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Abstract

Background: In cystic fibrosis (CF), impaired immune cell responses, driven by the dysfunctional CF transmembrane
conductance regulator (CFTR) gene, may determine the disease severity but clinical heterogeneity remains a major
therapeutic challenge. The characterization of molecular mechanisms underlying impaired immune responses in CF
may reveal novel targets with therapeutic potential. Therefore, we utilized simultaneous RNA sequencing targeted at
identifying differentially expressed genes, transcripts, and miRNAs that characterize impaired immune responses
triggered by CF and its phenotypes.

Methods: Peripheral blood mononuclear cells (PBMCs) extracted from a healthy donor were stimulated with plasma
from CF patients (n=9) and healthy controls (n = 3). The PBMCs were cultured (1 X 10° cells/well) for 9h at 37° Cin
5% CO.. After culture, total RNA was extracted from each sample and used for simultaneous total RNA and miRNA
sequencing.

Results: Analysis of expression signatures from peripheral blood mononuclear cells induced by plasma of CF patients
and healthy controls identified 151 genes, 154 individual transcripts, and 41 miRNAs differentially expressed in CF
compared to HC while the expression signatures of 285 genes, 241 individual transcripts, and seven miRNAs differed
due to CF phenotypes. Top immune pathways influenced by CF included agranulocyte adhesion, diapedesis signaling,
and IL17 signaling, while those influenced by CF phenotypes included natural killer cell signaling and PI3K signaling in
B lymphocytes. Upstream regulator analysis indicated dysregulation of CCL5, NF-kB and IL1A due to CF while
dysregulation of TREM1 and TP53 regulators were associated with CF phenotype. Five miRNAs showed inverse
expression patterns with three target genes relevant in CF-associated impaired immune pathways while two
miRNAs showed inverse expression patterns with two target genes relevant to a dysregulated immune pathway
associated with CF phenotypes.

Conclusions: Our results indicate that miRNAs and individual transcript variants are relevant molecular targets
contributing to impaired immune cell responses in CF.
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Background

In cystic fibrosis (CF), the lack of a functioning CFTR pro-
tein, due to CFTR gene variants, results in increased sus-
ceptibility to lung infections and pancreatic insufficiency
[1]. Chronic progressive lung disease due to colonization
with Pseudomonas aeruginosa (Pa) infection is the chief
cause of CF morbidity and mortality [2, 3]. However, the
relationship between genotype and phenotype is complex,
with several clinical characteristics caused by various com-
binations of CFTR variants [4, 5]. Although the genetic
characterization of patients has been greatly improved by
next-generation sequencing approaches [6—8], their gen-
etic and clinical heterogeneity remains a major therapeutic
challenge [9]. The characterization of molecular mecha-
nisms underlying CF pathology is, therefore, a critical step
to identifying novel molecular targets with therapeutic po-
tential in CF.

In attempts to understand the mechanisms underlying
how dysfunctional CFTR leads to increased susceptibility
to chronic lung infections, most studies investigate CF
epithelial cells [10]. However, several studies have shown
that impaired immune cell responses are central to the
lung disease severity in CF [2, 11, 12], which indicates
that both epithelial and immune cells are relevant
players involved in CF pathology. As in other diseases
[13], the CF host immune system can respond to patho-
gens by triggering the expression of genes, their iso-
forms, and their regulators. These expression features
can be assessed using advanced high-throughput tran-
scriptomic technologies, and this has already led to the
identification of some dysregulated immunity-related
genes in CF epithelia [14, 15] and blood cells [16]. Per-
ipheral blood mononuclear cells (PBMCs) can respond
to extrinsic stimuli and can be used as effective model
systems for investigating immune cell responses in many
diseases [17, 18]. By utilizing microarrays to profile tran-
scriptional signatures of PBMCs stimulated with CF
plasma, it was reported that several dysregulated
immunity-related genes characterized CF and its pheno-
types [19, 20]. Although specific findings vary between
previous studies, dysregulation or imbalances of immune
molecules are now considered dominant features in CF
[10, 21, 22]. However, it remains poorly understood what
drives the observed differences in expression signatures
of immune molecules.

Alternative splicing is one such biological mechan-
ism through which gene expression is controlled, and
most genes have multiple transcript variants (iso-
forms) that can have different functions in different
cell-types or disease states [23, 24]. Alternative spli-
cing is profoundly prevalent in the immune cells,
where it dictates the function of many signaling mole-
cules [25]. Several individual transcripts from
multiple-transcript genes have been associated with
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many diseases [24, 26, 27], but it remains unclear
whether certain individual transcript variants can
characterize CF and its phenotypes. In addition, con-
sidering that noncoding RNAs such as microRNAs
(miRNAs) are known to regulate the expression of
their genes and their altered expression has been im-
plicated in a variety of human diseases, including CF
[28-31], miRNAs may be involved with regulating key
dysregulated immunity-related genes in CF.

RNA Sequencing (RNA-Seq) has emerged as a
powerful high-throughput technology that allows for
efficient and accurate quantification of genes, tran-
scripts, and non-coding RNAs such as miRNAs in
the transcriptome [32]. When used in combination
with in silico functional genomics approaches, com-
plex mechanisms underlying the pathogenesis of sev-
eral diseases can be unraveled [33-35]. We
performed dual RNA-Seq using plasma-stimulated
PBMCs followed by functional genomics to identify
differentially expressed genes, transcript variants, and
miRNAs that characterize impaired immune re-
sponses influenced by CF and its phenotypes. We
identified several dysregulated genes, transcripts, and
miRNAs potentially relevant to dysregulated immune
processes that characterize CF and its phenotypes.
Confirmatory studies are needed to validate specific
findings.

Methods

Study population

A total of 9 CF and 3 healthy control (HC) subjects
were recruited at the Children’s Hospital of Wiscon-
sin (Milwaukee, WI, USA) and the Ann & Robert H.
Lurie Children's Hospital of Chicago (Chicago, IL,
USA). The study was approved by the Institutional
Review Boards (IRB# CHW 07/72, CTSI 847,
2015-400) and written informed consent was ob-
tained from the subjects, their parents, or legal
guardians. For each sample, peripheral blood was
drawn into citrate dextrose solution A or K" ethyl-
enediaminetetraacetic acid (EDTA) anticoagulant and
plasma isolated using Ficoll Histopaque (Sigma-Al-
drich Corporation, MO, USA). Plasma was then
stored at — 80 °C until needed for further processing.
All CF subjects were diagnosed based on results of
sweat chloride test and CFTR genotype, using pub-
lished guidelines [36, 37]. The sweat chloride level is
an important biochemical variable known to be sig-
nificantly elevated in CF patients with more severe
disease [38]. Other relevant clinical variables such as
pancreatic function status, mucoid Pa infection sta-
tus, and the forced expiratory volume in 1s (FEV,)
percent predicted were recorded for each CF patient
at the time of sample collection. Mucoid Pa
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infection was reported as positive microbiological
growth from sputum culture detected during the
time of enrollment while mucoid Pa negative was re-
ported as negative for mucoid Pa within 6 months
pre/post sample enrollment. Based on pancreatic sta-
tus: CF subjects carrying pathogenic variants (class [,
II, and III) and/or positive for fecal elastase test (<
200 ug/g) were diagnosed as pancreatic insufficient
(PI) and assigned to the Severe disease group, while
those with one mild variant (Class IV and V) and
pancreatic sufficiency (PS) were assigned to the Mild
group, as previously defined [39-42]. We simultan-
eously performed total RNA and miRNA sequencing
to identify plasma-induced signatures of PBMCs that
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differ in expression levels due to CF (by comparing 9
CF subjects vs 3 HC) and those that differ due to CF
phenotypes (by comparing between PI/Severe (n=6)
and PS/Mild (n =3) CF subjects) (Fig. 1).

PBMC culture and RNA isolation

Cryopreserved PBMCs from a well-characterized healthy
Caucasian HLA-A2 male donor (UPN727) were ac-
quired from Cellular Technology Limited (CTL, OH,
USA), washed, and thawed according to the vendor’s
recommendation. The PBMCs were then cultured (1 x
10° cells/well) for 9h at 37 ° C in 5% CO, with 20%
plasma isolated from CF subjects and HC, as previously
described [19]. Following culture, total RNA was

Healthy Donor PBMC Stimulation
with CF & HC plasma
CF subjects (9 samples)
Healthy controls (3 samples)

'

PBMC incubation & RNA isolation
9h incubation of 500K cells per sample
followed by total RNA isolation with
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Statistical analysis
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genetic variables were utilized for statistical analyses

Fig. 1 lllustration of the workflow. Healthy donor PBMCs, stimulated with plasma from 9 CF patients and 3 HC, were the source of RNA for transcriptome
sequencing. The CF subjects were diagnosed based on CFTR genotype and sweat chloride test using published guidelines [36, 37]. Following culture, the
extracted total RNA from each sample was processed for simultaneous total RNA-Seq and miRNA-Seq. RNA-Seq was performed using the Illumina Next-
Seq instrument at the RNA-Seq Center, Division of Pulmonary and Critical Care, Northwestern University, while miRNA-Seq was performed in-house using
an lllumina MiSeq instrument. The generated expression signatures were analyzed to identify CF-relevant molecules while patient biochemical, clinical, and
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extracted using TRIzol Reagent (Invitrogen Life Tech-
nologies, MA, USA) and RNA integrity quantified in
Bioanalyzer 2100 using the Agilent RNA 6000 Nano kit
(Agilent Technologies, CA, USA).

Library preparation and sequencing

Total RNA-Seq and miRNA-Seq libraries were prepared
simultaneously for each of the 12 samples (9 CF and 3
HC) using the same total RNA source. For total
RNA-Seq, ribosomal RNA (rRNA) was first depleted
from total RNA (26 ng) using RiboCop rRNA depletion
kit (Lexogen, Vienna, Austria) prior to strand-specific
single-ended library preparation using Sense Total RNA
Library Prep Kit (Lexogen, Vienna, Austria). Briefly, the
rRNA-depleted RNA were hybridized to heterodimers
containing Illumina-compatible linker sequences. Fol-
lowing reverse transcription and ligation, end-repaired
c¢DNA fragments were then generated. The double-
stranded ¢cDNA libraries generated during the second
strand synthesis were then purified, amplified in the
GeneAmp PCR System 9700 (Applied Biosystems, CA,
USA), and finally purified for sequencing. Libraries were
sent to the RNA-Seq Centre, Division of Pulmonary
Critical Care at Northwestern University for sequencing
(76 bp read length) using a Next-Seq sequencer (Illu-
mina, CA, USA).

For miRNA-Seq, libraries were generated using the
SMARTer smRNA-Seq kit (Takara Bio, CA, USA), ac-
cording to the vendor’s recommended protocols. Briefly,
total RNA (7 ng) was first polyadenylated to facilitate
oligo (dT)-primed cDNA synthesis. Amplification of
¢DNA and addition of full-length Illumina adapters was
performed using GeneAmp PCR System 9700 (Applied
Biosystems, CA, USA). The PCR products were purified
using the NucleoSpin Gel and PCR Clean-Up kit
(Macherey—Nagel, Diiren, Germany). Purified libraries
were quantified using Qubit 3.0 Fluorimeter (Thermo-
fisher Scientific, MA, USA), and size-selected using
Agencourt AMPure XP Beads (Beckman Coulter, CA,
USA). The multiplexed single-ended purified libraries
were sequenced using a MiSeq sequencer (Illumina, CA,
USA).

Data processing and analysis

The raw sequencing reads were assessed, processed, and
analyzed using Partek® Flow (Partek, MO, USA). For
total RNA-Seq, the first nine non-specific bases intro-
duced by library chemistry were trimmed from all reads.
Bases called at less than 99.9% accuracy (Q < 30) were
filtered out and the high-quality sequencing reads
aligned to the human reference genome (hgl9) using
STAR aligner (v2.4.1d). The Partek E/M algorithm, using
RefSeq Transcript 81 as the annotation model, was used
for quantifying gene and transcript features. All
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low-expression features with <10 reads were filtered out
from the quantification results. In order to minimize the
impact of possible sources of systematic variation, such
as sequencing depth, gene length, and composition, fea-
ture counts were normalized using Total Count algo-
rithm and differential expression estimated using the
Limma Voom method [43]. Molecule type for each of
the normalized expression features was annotated with
the Ingenuity Pathway Analysis (IPA) tool (Qiagen, CA,
USA) using default settings and the results were dis-
played in a pie chart. Differential expression analysis of
features was performed at the gene-level (testing the
differences in the overall transcriptional output of the
quantified genes between the conditions) and at the
transcript-level (testing the differences in expression of
each individual transcript between the conditions), as
previously described [44]. Differentially expressed signa-
tures meeting a significance threshold of false-discovery
rate (FDR) < 0.1 (ANOVA F-test, p < 0.005) with at least
2-fold change (FC) difference were considered for fur-
ther functional analysis.

For small RNA sequencing reads, we filtered all
low-quality reads (Q < 30) and trimmed the first 3 nucleo-
tides of all reads inserted due to the chemistry of the
SMARTer smRNA-Seq kit (Takara Bio, CA, USA). Adapter
sequences were identified in all reads and trimmed from
the 3-prime end. Reads shorter than 15 nucleotides were
discarded after trimming and Bowtie (v1.0.0) was used to
align the remaining high quality reads to the human refer-
ence genome (hgl9) using miRBase mature miRNAs (v21)
annotation [45]. The Partek Quantify to Annotation model,
with a minimum feature-read overlap of 100%, was then
used to estimate miRNA abundance. The trimmed mean of
M values (TMM) algorithm, demonstrated to be effective
in minimizing variance when normalizing low abundance
RNA species such as miRNAs without introducing noise
[46], was used to normalize the miRNA counts. Differential
miRNA expression was then estimated using the Limma
Voom method [43]. Low expressed miRNAs with less than
10 reads in at least 50% of samples were filtered out and
only those meeting a significance threshold (ANOVA
F-test, FDR < 0.05, log2 FC > 2) were considered as differen-
tially expressed and prioritized for functional analysis in this
study.

The normalized counts were used for displaying re-
sults in MA-plots, principal component analysis (PCA)
graphs, and volcano plots.

Functional analysis

Gene ontology (GO) enrichment, biological pathway,
and upstream analyses were performed using the differ-
entially expressed genes identified from the two compar-
isons (CF vs HC; Severe vs Mild CF). The enrichment
analyses were performed using PANTHER (v13.1) [47]
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to identify over-represented GO categories (biological
processes, molecular functions, and cellular compo-
nents). The categories were then ranked based on the
enrichment score, which was deduced using the negative
natural logarithm of the p-values. An enrichment score
of 3 corresponds to a significance threshold of p < 0.05.
The top 10 most enriched categories were identified in
both comparisons (CF vs HC; Severe vs Mild CF). Func-
tional analysis was further performed with the IPA tool
(Qiagen, CA, USA) to identify dysregulated canonical
immune pathways and predict potential upstream regu-
lators influencing the expression of the dysregulated
genes. An absolute value of z-score > +2 (Fisher’s Exact
test, p <0.05) was considered statistically significant for
prediction of effect. Furthermore, the Isoprofiler tool in
IPA (Qiagen, CA, USA) was utilized to functionally
characterize all transcripts captured by RNA sequencing.
We characterized relevant protein-coding isoforms dif-
ferentially expressed and explored their association with
disease processes and some of the predicted dysregu-
lated pathways. The results of the functional analyses
were displayed as bar charts or network graphs.

miRNA target prediction

The interaction between differentially expressed miR-
NAs and mRNAs were analyzed in IPA using the
miRNA Target Filter tool (Qiagen, CA, USA). Pre-
dicted mRNA targets for differentially expressed
miRNAs were identified based on four algorithms
(TargetScan, TarBase, miRecords, and Ingenuity
Knowledge Base). The miRNA-mRNA pairs in the
experimental datasets with inverse expression correl-
ation and relevance to immune processes/pathways
listed in the IPA knowledge base were then charac-
terized and displayed as networks.
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Statistical analysis

Statistical analyses were conducted using SPSS 25.0 soft-
ware (IBM, USA). Normality tests for continuous variables
were performed with a Shapiro-Wilk test. Data were pre-
sented as median and interquartile range (IQR). As ap-
propriate, a f-test was performed for comparison
between two groups (CF vs HC; Severe vs Mild). Cat-
egorical variables were tested for association with
Chi-square or Fisher’s exact test. Differences with *p
<0.05 were considered as statistically significant.

Results

Baseline characteristics of study samples

Simultaneous total RNA-Seq and small RNA-Seq was
performed in 9 CF samples and 3 HC samples to identify
differentially expressed plasma-induced signatures. Clin-
ical and demographic information for the samples are
presented in Table 1. Among the 9 CF subjects, 6 were
assigned to the Severe phenotype group while 3 were
assigned to the Mild group as described in methods.
The median (interquartile range [IQR]) age for those in
the Severe group was 10 (7, 25) years and 6 (5, 7) years
for those in the Mild group. Males accounted for 33% in
both Severe and Mild phenotype groups. The median
(IQR) sweat chloride level was 108 (100, 125) mmol/L in
the Severe CF group, which was significantly (p = 0.009)
higher than 67 (23, 77) mmol/L observed in the Mild CF
group. About 67% of CF patients in the Severe group
were positive for mucoid Pa while those in the Mild
group were all negative for the lung infection. The me-
dian FEV; percent predicted was 102 (85, 113) for the
Severe group and 113 (110, 118) for the Mild group.
Compared to the HC samples, the median (IQR) age of
the CF patients recruited in this study was 7 (6, 18) years
while the HC samples had a median (IQR) age of 8 (8,

Table 1 Demographic, clinical and genetic information for study cohort

Comparison Parameter Group1 Group2 p-value

1 Condition CF(n=9) Healthy controls (n=3) NA
Age in years, median (IQR) 7 (6, 18) 8 (8, 8) NS
Gender: Male, n (%) 3 (33.3%) 1 (33.3%) NS

2 CF Phenotype Severe' (n=6) Mild? (n=3) NA
Age in years, median (IQR) 0(7,25) 6 (5 7) NS
Gender: Male, n (%) 3 (33.3%) 1 (33.3%) NS
Gender: Male, n (%) 2 (333%) 1(333%) NS
Sweat chloride, median (IQR) 105 (100, 123) 67 (30, 77) 0.007*
Mucoid P. aeruginosa, n (%) 4 (66.7%) 0 NS
FEV,% predicted, median (IQR) 103 (85, 113) 113 (110, 118) NS
F508del homozygotes, n (%) 6 (66.7%) 0 001"

*T-test. TFisher's exact test. 'The severe group are homozygous for F508del (c.1521_1523delCTT), a class Il CFTR variant associated with pancreatic insufficiency (PI)
and more severe disease. The mild group were pancreatic sufficient and have a combination of F508del (c.1521_1523delCTT) and either $1251 N (c.3752G > A)
and R117H;7 T (c.350G > A;1210 — 12 T [7]), and EX-19dup. The severity status was assigned as previously described [39-42]. NA not applicable. NS not significant
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8) years. Again, males accounted for 33.3% in both CF
subjects and HC samples.

Total RNA-Seq analysis

Total RNA-Seq reads were generated from PBMCs stim-
ulated with plasma from CF subjects and healthy con-
trols. The reads were aligned to the human reference
genome using a splice-junction aware aligner (Star
v2.4.1d) and an average of 36 million reads was gener-
ated for each sample with an average Phred quality score
of 31.2. A high percentage (87%) of these reads aligned
to the human reference genome (hg19) (Additional file 1:
Table S1). Quantification of the high-quality reads using
human reference transcriptome annotation (RefSeq
Transcripts 81) resulted in estimates of expression levels
for 27,523 genes, corresponding to 64,886 transcripts,
for all CF and HC samples. After filtering low expressed
features (<10 reads), 15,257 genes, corresponding to
32,399 transcripts, were retained for normalization and
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differential expression analysis at gene and transcript
level.

CF plasma-induced characteristic gene expression
signatures in non-CF PBMCs

Genes encoding a diverse range of molecules were de-
tected in the dataset following transcriptome analysis of
the non-CF PBMCs induced by plasma from CF and HC
subjects (Fig. 2 a). We identified 151 plasma-induced
gene expression signatures differentially expressed be-
tween CF and HC subjects (FDR<0.1, p <0.005, > +2
FC). Among these, 140 genes (93%) were downregulated
while 11 genes (7%) were upregulated in CF compared
to HC (Fig. 3 a, Additional file 1: Table S2). Amongst
the top abundantly expressed genes that were dysregu-
lated, CSF3R, CXCL1, CXCL3, ILIB, and FTHI are asso-
ciated with several immune pathways. To better
characterize the transcriptional repertoire of CF subjects
based on phenotypes, we then compared differential
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gene expression levels between those with severe and
mild phenotypes. Our results showed 285 genes were
significantly (FDR < 0.1, p < 0.005, > + 2 FC) differentially
expressed between the two groups. Among these, CF
subjects in the Severe group had 269 downregulated
genes (94%) compared to those in the Mild group (Fig. 3
b: Additional file 1: Table S3). PCA using the top varying
plasma-induced gene expression signatures segregated
CF from HC subjects (Fig. 3 ¢) and Severe from Mild CF
phenotypes (Fig. 3 d).

Individual transcript variants expression levels differ in CF
We characterized the biotype of the 32,399 RefSeq tran-
scripts annotated in the expression dataset and further
performed differential analyses to identify individual
transcript variants that differ based on CF and its severe

phenotype. The majority of these transcripts were
protein-coding (78%), resulting from multiple-transcript
genes of high abundance in the dataset (Fig. 2 b). We
found 154 differentially expressed transcripts between
CF and HC subjects (Fig. 4 a, Additional file 1: Table
S4). These corresponded to 142 genes with varying func-
tions, including some relevant in cytokine signaling
pathway of the immune system (Colony-stimulating fac-
tor 3 receptor [CSF3R], interleukin 24 [IL24], Interleukin
3 Receptor Subunit Alpha [IL3RA] (Fig. 4 b). Also, we
identified 241 transcript variants differentially expressed
based on CF phenotypes. The majority (89%) of the tran-
script variants were downregulated in the Severe versus
Mild disease group. These transcripts corresponded to
212 genes with various functions (Fig. 5 a, Additional file
1: Table S5). Interestingly, some of the genes with
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dysregulated transcript variants, including FGFRI,
LILRBI, and HLA-DBPI, are also associated with various
immune processes (Fig. 5 b).

Functional analysis of differentially expressed genes

GO enrichment analysis performed using the signifi-
cantly differentially expressed genes revealed enrichment
of several GO terms in each of the three categories. Fig-
ure 6 a presents the top 10 enriched terms in each cat-
egory influenced by CF-associated genes. Among the top
10 molecular function (MF) terms influenced by the dys-
regulated genes for this group are CXCR chemokine re-
ceptor binding, chemokine activity, G-protein coupled
receptor binding, cytokine activity, and chemokine re-
ceptor. Biological process (BP) analysis showed the top
10 enriched terms were mostly associated with regula-
tion and movement of immune cells (regulation of gran-
ulocyte chemotaxis, regulation of leukocyte chemotaxis,
neutrophil migration, granulocyte migration), as well as
regulation of developmental processes. The cellular
component (CC) analysis showed the proteins encoded
by the dysregulated genes were enriched in several cellu-
lar compartments including the membrane-bounded or-
ganelle, cytoplasm, and intracellular part (Fig. 6 a).
Further enrichment analyses were performed using the

gene set associated with CF phenotypes (Fig. 6 b). The
MF analysis in this group indicated that the proteins
encoded by the dysregulated genes were mainly associ-
ated with the MEF, protein binding, transferase, and
transmembrane activity terms. The top 10 enriched BP
terms were mainly associated with cellular transporta-
tion and cell activation involved in immune response
while CC analysis showed the proteins encoded by the
dysregulated genes were also enriched in several cellular
compartments including cytoplasmic, intracellular, and
organelle part (Fig. 6 b).

Canonical pathway analyses identified several pathways
in the IPA knowledge base that were significantly altered
by the input dysregulated gene expression datasets. The
immune pathways influenced by CF-associated input
genes included agranulocyte/granulocyte adhesion and
diapedesis, differential regulation of cytokine production
in macrophages and T-helper cells by IL17A/F and IL17
signaling, and the role of IL-17F in allergic inflammatory
airway disease (Fig. 7 a), while the immune pathways in-
fluenced by CF phenotypes were natural killer cell sig-
naling, FC Epsilon R1 signaling, PI3K signaling in B
lymphocytes, and the Th2 pathway (Fig. 7 b).

The upstream regulator analyses identified several up-
stream regulators significantly (p < 0.05) associated with
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the input gene expression dataset. Among those pre-
dicted to be inhibited in the input CF-associated gene
expression dataset were Interleukin 1 Alpha (IL1A), Nu-
clear Factor kappa B (NF-kB) complex, and C-C Motif
Chemokine Ligand 5 (CCL5), while two inhibited up-
stream regulators (Triggering Receptor Expressed on
Myeloid cells 1 [TREM1] and Tumor protein 53 [TP53])
were associated with CF phenotype. These regulators
and their associated genes in the dataset are displayed as
networks (Fig. 7 ¢ and d).

Differentially expressed miRNAs and their interaction with
molecules of immune pathways

Differential miRNA expression analysis showed 41 miR-
NAs (Additional file 1: Table S6) were significantly differ-
entially expressed in CF versus HC and seven miRNAs
(Additional file 1: Table S7) in Severe versus Mild CF phe-
notypes (ANOVA F-test, FDR < 0.05, log2 FC > 2). The re-
sults are presented in MA-plots with top differentially
expressed features highlighted in both the CF versus HC
(Fig. 8 a) and Severe versus Mild CF comparisons (Fig. 8
b). Among the top differentially expressed miRNAs due to
CF were six miRNAs that showed inverse expression pat-
terns with their mRNA targets relevant to dysregulated
canonical immune pathways reported in this study (Fig. 7

a). For example, six miRNAs (miR-1972, miR-1273 h-5p,
miR-4512, miR-877-3p, miR-1273d, and miR-5585-3p)
showed inverse expression correlation with four
immunity-related target genes (CSF3R, CXCLI1, CXCL3,
and IL1B), which are prominent in dysregulated immune
pathways associated with CF (Fig. 8 c). Among the seven
miRNAs differentially expressed in Severe versus Mild CF
phenotypes, two (miR-92-3p and miR-1248) were shown
to have inverse expression correlation with two dysregu-
lated mRNA targets (ITPRI and ATF3) involved in the
PI3K signaling pathway (Fig. 8 d).

Discussion
Impaired immune responses are a dominant feature in
CF and may be central to the disease severity. In this
study, we simultaneously performed total RNA sequen-
cing and miRNA sequencing of PBMCs induced by
plasma from CF subjects and HC to identify dysregu-
lated signatures that may be involved with impaired im-
mune responses in CF. We identified several
CF-associated genes and transcripts as well as key miR-
NAs that may play a crucial role in modulating immune
processes in CF.

Opverall, we found the number of downregulated differ-
entially expressed genes to be higher in CF and its severe
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phenotype (93 and 94%, respectively) compared to HC
and CF mild phenotype (Fig. 3). Similarly, a higher num-
ber of downregulated genes in severe CF lung disease
has been previously reported [16, 19]. This observation
indicates that CF plasma induced an overall downregula-
tory effect on the transcriptional machinery of the
wild-type PBMC compared to HC plasma. Among the
top abundant genes differentially expressed due to CF
were CCR1, CSF3R, CXCL1, CXCL3, and IL1B (Fig. 7 a),
while those associated with CF phenotype included
ATF3, FGFR1, HLA-DBPI, ITPRI, and LILRBI (Fig. 7 b).
Together, the overall enrichment analysis in this study
indicated many dysregulated genes associated with CF
and its phenotype are involved in several immune signal-
ing pathways and enriched in several cellular compart-
ments (Fig. 6). Hence, our results support previous
findings that expression signatures of PBMCs differ at
the gene level in CF and several immunity-related genes
are dysregulated [19]. However, we further characterized
biological mechanisms that may underlie gene

expression differences by analyzing differential expres-
sion at the transcript level.

As most human genes have multiple transcript vari-
ants generated by alternative splicing events that can be
disease-specific and may underlie gene expression differ-
ences [24], we explored if individual transcripts charac-
terized CF and its phenotypes. Indeed, we identified
several transcript variants of multiple-transcript genes
associated with CF and its phenotypes. Among those as-
sociated with CF were transcript variants from genes en-
coding cytokines and cytokine receptors including
CSF3R, IL24, and IL3RA. Alternative splicing tailors the
activity of cytokines and their receptors to specific
pathological conditions, for example, by creating iso-
forms with antagonistic effects [25, 48]. Thus, alternative
splicing is a major regulatory mechanism through which
cytokine signaling can be altered. Since differential ex-
pression of cytokines is common in CF [11, 12, 49], our
results support the notion that alternative splicing may
contribute to cytokine imbalances in CF. Additionally,
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we identified many individual transcripts differentially
expressed due to CF phenotype were encoded by genes
involved in several corresponding dysregulated immune
pathways, including transcript variants of FGFRI,
LILRBI1, and HLA-DBPI1 (Fig. 5). Many signaling path-
ways are altered in cancer due to expression changes in
transcript variants of genes relevant in these pathways
[50]. Thus, our findings shed new insights into a mo-
lecular mechanism that may be potentially involved in
impaired immune processes in CF. Further study using
more coverage depth is encouraged to delineate a com-
prehensive impact of alternative splicing to the tran-
scriptome diversity of CF immune cells.

Further in silico predictions using IPA implicated some
inhibited upstream regulators that may be responsible for
the wunderlying differences in the expression of
immunity-related genes. Three key transcriptional regula-
tors (CCL5, IL1A, and NF-«B) featured among the top
regulators predicted to be inhibited due to CF (Fig. 7 c).
The protein encoded by ILIA is a cytokine belonging to
the IL-1 family that plays various important roles in

immune processes and hematopoiesis. IL1A regulator was
predicted to be inhibited based on the downregulation of
its targets including IL-1B, a reported CF modifier gene
[51]. Also, the inhibited CCL5 plays an essential role dur-
ing inflammation by inducing the migration of blood leu-
kocytes to sites of infection in order to initiate immune
responses against invading pathogens [52]. Based on its
critical role in the immune system, several studies have in-
vestigated the transcription factors that may be involved
in its regulation [53, 54]. One such factor, NF-«xB, was re-
ported to mediate the transcription and production of
CCL5 [54], and was also predicted in this study to be
inhibited due to the downregulation of its receptor
(CCRI) and other relevant target genes (Fig. 7 c¢). Also,
NF-kB inhibition has been demonstrated to result in re-
duced expression of CCL5 and cell survival factors re-
leased by PBMCs [55]. Thus, our findings suggest that
dysregulated NF-«B regulators leading to reduced CCL5
expression may result in reduced ability to recruit PBMCs
in CF. Further, NF-kB induces the transcription of several
genes in the immune system that are important for
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regulating inflammation, chemotaxis, and antimicrobial
activity [56]. Although NF-kB activation leading to in-
creased expression of proinflammatory cytokines in CF
epithelial cells has been reported [57-59], our analysis
predicted inhibition of NF-kB regulator due to the down-
regulation of its target genes in CF plasma-induced
PBMCs (Fig. 7 c). Given that previous studies using
PBMCs have shown NF-«B has an inhibitory effect on
immunity-related genes when suppressed [60, 61], it is
conceivable that NF-«B is downregulated as predicted.

A major upstream regulator predicted to be impaired due
to CF phenotype (Fig. 7 d) is TREM1, which is known to
play a crucial role in immune responses triggered by bacter-
ial products via activation of circulating neutrophils and
monocytes. A previous study that examined TREM1 in cir-
culating monocytes of CF patients reported a downregula-
tion of TREM1 compared to healthy subjects [62]. CF
patients with severe disease have an increased risk of

chronic bacterial infection compared to those with the
milder disease [41]. Our findings indicate lower levels of
TREML in the Severe CF group, leading to the downregula-
tion of immunity-related genes, may account for increased
susceptibility to bacterial infection in severe CF. Also associ-
ated with CF phenotype was TP53, which encodes the p53
protein, the main functions of which are to respond to cellu-
lar stress, regulate cell division, and initiate DNA repair. Al-
though there is limited literature on the role of TP53 in CF
immune cells, it is a molecular target in several cancer stud-
ies due to its role as a tumor suppressor [63]. The mechanis-
tic activation of p53 and NF-«kB are similar and both can
co-regulate the expression of many inflammatory genes in-
cluding cytokines and chemokines [64]. Although p53 and
NE-«B are expected to play opposing roles in cellular re-
sponse to stress, they have also been shown to work in the
same direction [65, 66]. Also, in a recent study utilizing two
models (circulating tumor cells and PBMCs) for gene
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expression profiling in breast cancer, TP53 was upregulated
in the tumor cells but downregulated in PBMCs [67]. These
findings suggest the regulatory role of p53 may be cell-type-
or disease-specific. However, our results indicate dysregula-
tion of TP53 in the Severe CF group may be attributable to
impaired immune processes.

Further immunological consequences of the dysregu-
lated genes were elucidated via canonical pathway ana-
lysis. The pathways influenced by CF included
agranulocyte/granulocyte adhesion and diapedesis, dif-
ferential regulation of cytokine production in macro-
phages and T helper cells by IL-17A and IL-17F, and
role of IL-17F in allergic inflammatory airway diseases,
while the immune pathways influenced by CF phenotype
were natural killer cell signaling, FC Epsilon R1 signal-
ing, PI3K signaling in B lymphocytes, and Th2 pathway.
Several differentially expressed genes featured promin-
ently in the dysregulated pathways (Fig. 7 a & b).

miRNAs have gained significant attention for their role in
several biological and pathological processes by suppressing
the expression of their target genes [68], including CFTR in
CF [69]. We investigated differentially expressed miRNAs
induced by CF and its phenotypes, then analyzed their asso-
ciation with the corresponding genes involved in the dysreg-
ulated immune pathways. While several studies have
reported miRNAs dysregulation in CF epithelial cells [28,
29], there is limited literature about dysregulated miRNAs
in CF PBMCs. We identified 41 differentially expressed miR-
NAs associated with CF and 7 associated with CF pheno-
types. These miRNAs were targets for various genes in the
corresponding gene expression dataset, including several
immunity-related genes. Among these, we identified six
miRNAs (miR-95-5p, miR-4512, miR-877-3p, miR-1273d
and miR-5585-3p) with inverse expression patterns to four
prominent genes (CSF3R, CXCL1, CXCL3, and IL1B) within
key impaired immune pathways identified due to CF (Fig. 8
¢). Interestingly, both the chemokines (CXCLI and CXCL3)
and cytokine (IL1B) are known to play major roles during
inflammation and have been associated with CF immune re-
sponses in several studies [70, 71]. The identification of dys-
regulated miRNAs interacting with these genes suggests
that miRNAs may contribute to the underlying gene expres-
sion differences in CF and further implicates these mole-
cules as potential players involved with impaired immune
pathways.

Further, two upregulated miRNAs (miR-92a-3p and
miR-1248) targeted two downregulated genes (ITPRI and
ATF3, respectively) that feature prominently in the dysregu-
lated PI3K signaling pathway associated with CF phenotypes
(Fig. 8 d). In the immune system, an impaired PI3K signal-
ing pathway is associated with immunodeficiency, while un-
restrained PI3K signaling is associated with autoimmunity.
While literature on miR-92a-3p expression levels in CF
PBMC:s is still lacking, there have been several reports of
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elevated levels of mir-92a-3p in numerous cancers [72-74].
The miR-92a family of miRNAs are known for playing an
essential role in regulating the development of vital organs
in the cardiovascular and pulmonary system [75]. Intri-
guingly, PI3K signaling has been demonstrated as the down-
stream pathway for miR-92a-3p in cancer cells [76]. Thus,
supporting the results of the in silico analyses in this study,
miR-92a-3p may have a regulatory role in the observed im-
paired PI3K signaling pathway associated with CF pheno-
type. In addition, increased expression levels of miR-1248,
which was associated with more severe disease in our study,
has been reported in many diseases including asthma [77],
adenovirus infection [78], and cancer [79]. We predicted fur-
ther using IPA that miR-1248 was inversely correlated with
a major dysregulated gene (ATF3) associated with CF
phenotype and thus the impairment of the PI3K signaling
pathway. Thus, future work may investigate if modulating
the expression of these miRNAs alters the expression of
their targets or yields therapeutic benefits. Taken together,
our results suggest that miRNAs are potential transcrip-
tional and network regulators in CF involved with impaired
immune responses.

Confirmatory studies focusing on selected targets
identified in this study are encouraged for validation and
to potentially unravel novel molecular drivers that hold
promise as targets for CF therapeutics.

Conclusions

We utilized RNA-Seq in this study to identify genes,
transcripts, and miRNAs in stimulated PBMCs that
characterize CF and its phenotypes. We conclude that
CF plasma induced an overall downregulatory effect on
the transcriptional machinery of wild-type PBMC com-
pared to HC plasma. Although many immune response
genes were downregulated, the CF immune response is
usually exacerbated. Thus, the observation in PBMCs in-
duced with CF plasma is possibly influenced by complex
regulatory mechanisms within the immune system,
which warrants further characterization. Our findings
support previous array-based studies by demonstrating
that gene expression signatures in PBMCs differ due to
CF and can distinguish between severe and mild pheno-
types. In addition, we demonstrated for the first time
using plasma-induced PBMCs that unique transcript
variants from multiple-transcript genes differ in expres-
sion, distinguish CF and its phenotypes, may underlie
the observed gene expression differences, and are in-
volved with impaired immune pathways in CF. Lastly,
we identified miRNAs as potential transcriptional and
network regulators associated with impaired immune
responses in CF. Future work is needed to validate
the molecular targets identified in this study and ex-
plore their therapeutic potential for CF using larger
sample sizes.
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