance of the S1 trained
ML models. The goal of these independent tests was to
highlight model adaptability to different datasets and to
evaluate overfitting on the training data. GBDT was
trained using the S1 in silico variants and then tested on
the S2, S3 and S4 datasets, separately. The performance
for GBDT in the independent tests was significantly
higher than each of the standard filtering approaches as
previously reported by the 5-fold CV experiment (Table 6).
GBDT substantially outperformed the best F1-Score score
obtained using strict standard filter (the consensus of at
least four variant calling tools). Additionally, the
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Fig. 7 Bar chart of 5-CV GBDT feature importance ranking. The importance of a feature is computed as the (normalized) total reduction of the
criterion brought by that feature. The features contributing most to the prediction variable are represented in the left of the plot with highest

relative importance scores. The error bar represents the standard deviation across the 5 folds

concordance of the results was higher in GBDT too, giving
more reproducible results across the independent experi-
ments than the other methods, probably due to the model’s
ability to infer the interplay between different biological an-
notations and thus, perform more effective parameter com-
bination (Additional file 2: S2 - S4).

Discussion

Rule-based filtering and consensus voting of multiple
variant calling methods can often remove the vast ma-
jority of FP calls, unfortunately at the expense missing
many TP hits. However, the NeoMutate workflow tries
to correct this by taking advantage of ML algorithms
that may enhance specificity and methods that reinforce
sensitivity, potentially capturing a more complete muta-
tional profile of the tumor with a significant improve-
ment in detection accuracy.

In order to simulate somatic variants in a bona fide can-
cer context, we used cancer relevant mutations from
COSMIC to spike in variants into actual whole-exome se-
quencing (WES) data from GIAB reference samples. The
performance of 7 ML classifiers was comprehensively

evaluated under CV and independent tests. We showed
that ensemble variant calling boosted with ML, led to a
substantially improved performance over standard filtering
protocols, in particular decision-tree type models, which
displayed a higher sensitivity and specificity balance com-
pared to all of the individual variant callers. Additionally,
NeoMutate also outperformed rule-based filtering and
simple consensus approaches across a range of variant al-
lele frequencies and mutation types. Performance of
GBDT was consistent between the CV on the training
data and on the independent test sets, indicating that the
model was not subject to overfitting. The GBDT classifier
had improved performance overall, but considerably
greater performance for those variants thought to be diffi-
cult to detect (VAF < 0.05). Several studies have shown the
significance of the low frequency variants in terms of their
correlation with response to treatment, due to the acquisi-
tion of treatment-resistant genetic alterations in the tumor
subclones [11, 14, 25]. Thus, the correct detection of low
frequency variants in the primary tumor becomes a crucial
analysis that will dramatically influence the choice of
therapy [11].

Table 6 F1-Scores obtained for the best standard filtering approach and best ML classifier across the different simulations. The
consensus call of at least four out of the 7 tools was the winner option for the first category while GBDT model for the second

Method Category Description S1 S2 S3 S4
GBDT ML Gradient boosting decision tree 0.9742 0.9762 0.9658 0.8748
cons_4 Standard filtering Consensus of > =4 tools 09139 0.9326 0.9203 0.8044
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Each candidate variant was annotated with
non-redundant biological and sequence features. The
motivation behind curating the minimal amount of
non-redundant features and not all possible features
across all possible variant callers is based on the assumption
that doing the latter would decrease the portability and scal-
ability of the model. One of the main advantages of using an
ensemble of multiple callers boosted by ML as a variant fil-
tering strategy is that the classifiers do not rely on manually
defined parameters. The ML models may automatically over
time learn these parameters and attempt to capture the
interplay between different features. This study incorporated
7 different state-of-the art tools, however, as new variant
calling methods are developed, they can be integrated easily
due to NeoMutate’s degree of modularity and adaptability.
However, the benefit of adding new tools may have the
greatest value if the new tool contributes to the detection of
de novo true positive predictions. Since the ML framework
is built upon an ensemble of embedded tools, incorporating
a novel algorithm that can uniquely detect challenging vari-
ants could lead to an improved detection accuracy.

Conclusions

The NeoMutate workflow incorporates a ML framework,
where the strengths of multiple callers are exploited using a
non-redundant set of biological and sequence features to
boost accuracy. We have shown substantially improved per-
formance over standard filtering protocols, specially balan-
cing the trade-off between sensitivity to low-frequency
variants and calling too many false positives, critical for an
adequate decision making in personalized medicine.
Moreover, ML does not rely on user-defined parameters,
providing enough flexibility to deal with the common chal-
lenges present in clinical tumor samples, such as intra-het-
erogeneity and normal tissue admixtures. Given the unique
and complex characteristics of each tumor, we demonstrate
here that integrating multiple tools comprehensively in an
ensemble ML layer optimizes somatic variant detection
rates, leading to a potential enhancement in cancer diagno-
sis and treatment response.
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description of all the data generated during the study, including input
data overview, in silico spiked-in variants summary, BAMSurgeon perform-
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Additional file 2: Comprehensive survey of ensemble ML, consensus
filtering strategies and individual variant caller results across the four (S1 — S4)
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on S1 experiment. Exhaustive evaluation of the composite variant callers
and all possible unions and intersections between the included
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