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Abstract

Background: Chemoresistance is a primary clinical challenge for the management of small cell lung cancer.
Additionally, transcriptional regulation by super enhancer (SE) has an important role in tumor evolution. The
functions of SEs, a key class of noncoding DNA cis-regulatory elements, have been the subject of many recent
studies in the field of cancer research.

Methods: In this study, using chromatin immunoprecipitation-sequencing and RNA-sequencing (RNA-seq), we
aimed to identify SEs associated with chemoresistance from H69AR cells. Through integrated bioinformatics
analysis of the MEME chip, we predicted the master transcriptional factors (TFs) binding to SE sites and
verified the relationships between TFs of SEs and drug resistance by RNA interference, cell counting kit 8
assays, quantitative real-time reverse transcription polymerase chain reaction.

Results: In total, 108 SEs were screened from H69AR cells. When combining this analysis with RNA-seq
data, 45 SEs were suggested to be closely related to drug resistance. Then, 12 master TFs were predicted
to localize to regions of those SEs. Subsequently, we selected forkhead box P1 (FOXP1), interferon regulatory factor 1
(IRF1), and specificity protein 1 (SP1) to authenticate the functional relationships of master TFs with chemoresistance
via SEs.

Conclusions: We screened out SEs involved with drug resistance and evaluated the functions of FOXP1, IRF1, and SP1
in chemoresistance. Our findings established a large group of SEs associated with drug resistance in small cell lung
cancer, revealed the drug resistance mechanisms of SEs, and provided insights into the clinical applications of SEs.
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Background
Small cell lung cancer (SCLC) is an aggressive type of
malignant tumor that shows rapid recurrence after
chemotherapy and accounts for approximately 15% of all
lung cancers. SCLC is the most destructive subtype of
lung cancer and often exhibits neuroendocrine features
[1]. Although SCLC is initially sensitive to chemothera-
peutic drugs, rapid development of drug-resistant disease

and a lack of existing therapies after relapse have led to
poor outcomes in patients with this disease. Despite inten-
sive efforts by clinical and basic investigators, the vast ma-
jority of drugs for SCLC are unsuccessful in the clinical
setting. Therefore, to obtain more effective drugs, there is
an urgent need to elucidate the drivers of therapeutic re-
sistance in recurrent SCLC.
Genomic alterations, particularly gene amplifications,

confer SCLC with the ability to acquire chemoresistance
quickly. However, the underlying mechanisms of specific
resistances remain unknown. The extent to which rapid
acquisition of drug resistance after initial treatment is
dependent on gene amplification in SCLC is not yet
known. Gene amplification is usually modulated by the
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trans-regulatory apparatus and cis-regulatory elements
[2], such as transcription factors (TFs) and super en-
hancers (SEs), which significantly increase the frequency
of gene transcription. Gene transcription is the first
step in gene expression; during this process, RNA
polymerase, together with one or more TFs, binds to
a particular segment of DNA. TFs are proteins that
bind to DNA and regulate gene expression by sup-
pressing or promoting transcription. The particular
region of DNA to which TFs bind is called the pro-
moter, enhancer, or SE. SEs, a key class of noncoding
DNA cis-regulatory elements, have been the focus of
recent studies in the field of cancer research and
were first reported by Richard et al. [3]. SEs are
screened through a three-step process: First, enhancer
loci are represented as peaks on chromatin immuno-
precipitation (ChIP)-seq data. Second, enhancers
within 12.5 kb of each other are merged into stitched
enhancer regions. Third, the ChIP-seq signal for each
enhancer region (both stitched and single enhancers)
is calculated. All enhancer regions are ranked along
the X axis on the basis of the signal enrichment plot-
ted on the Y axis. The signal value obtained at the in-
flection point of the resulting curve with a slope of 1
is the threshold between the SE and the general en-
hancer. SEs are designated as regions to the right of
the inflection point of the curve [4].
Although the total number of regulatory elements

may be in the millions, only a few hundred SEs con-
trol key genes, giving each cell its own unique iden-
tity and functions. Accordingly, SEs have been shown
to be involved in oncogene activation in cancer [5].
Moreover, SEs play major roles in pathological
changes, various diseases, cell type-specific develop-
ment and differentiation, and chemoresistance acqui-
sition [6, 7]. Therefore, SEs can serve as useful
biomarkers for tracking and understanding the evolu-
tion of cancers and ultimately may be important
targets for intervention therapy [8]. Mutiple co-activa-
tors are often required for SEs to function appropri-
ately [9]. However, it is unclear how and what factors
can efficiently promote enhancer activation and drug
resistance. Therefore, a better understanding of gen-
etic alterations and expression regulation is crucial for
identifying new therapeutic targets.
Here, we aimed to establish a universal approach

for identifying functional units of SEs linked to che-
moresistance and their target genes. We also pre-
dicted transcriptional factors targeting these SEs in
chemoresistant H69AR SCLC cells. Our findings
provide perspectives for the use of SEs as targets to
develop a novel disease therapeutic schedule and es-
tablish new directions for the clinical analysis of
drug resistance.

Methods
Chromatin immunoprecipitation-sequencing (ChIP-seq)
2 × 107 cells were fresh harvested and fixed in 1%
formaldehyde/medium buffer for 10 min at room
temperature. Fixation was stopped by addition of glycine
to a final concentration of 125 mM. Fixed cells were
washed three times with PBS buffer, and centrifuged
(5000 rpm, 5 min). Pelleted cells and pulverized tissues
were lysed in 100 ml 1% SDS lysis buffer and sonicated
to 150–300 bp using a Bioruptor (Diagenode). ChIP was
performed using the following antibodies: H3K27ac
(ab4729, Abcam). After recovery of ChIP and input
DNA, whole-genome-amplification was performed using
the VAHTS Universal DNA Library Prep Kit (Vazyme)
and VAHTS Universal Adapter (Vazyme). Amplified
DNAs were purified by PCR purification columns
(TIANGEN). Thirty nanograms of amplified DNA was
used for each sequencing library preparation (Vazyme)
and sequenced on NovaSeq (Illumina) to an average
depth of 40 million reads per library.

Sequence mapping and ChIP-seq density analysis
Sequence reads were mapped against human reference
genome (hg19) using bowtie2 (version 2.2.9), allowing
only one mismatch in the seed. The parameters were set
as ‘–n 1–k1’, ‘samtools (version 1.3.1) view –bS’ and
‘bamflag (version 2.1) –u –m 3’. Only the uniquely
mapped reads were kept to peak calling by MACS (ver-
sion 1.40) with default parameter ‘-g mm –B –S --call--
subpeaks’ [10]. Gene Interval Notator implement in
CARPET was used to annotate peaks over RefSeq hu-
man genes [11]. A peak was assigned to the transcrip-
tional start site (TSS) of a RefSeq gene when falling into
the surrounding 4 kb (±2 kb). Promoters were defined as
6 kb regions (±3 kb) surrounding the TSS. To reduce
background signals, read densities of each ChIP library
were revised against the input library. Peaks with signifi-
cant ChIP enrichment relative to the input library were
detected using CCAT (version 3) (FDR < 5%). Peak dens-
ities within a region were computed by counting the
total number of mapped reads normalized by the library
and region size, a metric equivalent to reads per million
mapped reads per kilobases (RPKM).

Identification of predicted super enhancers
Predicted enhancers were determined as enriched
H3K27ac regions at least 2 kb from annotated TSS. Dis-
tal predicted enhancers displaying high H3K27ac signals
were recommended as mistaken predictions and thus
left out analyses. Predicted enhancers were further sub-
divided into typical enhancers or predicted super-en-
hancers using the ROSE algorithm. The regions of
predicted super-enhancer with at least one base overlap
across multiple GC lines were incorporated using
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BEDTools, and predicted enhancers localizing to regions
difference from the predicted super-enhancer regions
were classified predicted typical enhancers. The presence
of predicted typical or predicted super-enhancers in in-
dividual samples was decided by the level of H3K27ac
enrichment according to background (P < 0.01, empirical
test). To assign predicted super-enhancers/enhancers to
genes, we calculated distances from the predicted
super-enhances/enhancer centre to the nearest activated
TSS, defined as a promoter (500 bp flanking aside TSS)
with H3K27ac enrichment above random chosen regions.

RNA-seq and analysis
Total RNA was extracted from H69 and H69AR by
RNAiso Plus (Takara Bio, Dalian, China). 1 μg of RNAs
each group used to the library construction by using the
VAHTS mRNA-seq v2 Library Prep Kit for Illumina®
(Vazyme, NR601) following the manufacturer’s instruc-
tion as detailed in the Additional file 1 section.

Functional enrichment analysis
Gene functions and pathways, including super enhancer
associated genes and differential expression genes, were
analyzed several online databases. Gene Ontology (GO)
analysis was performed for the target genes and DEGs
with DAVID. p-value < 0.05 was set as the cutoff value.
Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathway (http://www.genome.jp/kegg) was also per-
formed for these genes with KOBASS2.0. p-value < 0.05
was set as the threshold.

TF binding motif analysis
We interrogated enrichments of TFs in predicted
super-enhancers using the JASPAR database. Transcrip-
tion factor binding sites with at least 60% of overlap with
predicted super-enhancers were counted. Binding dens-
ities of TFs were computed as the total binding sites
detected in the regions divided by the total size of the
regions in unit of million base pairs (Mbp). The top TF
identified from the outputs were used for expression
correlation analysis. Additionally, we also identified
binding motifs using MEME with JASPAR 2016.

Cell, RNAi and transfections
Chemoresistance is the most important factor resulting
in the death of cancer patients. Transcriptional regula-
tion by super enhancer (SE) has an important role in the
relapse of small cell lung cancer for acquired drug resist-
ance. H69AR is the only resistant cell line for small cell
lung cancer in the ATCC cell lines. So we selected the
chemoresistant cell line H69AR and its parental cell line
H69. Cells were transfected with validated siRNAs for
SP1, IRF1, and FOXP1. Detailed description can be
found in the Additional file 1 setion.

RNA extraction and qRT-PCR
RNA isolation and Real time qRT-PCR were performed
as manufacturer’s protocols, and as detailed in the Add-
itional file 1 setion.

In vitro proliferation assay and statistics
Cell counting kit 8 (CCK8) method were performed for
in vitro proliferation assay using CCK8 kit (Dojindo) ac-
cording to the manufacturer’s instructions. The Graph-
Pad Prism 6 was used for statistical analysis. Data were
calculated as mean ± SD. Student’s t-test was took to de-
cide statistical significance.

Results
Screening of SEs in H69AR cells by chromatin
immunoprecipitation-sequencing (ChIP-seq)
In total, 108 SEs were identified from H69AR cells using
ChIP-seq with a cutoff value of 67,674.8 (Fig. 1a). De-
tailed information is shown in Table 1. These SEs
spanned DNA domains whose median length was
89,584 bp, which was an order of magnitude higher than
the typical enhancer (TE; median length: 1926 bp), and
showed abundances that were at least one order of mag-
nitude larger than that of the TE (Fig. 1b). Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis
showed that chemoresistance formation may be greatly
influenced by pathways including vitamin and lipid me-
tabolism and Notch and AMP-activated protein kinase
(AMPK) signaling pathways (Fig. 1c, d). In addition, sev-
eral genes involved in the insulin resistance pathway
may have contributed to drug resistance (Fig. 1c, d).
Next, we performed gene ontology (GO) analysis of

the associated genes (Fig. 1e–1h). From the results of
bioinformatics analysis, we found that the majority of
genes belonged to the cellular components and/or mo-
lecular functions cluster (Fig. 1e). These results demon-
strated that chemoresistance formation was accompanied
by changes in cellular components and biological pro-
cesses, such as metabolism remodeling [12]. In pathways
enriched in biological processes, we chose to focus on
cholesterol metabolism-related processes in addition to
some lung development processes (Fig. 1f) because the re-
sults suggested that cholesterol metabolism may contrib-
ute to chemoresistance formation. Moreover, histone
H3K9 trimethylation was also identified by bioinformatics
analysis (Fig. 1f); this mechanism may play a vital role in
inhibiting the expression of tumor-suppressor genes and
pro-apoptotic genes to facilitate drug resistance. In path-
ways enriched in cellular components, we found that syn-
aptic vesicles may also play significant roles in drug
resistance, including the transport of the ATP synthase
complex, which has a key role in ATP-binding cassette
(ABC) C1-related multidrug resistance [13] (Fig. 1g). In
pathways enriched in molecular functions, we found that
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Fig. 1 SEs in H69AR cells and bioinformatics analysis. a. Distribution of ChIP-seq density across enhancers with 108 SEs with a cutoff value of
67,674.8085. b. Read count per million mapped genes across SEs and TEs. AR: H69AR cells; SE: super enhancer; TE: typical enhancer. c. KEGG
analysis of SE target genes. d. Top 20 enriched pathways in KEGG analysis for SE target genes. e. GO classification of SE target genes. f. Top 20
enriched pathways for cellular components. g. Top 20 enriched pathways for biological processes. h. Top 20 enriched pathways for molecular function
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vitamin transporter activity was significantly enriched in
H69AR cells, as were the functions of calcium protein kin-
ase and histone H3K9 (Fig. 1h).
In summary, we not only screened 108 SEs associ-

ated with chemoresistance but also proposed a pos-
sible mechanism through which acquisition of
chemoresistance was driven by vitamin and lipid
metabolism remodeling induced by an anticancer
drug. Moreover, our results suggested that the sta-
tuses of H3K9 demethylase and trimethylation could
have significant effects on chemoresistance in SCLC.

Analysis of chemoresistance associated genes using RNA-
seq
H69AR cells were derived from H69 cells cultured in the
presence of adriamycin with increasing concentrations
for 14 months. These cells are almost 50-fold resistant
to adriamycin compared with the parental cell line
H69. In order to elucidate the gene expression pro-
files of H69AR and H69 cells, we used RNA-seq tech-
nology to obtain differentially expressed genes (DEGs)
related to drug resistance.
From the RNA-seq data, we characterized 1623 signifi-

cantly upregulated DEGs in H69AR cells compared with
H69 cells (Fig. 2a, Table 2). These DEGs were functionally
annotated by GO and KEGG analyses (Fig. 2b–e). In the
GO analysis, many genes were classified into the
lumen and cell substrate junction, which may be
related to the extracellular matrix remodeling in drug
resistance acquisition (Fig. 2b). Additionally, many

genes were assigned to cellular component
organization or biogenesis and extracellular matrix
organization in biological processes (Fig. 2b). These
results demonstrated that during the acquisition of
drug resistance in cancer cells, cellular component
organization and biogenesis as well as extracellular
organization were altered. In the molecular function
analysis, most of the genes were involved in RNA binding
and transcription-associated binding subtypes (Fig. 2b),
which enabled cancer cells to respond quickly to antican-
cer drugs. In the subtype of molecular function, most
genes were classified into RNA and protein complex bind-
ing (Fig. 2b). Thus, their functions were mainly related to
transcriptional regulation.
From pathway enrichment in GO analysis, five pathways

were identified, including extracellular matrix assembly, cell
cycle checkpoint, proton-transporting ATP synthase, fibro-
blast growth factor-activated activity, and SUMO transfer-
ase (Fig. 2c, d). Interestingly, spliceosome, cell cycle, carbon
metabolism, and citrate cycle pathways were significantly
enriched in KEGG analysis (Fig. 2e). In addition, other
important pathways were also identified as follows:
synaptic vesicle cycle, steroid biosynthesis, protein
export, and epithelial cell signaling (Fig. 2e).
According to bioinformatics analysis of RNA-seq

data, most DEGs were roughly classified into
transcriptional regulation, cellular components, extra-
cellular matrix reorganization, glucose and lipid me-
tabolism, and proton-transporting ATP synthase,
which functions as a member of the superfamily of

Table 1 The detail information of super enhancers (Part of)

ID Chrom Start End Size Associated gene Method Genome

SE_AR_002 chr16 16,036,480 16,138,317 101,837 ABCC1 H3K27ac Human (hg19)

SE_AR_003 chr16 17,251,168 17,509,936 258,768 LOC102723692 H3K27ac Human (hg19)

SE_AR_004 chr2 16,079,293 16,091,717 12,424 MYCNOS H3K27ac Human (hg19)

SE_AR_006 chr17 17,584,709 17,879,534 294,825 SREBF1 H3K27ac Human (hg19)

SE_AR_007 chr17 55,925,998 56,035,303 109,305 CUEDC1 H3K27ac Human (hg19)

SE_AR_008 chr16 85,228,407 85,522,422 294,015 MIR5093 H3K27ac Human (hg19)

SE_AR_009 chr16 17,147,700 17,180,155 32,455 LOC102723692 H3K27ac Human (hg19)

SE_AR_010 chr19 13,043,361 13,209,040 165,679 NFIX H3K27ac Human (hg19)

SE_AR_016 chr2 133,023,162 133,030,668 7506 ANKRD30BL H3K27ac Human (hg19)

SE_AR_017 chr17 79,844,783 80,024,031 179,248 ASPSCR1 H3K27ac Human (hg19)

SE_AR_018 chr18 76,363,629 76,593,274 229,645 SALL3 H3K27ac Human (hg19)

SE_AR_031 chr1 164,527,778 164,621,592 93,814 PBX1 H3K27ac Human (hg19)

SE_AR_032 chr3 181,404,844 181,478,727 73,883 SOX2 H3K27ac Human (hg19)

SE_AR_083 chr19 42,720,575 42,808,008 87,433 ERF H3K27ac Human (hg19)

SE_AR_088 chr1 16,465,999 16,509,151 43,152 EPHA2 H3K27ac Human (hg19)

SE_AR_094 chr5 92,898,999 92,957,936 58,937 NR2F1 H3K27ac Human (hg19)

SE_AR_095 chr1 23,875,382 23,895,952 20,570 ID3 H3K27ac Human (hg19)

SE_AR_107 chr19 2,013,379 2,065,005 51,626 MKNK2 H3K27ac Human (hg19)
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ABC transporters involved in multidrug resistance
[14]. Our findings also suggested that spliceosome,
lumen, and fibroblast growth factor-activated path-
ways may contribute to the onset of chemoresistance.
Importantly, the RNA-seq data showed good correla-
tions with genome-wide histone modifications.

Identification of SEs related to chemoresistance
To investigate the roles of SEs in acquisition of che-
moresistance, we examined the intersection of 108 spe-
cific SE-associated genes identified by ChIP-seq analysis
for H3K27ac (Table 1), combined with 1668 upregulated
genes from RNA-seq data in H69AR cells and parental

Fig. 2 Bioinformatics analysis of differentially expressed genes between H69AR and H69 cells. a. Volcanic map of DEGs between H69AR and H69
cells. DEGs: differentially expressed genes. b. GO classification of DEGs. c. Top 20 enriched pathways for biological processes. d. Top 20 enriched
pathways for molecular function. e. Top 20 enriched pathways by KEGG analysis
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H69 cells (Table 2). We obtained 45 genes by Venny
(http://bioinfogp.cnb.csic.es/tools/venny/; Fig. 3a), al-
most 40% of which may be related to chemoresis-
tance. Moreover, a comparison of tag densities at SEs
and TEs demonstrated significant enrichment at the
former (Fig. 3b). These genes were also classified by
GO and KEGG analyses (Fig. 3c, d).
From the results of GO analysis, the functions of

screened SE-associated genes were mainly related to
DNA binding and transcriptional activator activity of
RNA polymerase II (Fig. 3c). These findings implied that
SEs increased the expression of target genes, which
served as transcriptional factors regulating downstream

gene expression, and suggested that SEs are related to
various physiological and pathological conditions. In the
classification of biological processes, there were three
main processes for acquisition of chemoresistance: bio-
synthetic and metabolic processes, cell surface receptor
signaling pathways, and RNA polymerase transcriptional
regulation. Additionally, KEGG analysis showed that me-
tabolism- and insulin-related pathways may play vital
roles in modulating the acquisition of chemoresistance.
The phosphatidylinositol 3-kinase/Akt and AMPK sig-
naling pathways were also identified as being related to
the regulation of drug resistance (Fig. 3d).

Master TFs predicted by the SEs using MEME-ChIP
SEs maintain cell identity, and SE-driven transcription
alters not only protein-coding genes but also noncod-
ing regulatory elements, thereby contributing to the
cancer cell state [3, 15]. SE-driven transcription regu-
lation involves highly organized interactions between
the transcriptional machinery and TFs, particularly
master TFs [16, 17]. Thus, we applied these SEs to
predict their master TFs using MEME-ChIP [18].
Twelve master TFs were predicted (Fig. 4a). Subse-
quently, we performed functional validation of these
predicted master TFs (Fig. 4b).

Verification the relationship between master TFs and
chemoresistance
To determine the function of predicted master TFs, we
selected Foxp1, IRF1, and SP1 among the 12 enriched
master TFs and analyzed the relationships between TFs
and drug resistance.

Forkhead box P1 (FOXP1) and chemoresistance
The transcriptional repressor FOXP1 has been defined
as a tumor suppressor in several cancers. To test the ef-
fects of decreased FOXP1 expression on chemoresis-
tance, we reduced the level of FOXP1 expression in
H69AR cells via RNA interference. Then, we analyzed
FOXP1-knockdown cells to assay drug resistance to
adriamycin, cisplatin, and etoposide byCell Counting
Kit-8 (CCK8) assays. The results demonstrated that the
half-maximal inhibitory concentration (IC50) of H69AR
cells transfected with FOXP1 siRNA was not signifi-
cantly altered compared with that in untransfected
H69AR cells (p > 0.05; Fig. 5a).
In order to determine whether FOXP1 is related to

drug resistance, we used quantitative real-time reverse
transcription polymerase chain reaction (qRT-PCR) to
detect the expression levels of related genes. Our results
showed that SP1 knockdown in H69AR cells signifi-
cantly reduced the expression levels of EPHA7, MYC-
NOS, MKNK2, and NFIX mRNAs (Fig. 5b). In contrast,
the levels of SREBF1, PARP1, and SOX2 mRNAs were

Table 2 Differential expressiongenes between H69AR and
H69 (Part of)

Gene H69AR H69 Log2(Fold_change) p-value

HOXB9 228.338 0 −12.88396701 1.01E-24

COL1A2 344.62 0 −12.02077079 1.59E-42

HEY1 30.795 1.89376 −4.023370716 3.75E-08

ABCC1 1306.69 9.0491 −7.173926888 1.39E-297

NID1 85.2176 0 −10.77771999 4.00E-14

FBN2 15.9688 0 −10.45043797 0.000781566

MOXD1 36.0964 0 −11.39282462 2.94E-06

SOX2 243.046 0 −11.06258103 1.03E-35

MGC4473 84.163 0 −10.94412969 1.24E-13

FGFR1 40.8157 0 −7.867646656 2.40E-10

SLC12A7 17.4803 0 −10.15018672 0.000322703

MNX1 16.2196 0 −10.02136625 0.00046936

MYCN 895.032 0 −10.02116417 7.65E-149

LTBP1 26.4505 0 −10.00719865 7.78E-06

IFITM1 111.329 0 −9.934176564 2.91E-20

CDC42EP1 36.7847 0 −9.930180176 1.14E-07

SOX9 7.9101 0 −3.983695933 0.005427113

SP8 34.8206 0 −9.636102719 1.37E-07

SYT17 16.4721 0 −9.592478478 0.000278129

NEDD9 61.9691 0 −9.590789312 1.78E-12

DLX2 39.202 0 −9.527478125 1.77E-08

NEURL1B 15.9639 0 −9.294082989 0.000260711

NFIX 86.0713 0 −8.87827816 3.14E-18

NOTCH1 16.3472 0 −7.69294596 5.34E-05

EFHD1 144.371 0 −10.86427096 1.48E-22

VIM 837.548 4.25909 −7.619482847 4.68E-185

NR2F1 57.9309 0 −7.901400818 4.95E-14

HES1 64.7715 0 −7.272795449 2.86E-16

ABCC1 1306.69 9.0491 −7.173926888 1.39E-297

NFIC 69.2684 0 −7.140562658 1.93E-17

DDIT4 287.096 45.9881 −2.642200731 4.48E-45
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Fig. 3 Screening and analyzing of chemoresistance-associated SEs. a. The intersection of SE-associated genes and upregulated DEGs. b. Box plot
of the expression of genes from SEs and TEs (P < 0.05). c. GO classification of SE-associated upregulated DEGs. d. KEGG analysis of SE-associated
upregulated DEGs
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upregulated (Fig. 5b). The protein products of the
PARP1 and SOX2 genes have been shown to be in-
volved in chemoresistance [19]. Thus, our results
showed that FOXP1 had a self-contradictory role in
chemoresistance. Additional studies are needed to elu-
cidate the molecular mechanisms of the dual roles of
FOXP1-regulated gene expression.

IRF1 and chemoresistance
IRF-1 is a crucial TF that regulates the immune re-
sponse, immune cell development, cell growth, tumor
suppression, autophagy, and apoptosis in mammalian
cells. Therefore, we next evaluated the roles of IRF1 in
chemoresistance. CCK8 assays showed that the IC50

values of H69AR cells transfected with IRF1 siRNA were
significantly altered compared with those in untrans-
fected H69AR cells (p < 0.01; Fig. 5c). Next, using
qRT-PCR, we showed that some critical genes, i.e.,
FGFR1, MYB, PARP1, and TMEM163 were upregulated
(Fig. 5d). These results indicated that IRF1 may coordin-
ate with MYB to target FGFR1, PARP1, and/or
TMEM163 to facilitate drug resistance. Further studies
are needed to determine the mechanisms through which
IRF1 promotes chemoresistance.

SP1 and chemoresistance
SP1 is an extensively studied TF that is important for
cell growth, differentiation, apoptosis, and carcinogen-
esis. To determine the effects of SP1 knockdown on che-
moresistance, we knocked down SP1 expression in
H69AR cells via RNA interference. We then analyzed
drug resistance in SP1-knockdown cells. The results
demonstrated that knockdown of SP1 promoted chemo-
therapy sensitivity to an anticancer drug (Fig. 5e). More-
over, SP1 knockdown H69AR cells significantly reduced
the expression levels of ABCC1, CCNE1, ERF, and MYB
mRNAs (Fig. 5f ). Overall, these results suggested that
SP1 activated ABCC1 and stimulated the expression of
the CCNE1, ERF, and MYB genes, which have been
shown to be related to chemoresistance and cancer re-
lapse [20–22]. However, the underlying mechanisms
through which SP1 targets ABCC1 via CCNE1, ERF, and
MYB are still unclear.

Discussion
Chemoresistance is a major factor contributing to death
in patients with cancer and is therefore an urgent prob-
lem in clinical treatment. Transcriptional regulation by
SE is current research hotspots and has been shown to

a

b

Fig. 4 Master TF binding to SEs predicted by MEME. a. Table depicting TF binding motifs enriched at constituent enhancers within SE regions
were predicted by MEME. b. Detailed information of selected transcription factor binding motifs and associated p values
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Fig. 5 CCK8 assays and qRT-PCR analyses in cells transfected with siRNAs targeting FOXP1, IRF1, and SP1. a. Changes in IC50 after FOXP1
knockdown. b. Changes in gene expression following knockdown of FOXP1. c. Changes in IC50s after IRF1 knockdown. d. Changes in gene
expression following knockdown of IRF1. e. Changes in IC50s after SP1 knockdown. f. Changes in gene expression following knockdown of SP1
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have an important role in the relapse of small cell lung
cancer owing to acquired drug resistance. H69AR cells
are currently the only chemoresistant small cell lung
cancer cell lines available from ATCC. Therefore, in this
study, we screened SEs associated with chemoresistance
using the chemoresistant cell line H69AR.
We used ChIP-seq analysis to identify 108 SEs in

the SCLC chemoresistant cell line H69AR. We found
45 SEs that may be related to drug resistance. SEs ac-
tivate transcription and show greater sensitivity to
perturbation than TEs according to size, content, and
TF density. Indeed, inhibition of the transcriptional
machinery is required for the assembly and mainten-
ance of SEs, resulting in inhibition of tumor growth,
oncogenic transcription, and cancer evolution, includ-
ing acquisition of chemoresistance. Such dependence
on SE-driven transcription for chemoresistance hin-
ders the therapeutic management of drug resistance.
Despite numerous clinical trials, the therapeutic regi-
men for patients with SCLC has not improved signifi-
cantly in decades. The application of next-generation
sequencing technologies has facilitated screening of
many SEs associated with chemoresistance in SCLC.
Thus, our findings provided an excellent opportunity
to reveal the drug resistance mechanisms and provide
new therapeutic strategies for the clinical application
of SEs.
SEs are important regulatory elements affecting

gene expression and are occupied by the mediator
and master regulators, also known as master TFs
[23]. A small number of master TFs, typically called
lineage regulators, are adequate to establish regulation
of gene expression patterns that define cell identity
[16]. The master TFs in any one cell type can aggre-
gate at the enhancers of many active cell-type master
genes and may contribute to the organization of mas-
ter gene expression patterns [24]. Master TFs bind
coordinately to enhancer DNA elements and assemble
co-activators to the transcriptional machinery [25,
26]. The close relationship between transcriptional de-
regulation and cancer evolution is highlighted by the
observation that many oncogenes and tumor-suppres-
sor genes encode TFs, strongly implying that altered
gene regulation is a fundamental mechanism of can-
cer progression, including acquisition of chemoresis-
tance [27]. In this study, we predicted 12 master TFs
that were found to bind to the SEs and activate tar-
geting genes. Subsequently, we selected three pre-
dicted TFs to examine the relationships of these TFs
with chemoresistance. From these results, we found
that some TFs may have dual roles in chemoresis-
tance. For example, FOXP1 not only reduced the ex-
pression of chemoresistance-associated genes, such as
MKNK2 and NFIX, but also stimulated the expression

of other genes, including SOX2, SREBF1, and PARP1
[28, 29]. These results implied that drug resistance is
a highly complicated process and that multiple targets
may been to be combined to treat chemoresistance in
patients with cancer.
High-throughput sequencing data from H69AR and

H69 cells showed that most DEGs were classified into
transcriptional regulation, cellular components, extracel-
lular matrix reorganization, and glucose and proton-trans-
porting ATP synthase, a member of the superfamily of
ABC transporters. Additionally, our results highlighted
the involvement of the spliceosome, lumen, fibroblast
growth factor-activating, lipid metabolism, vitamin metab-
olism, steroid biosynthesis, and histone H3K9 trimethyla-
tion pathways. Accordingly, we expect that our findings
may provide insights into the mechanisms of acquired
drug resistance.
In conclusion, our results provided perspectives on the

use of SEs as biomarkers to develop novel therapeutic
tools for overcoming chemoresistance in patients with
SCLC. However, there is insufficient genetic evidence
demonstrating their unique molecular functions and the
mechanisms underlying the regulation of gene expres-
sion; thus, many follow-up studies are required. First, it
will be necessary to demonstrate experimentally whether
the 12 master TFs actually binding to the SEs. Accord-
ing, we plan to use CRISPR/Cas9 technology to knock
out these SEs and then detect changes in corresponding
target genes by qRT-PCR. We will then use ChIP assays
with antibodies to these master TFs. After ChIP experi-
ments, the binding DNA sequence will be detected using
high-throughput sequencing. Second, although our find-
ings provide insights into drug resistance, further studies
are needed to validate the presence of SEs in additional
lung cancer cell lines. However, H69AR cells are the
only chemoresistant small cell lung cancer cell line cur-
rently available from ATCC. Thus, we used this cell line
to screen for SEs, and we believe that the results were
reliable and scientifically sound. If we were to use drugs
to induce chmoresistance in other cell lines, insufficient
induction may lead to the selection of enhancers that
are not closely related to actual drug resistance. More-
over, such drug-induced cell lines may increase noise
during bioinformatics analysis of sequencing data and
prevent detection of many drug-related enhancers. Ac-
cordingly in our future studies, we will use Cas9 tech-
nology to study the relationships among specific
enhancers, target genes, major transcription factors, and
drug resistance in cell lines other than H69AR. We ex-
pect that the use of CRISPR/Cas technology will facili-
tate the regulation of these SEs and their corresponding
genes. From these studies, we expect to improve our un-
derstanding of the relationships between master TFs and
their target SEs.
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