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Abstract

Background: Presently, a 50-gene expression model (PAM50) serves as a breast cancer (BC) subtype classifier that is
insufficient to distinguish, within each single PAM50-classified subtype, patient subpopulations having different
prognosis. There is a pressing need for inexpensive and minimally invasive biomarker tests to easily and accurately
predict individuals’ clinical outcomes and response to treatments. Although quantitative proteomic approaches
have been developed to identify/profile proteins secreted (secretome) from various cancer cell lines in vitro,
missing are the clinicopathological relevance and the associated prognostic value of these secretomic
identifications.

Methods: To discover biomarkers to predict individualized prognosis we introduce a new multi-omics (secreto-
transcriptomics) method that identifies, in their oncogenically secreted states, candidate markers of BC subtypes
whose genes bear patient-specific mRNA expression alterations of prognostic significance. First, we used label-free
quantitative (LFQ) proteomics to identify the proteins showing BC-subtypic secretion from a series of BC cell lines
representing major BC-subtypes. To determine and externally validate the prognostic value of these secreted
proteins, we developed a secreto-transcriptomic approach that discovered a PAM50-subtypic Secretion-Correlated
mRNA Expression Pattern (SeCEP) wherein the PAM50-subtypic secretion of select proteins statistically correlated
with cis-mRNA expression of their encoding genes in patients of the corresponding PAM50-subtypes. Kaplan-Meier
analysis of SeCEP genes was used to identify new liquid biopsy biomarkers for predicting individualized prognosis.

Results: The mRNA expression-to-secretion correlation (SeCEP) pinpointed multiple genes that are fully translated
into the oncogenically active secretome in a PAM50-subtypic manner. Further, multiple SeCEP genes in distinct
combinations or panels of multiple SeCEP genes were identified as ‘systems prognostic markers’ that showed
mRNA co-overexpression patterns in the distinct subpopulations of PAM50-subtypic patients with poor prognosis or
high-risk of relapse. Thus, our secreto-transcriptomic approach statistically linked BC subtypic secretome genes with
patient-specific information about their mRNA expression alterations and significantly improved the sensitivity and
specificity in patient stratification in the context of clinical outcomes or prognosis.
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Conclusions: By combining LFQ secretome screening with proteo-transcriptomic retrospective analysis of patient
data our integrated multi-omics approach bypasses costly, tedious, genome-wide fishing and predictive modeling
that are commonly required to distinguish a few prognostically altered genes from thousands of other non-BC
related genes in a genome.

Keywords: Label-free quantitative proteomics, Protein secretion, Multi-omics correlations, Secretion-correlated
expression pattern, TCGA, Patient survival analysis

Background
Breast cancer (BC) is the most prevalent type of cancer
among women in the United States, with over 200,000
new diagnoses of invasive BC per year. [1] However, sig-
nificant heterogeneity among BC tumors contributes to
highly variable clinical pathology and patient outcomes,
ultimately confounding efforts toward precision diagnosis
and prognosis. [2] A 50-gene expression pattern has been
used to classify five molecular subtypes or PAM50-sub-
types, including basal-like/triple-negative (BLBC/TNBC),
luminal-A and -B, Her2+, and normal-like BC. [3] Within
these molecular subtypes, the luminal subtype accounts
for approximately half of all tumors, [4] and BLBC/TNBC
is the most aggressive form of the disease with the overall
worst survival rate. [5] However, these gene-expression
signatures are inadequate to resolve interpatient hetero-
geneity, and patient subpopulations with different clinical
outcomes cannot be stratified within each BC or PAM50
subtype. [6] These limitations arise because disease onset
is directly governed by phenotype-specific proteomic
changes [7, 8] which cannot be measured using genomic/
transcriptomic tools or data alone. Because prognoses of
BC patients cannot be easily discerned, there is an urgent
need for individualized/personalized biomarkers that pre-
dict patient-specific survival rates and therapeutic re-
sponse so that standard chemotherapy may be replaced by
more effective and precise treatment. Because tumor cells
secrete and shed characteristic proteins at a higher rate
than healthy cells, and many of these proteins enter circu-
lation to play extracellular regulatory roles, [9, 10] proteins
secreted or shed by cancer cells (the “cancer secretome”),
could be phenotypic biomarkers. More importantly, in clin-
ical practice these tumor-characteristically secreted proteins
may be detectable in blood or other bodily fluids in a
non-invasive manner. [10]
Secreted proteins, which constitute approximately 10%

of the human proteome, play an important role in nor-
mal physiological processes including cell signaling, im-
mune defense, and blood coagulation. [11] Further,
when deregulated, secreted proteins are critical partici-
pants in pathological processes such as cancer angiogen-
esis, invasion, and metastasis. [11] Also, secreted factors
have been increasingly recognized for their role in the

mechanisms of drug response. [12] The studies of BC
secretomes using nanoliter liquid chromatograph tan-
dem mass spectrometry (nanoLC-MS/MS) to sample
conditioned medium from cell lines, tumor/tissue inter-
stitial fluid, or tumor proximal body fluids have been re-
ported. [9, 13–16] However, few proteins identified in
these BC secretomes have established correlation with
patient-specific clinical outcomes.
Technically, at the current level of sensitivity, mass

spectrometry can detect only very limited regions of
each individual protein, further limiting information
about patient-specific alterations in these secreted pro-
teins. [17, 18] Therefore, due to either the low pheno-
typic accuracy of genomics/transcriptomics or the low
phenotypic coverage of proteomics, approaches that em-
ploy only single-omics methods will necessarily fail to
identify biomarkers of patient-specific alterations which
distinguish patient subpopulations having different
clinical outcomes or prognoses. To overcome these
single-omics limitations for identifying new biomarkers
to predict individualized prognosis in non-invasive,
blood-based tests, we developed a new multi-omics
method, termed secreto-transcriptomics, to identify the
BC-subtypic secreted proteins that are encoded by genes
bearing patient-specific mRNA expression patterns of
prognostic significance.
Strategically in advance, our secreto-transcriptomic ap-

proach bypasses both the inability of conventional MS to
connect genotype to phenotype and the inability of MS to
fully identify patient-specific proteomic alterations, inte-
grating oncogenic (tumorigenic) multi-omics data for effi-
cient de novo discovery of personalized/individualized
prognostic markers. In the clinic, these markers may be
used to stratify patients, within single PAM50 subtypes,
into different prognostic groups, and predict treatment
benefit and/or outcome with patient-specific or individu-
alized sensitivity and specificity before any therapeutic
decision for newly diagnosed breast cancer.

Methods
Chemicals and reagents
Cell culture media and fetal bovine serum were obtained
from Gibco. All other components of cell culture media
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and protease inhibitor cocktails were purchased from
Sigma (St, Louis, MO). Trypsin was purchased from
Promega. All chemicals were HPLC-grade unless specif-
ically indicated. All cell lines including MCF10A, MCF7,
MDA-231, T47D, and HCC1806 were purchased from
ATCC (Manassas,VA).

Secreted protein collection from cell lines
MCF10A cells were cultured in DMEM/F12 supple-
mented with 5% horse serum, 20 ng/mL epidermal growth
factor, 50 ng/mL cholera toxin, 500 ng/mL hydrocortisone,
and 2 μg/mL insulin. MCF7 and MDA-231 cells were cul-
tured in DMEM containing 10% fetal bovine serum. T47D
and HCC1806 cells were maintained in RPMI supple-
mented with 10% fetal bovine serum. When cells reached
approximately 70% confluence, the growth media was
removed, cells were washed twice with PBS, and
serum-free media without phenol red was added to the
plate. After 24 h the conditioned media were collected
and centrifuged at 500 x g for 5min to remove cellular
debris, then the supernatant was syringe-filtered with
0.2 μm 13mm diameter polytetrafluoroethylene filters
(VWR International) and transferred to fresh tubes. Sam-
ples were stored at − 80 °C until further processed. After
thawing, proteins were concentrated by trichloroacetic
acid/sodium deoxycholate precipitation. Briefly, 1/10 of
the sample volume of 0.15% sodium deoxycholate was
added to each sample, then tubes were incubated on ice
for 15min. Next, 1/10 of the original sample volume of
cold 72% trichloroacetic acid was added and the tubes
were incubated on ice for 15min. Samples were centri-
fuged for 10min at max speed, 4 °C. The pellets were
washed in cold acetone and air dried until no residual
odor was detected. Next, the pellets were resuspended in
50 μl buffer (8M Urea, 50mM Tris-HCl pH 8.0, 150mM
NaCl), reduced with dithiothreitol (5mM final) for 30min
at room temperature, and alkylated with iodoacetamide
(15mM final) for 45min in the dark at room temperature.
Alkylation was quenched with dithiothreitol (10 mM
final). Samples were diluted 4-fold with 25mM Tris-HCl
pH 8.0, 1 mM CaCl2 and digested with 500 ng trypsin
overnight at room temperature. Peptides were desalted on
a StageTip containing a 4 × 1mm C18 extraction disk (3
M) and dried. [19]

LC-MS/MS analysis
LC-MS/MS analysis was performed as previously de-
scribed. [20] Briefly, desalted peptides were dissolved in
20 μl 0.1% formic acid (Thermo-Fisher). An injection of
2 μl was analyzed by an Easy nanoLC 1000 with a 15 cm
C18 reverse phase column (15 cm × 75 μm ID, C18,
2 μm, Acclaim Pepmap RSLC, Thermo-Fisher) coupled
to a Q-Exactive Orbitrap mass spectrometer (Thermo
Fisher Scientific, San Jose, CA). Peptides were eluted at

a constant flow rate of 300 nl/min with a gradient of 2–
30% buffer B (acetonitrile and 0.1% formic acid) for 30
min, 30–80% buffer B for 5 min, and 80% B for 10 min.
Experiments were performed using a data-dependent
top 20 method in positive-ion mode. Full MS was per-
formed at a resolution of 70,000 and m/z = 200. Up to
the top 20 most intense ions with charge ≥2 from full
MS were selected with an isolation window of 2.0 m/z
and higher energy collisional dissociation was used to
fragment peptides at a normalized collision energy of 27
eV. The maximum ion injection time for full MS was
250 ms with ion target value of 1e6, and maximum ion
injection time for MS/MS was 120 ms with ion target
value of 2e5. Selected sequenced ions were dynamically
excluded for 20 s.

Mass spec data and LFQ analysis
Mass spectral processing and peptide identification were
performed on the Andromeda search engine in
MaxQuant software (Version 1.5.3.17) against a human
UniProt database. Cysteine carbamidomethylation was
set as a defined modification, and methionine oxidation
and protein amino-terminal acetylation were set as dy-
namic modifications. Peptide inference was made with a
false discovery rate (FDR) of 1% and peptides were
assigned to proteins with FDR of 5%. At least 7 amino
acids were required with no more than two missed
cleavages. The precursor ion mass tolerance was 8 ppm
and the fragment ion mass tolerance was 0.5 Da. Experi-
ments were conducted in multiple replicates (three bio-
logical replicates each with two technical replicates)
using a match between runs option enabled and time
window at 0.7 min. Data processing and statistical ana-
lysis were performed on Perseus (Version 1.5.1.6). [21]

Analysis of functional category and networks of subtype-
specific secreted proteins
The biological processes and molecular functions of
secretome proteins were categorized by Ingenuity Path-
way Analysis (IPA) [22] and STRING [23] similar to
previously described. [24]

TCGA and METABRIC data sets
TCGA and METABRIC data were retrieved from cBio-
Portal [25, 26] using the ‘cgdsr’ R package (version
1.2.6). [27] Complete samples (case list id = brca_tcga_-
pub2015_3way_complete / brca_tcga_pub2015_freeze)
with mutation, copy-number, and mRNA expression
data provided (N = 816) from the TCGA cancer study
brca_tcga_pub2015 (Breast Invasive Carcinoma) were
used. [28] The mRNA expression data sets for secretome
genes were obtained from TCGA Genetic Profile:
brca_tcga_pub2015_rna_seq_v2_mrna_median_Zscores,
containing mRNA expression Z-scores compared with

Ankney et al. BMC Medical Genomics           (2019) 12:78 Page 3 of 20



diploid tumors (diploid for each gene). Clinical data in-
cluding information on estrogen receptor (ER) status,
progesterone receptor (PR) status, HER2 enrichment
(HER2) status, and patient survival were obtained from
TCGA case list id: brca_tcga_pub2015_3way_complete /
brca_tcga_pub2015_freeze. The PAM50 subtype assigned
to each patient and other additional clinical datawere ob-
tained from “Additional file 9: Table S1” in the TCGA
publication. [28] METABRIC [29, 30] data was acquired
using case list id = brca_metabric_cnaseq (samples with
mRNA, GISTIC, mutational data), gene profile = brca_-
metabric_mrna_U133_Zscores (for mRNA expression). Of
the 2051 samples in the METABRIC case list, 1866 for
which there was survival data were used in the analysis.

Heatmap construction
The ‘ComplexHeatmap’ R package (version 1.12.0) was
used to construct the heatmap of SeCEP gene mRNA
expression levels from the TCGA BRCA datasets. [31]
The euclidean distance method and Ward clustering
method (option ward. D2 in R’s hclust function) were
used for hierarchical clustering.

Statistical analyses
The ‘survival’ R package (2.41.3) was used for Kaplan-
Meier curve plotting and statistical analysis of overall
survival (OS) based on mRNA expression of SeCEP
genes among TCGA BRCA samples, and distant relapse
free survival (DRFS) for the GSE25066 samples.). [32]
The survival functions surv, survfit, and survdiff were
used for Kaplan-Meier estimator and log-rank tests.
The survival function coxph was used for Cox propor-
tional hazard survival analysis. The wilcox.test func-
tion in R was to perform Mann-Whitney-Wilcoxon
Test. All genes in the TCGA (n = 18,097) or METAB-
RIC (n = 16,555) data sets were included in order to
obtain an adjusted p-value for multiple comparisons..
The adjusted p-values were calculated by submitting
all the p-values from the individual Mann-Whitney-
Wilcoxon Tests determined for each gene to the p.ad-
just function in R using the ‘fdr’ method.

Results
The secreto-transcriptomic workflow for discovering
candidate biomarkers for non-invasive, individualized
prognosis
As shown in Fig. 1, LFQ proteomics was first used to de-
termine the compositional differences in the secretomes
isolated from different BC subtypes versus non-malig-
nant cells. The proteins showing BC or PAM50
subtype-specific or subtypic secretion were identified by
LFQ-based Perseus analysis. [33] Taking advantage of the
databases of two large patient cohorts, TCGA [28] and
METABRIC (Molecular Taxonomy of BC International

Consortium) [29], which contain clinic-pathologically cor-
related gene-expression or transcriptomic data, we retro-
spectively established the proteo-transcriptomic links
between BC subtypically secreted proteins and the
patient-specific mRNA-expression alterations of the genes

Fig. 1 Schematic of secreto-transcriptomic approach for identifying
putative liquid biopsy prognostic markers. Label-free quantitative
(LFQ) proteomics is used to identify differentially secreted proteins
from different BC subtypes. Proteotranscriptomic analysis of TCGA/
METABRIC patient data identifies luminal or basal genes showing
Secretion-Correlated mRNA Expression Pattern (SeCEP). Kaplan-Meyer
(KM) analysis then identifies unique combinations of SeCEP genes
showing mRNA co-overexpression patterns of
prognostic significance
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that encode these proteins. As a result, this
proteo-transcriptomic approach identified the secretome-
encoding genes that showed a secretion-correlated mRNA
expression pattern (SeCEP), wherein the patient-specific
mRNA expression of these genes was positively correlated
with increased secretion of the proteins encoded by these
genes in similar BC subtypes. This expression-to-secretion
correlation not only indicated those genes that are fully
translated into extracellularly functional, oncogenically
active proteins, but also identified new phenotypic
markers that describe the similar PAM50-classified BC
subtype. Further, Kaplan-Meier (KM) survival analyses
were used to distinguish, from > 18,000 genes, patient-
specific mRNA expression patterns of select SeCEP genes
of prognostic value, indirectly identifying those proteins
showing BC subtypic secretion as candidate markers for
non-invasive prognostic prediction.

LFQ secretome screening identified particular protein
clusters showing BC-subtypic secretion
We used a similar LFQ proteomic approach [34] to
comparatively profile the extracellular proteins secreted
from different cell lines, respectively representing the
BLBC/TNBC subtypes (MDA-231 and HCC1806), lu-
minal subtypes (MCF-7 and T47D), and non-malignant
mammary control (MCF10A). (Additional file 1: Figure
S1a) A total of 2345 proteins were identified in these five
cell lines, and the numbers of the secreted proteins iden-
tified in each cell line were given in Additional file 9:
Table S1. Using existing databases of secreted proteins
we then examined the purity of our secretome isolation.
The analysis of Gene Ontology Cellular Component
(GOCC) indicated that 685 or 29% of the total identified
proteins were previously known for their locations in the
extracellular space or plasma membrane. Also, 503 pro-
teins were previously known as secreted or highly likely
secreted proteins in the MetazsecKB database that is
generated by multiple bioinformatics tools including Sig-
nalP4, TMHMM, and TargetP. [35] By comparing our
identifications to a number of experimentally identified
secretomes 832 proteins were found in common in the
secretome from the LPS-stimulated macrophages [34]
and 1042 proteins were also identified in a breast cancer
secretome. [36] These results in combination validated
the high quality of our secretome preparation and
analysis.
To identify the proteins showing BC-subtypic secre-

tion we used the Profile Plot function of the Perseus
software platform [33] to determine the relative abun-
dances of individual secreted proteins across different
cell lines, which correlate with the LFQ ratios of identi-
fied proteins. Profile Plot performs pattern matching but
does not perform statistical testing on the identified pro-
teins, therefore the statistical significance of protein

abundance changes between BC subtypes was validated
by one-way ANOVA. As a result we identified clusters
that contain the proteins showing increased or decreased
secretion only in either BLBC- or luminal-subtypic cell
lines, respectively. (Additional file 1: Figure S1 b-e).
For example, we identified 55 proteins as having

BLBC-specific secretion in both BLBC cell lines, includ-
ing 35 proteins with increased secretion and 20 proteins
with decreased secretion compared to the luminal and
non-malignant control cell lines. Meanwhile, there were
86 additional proteins showing either increased or de-
creased secretion in one of the BLBC cell lines. (Fig. 2a;
Additional file 10: Table S2) In view of BC-related func-
tion of these BLBC-specifically secreted proteins, several
factors involved in tumor progression and metastasis
showed increased secretion, including CD44, [37] heat
shock protein family A member 5 (HSPA5), [38] and
heat shock protein 90 beta family member 1 (HSP90B1).
[39] Meanwhile, some proteins such as E-cadherin
(CDH1) and damage-specific DNA binding protein 1
(DDB1) that were known to be down-regulated in BLBC
[40, 41] showed BLBC-specific reduction in secretion.
Similarly, we identified a total of 274 proteins that

showed luminal-specific secretion changes in one or
both of the luminal cell lines (Fig. 2b; Additional file 11:
Table S3), including decreased secretion of several mem-
bers of the cathepsin family of globular proteases such
as CTSB, CTSL, and CTSZ that were known to promote
breast cancer progression and metastasis, [42] and the
increased secretion of metastasis suppressor PEBP1
(a.k.a. RKIP) that showed luminal-specific intracellular
expression. [43]
Immunoblotting of some of BC-subtypic secreted pro-

teins showed consistent results with LFQ secretome
screening (Additional file 2: Figure S2).
Using bioinformatics tools including Ingenuity Path-

way Analysis (IPA) [22] and the Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING) data-
base [23] we then studied the biological processes and
pathways in which these BC-subtypic secreted proteins
are involved. In the IPA annotation, greater than 95% of
all identified BC-subtypic secreted proteins, i.e., 136 of
141 BLBC-specific and 269 of 274 luminal-specific
secreted proteins were respectively cancer-related.
Additional file 3 Figure S3a shows the biological pro-

cesses that are over-presented by the BLBC- and
luminal-specific proteins. Although major biological pro-
cesses are comparable between subtypes, more detailed
analysis of these broad categories highlighted the differ-
ences between subtype characteristics. BLBC-specific
proteins were involved in increased cell movement or
migration, invasiveness of breast cancer cells, and cell
survival, while luminal-specific proteins were associated
with decreases in cell movement and vascularization,
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indicating the aggressiveness differences between these
two BC subtypes (Additional file 3: Figure S3b).
IPA analysis of BLBC-specific secreted proteins (Add-

itional file 3: Figure S3c) indicated the activation of a
few known BC-driving signaling pathways, including
PI3K-Akt signaling, [44] protein kinase A signaling, [45]
signaling by Rho family GTPases, [46] the 14–3-3-medi-
ated signaling associated with BC oncogenesis, [47] and
the actin cytoskeleton signaling involved in the
epithelial-mesenchymal transition (EMT). [48] Mean-
while, the altered secretion of other BLBC-specific pro-
teins indicated that the activity of the HIPPO signaling
was suppressed in BLBC cells, which could lead to a more
invasive tumor phenotype. [49] On the other hand, the
luminal-specific secreted proteins revealed activation of
HIPPO and mTOR signaling along with the suppression
of eIF2 signaling, G2/M DNA damage checkpoint regula-
tion, and ILK signaling (Additional file 3: Figure S3c).
To further determine the functional networks involv-

ing BC subtypic secreted proteins we performed
protein-protein interaction (PPI) analysis using STRING,
which revealed statistically significant enrichment of

PPIs among the proteins secreted in both BLBC-specific
(p < 1e-16) and luminal-specific (p < 1e-16) manners
(Additional file 4: Figure S4). The Gene Ontology
Biological Process enrichment of the proteins with
BLBC-specific increased secretion identified multiple
subnetworks associated with protein folding, regulation
of cell communication, regulation of apoptosis, cell
development, regulation of cell motility, blood coagula-
tion, and proteolysis. Analysis of the proteins with de-
creased secretion in BLBC cells also revealed particular
subnetworks/pathways with suppressed activities, includ-
ing DNA damage response, regulation of actin
depolymerization, and regulation of cell-cell adhesion. In
contrast, the proteins showing luminal-specific increases
of secretion over-represented the subnetworks associ-
ated with regulation of growth, and cell differentiation
while the proteins with decreased secretion in luminal
cells were involved in positive regulation of apoptotic
process, angiogenesis, extracellular matrix disassembly,
and cell motility. These results showed that the pro-
teins secreted or secretomes are characteristic of
distinct BC subtypes.

A B

Fig. 2 A heatmap of unsupervised hierarchical clustering analysis of the z-scored basal-specific (a) and luminal-specific (b) proteins (rows)
secreted by five cell lines (columns). Each cell line is represented by 3 biological replicates and 2 technical replicates. Red indicates higher
secretion, green indicates lower secretion, and white indicates mean secretion
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The genes that encode increasingly secreted proteins
showed secretion-correlated mRNA over-expression
patterns in BC patients in a PAM50-subtypic manner
To determine the clinicopathological relevance of the
proteins showing BC subtypic secretion, in the databases
of TCGA [28] and METABRIC [29] we retrospectively
examined patient mRNA expression patterns for the
genes that encode the proteins showing either BLBC- or
luminal-specific secretion. These databases contain large
cohorts of > 2600 BC patients that were classified by
PAM50 as the BLBC/TNBC, luminal-A and luminal-B,
Her2+, and normal-like BC subtypes, and the informa-
tion about mRNA expression, mutations, copy-number
variations, and associated clinical/pathological data
(stages/grades and relapse status).
First, to determine the mRNA expression differences

between BLBC and luminal A/B TCGA patients we per-
formed a Mann-Whitney-Wilcoxon Test on the z-scored
expression values (downloaded from the cBioPortal for
Cancer Genomics [25, 26]) of the two PAM50-subtypic
populations. This test was performed on all secreted
protein-encoding genes in each subtype-specific dataset,
and p-values were adjusted by the Benjamini Hochberg
procedure for multiple testing. Using this multi-testing
scheme, a secreted protein-encoding gene was classified
as BLBC if the expression level between the two
PAM50-subtypic populations was significantly different
(adjusted p-value < 0.05) and the median mRNA expres-
sion was greater among BLBC patients. Likewise, a gene
was classified as luminal if its median mRNA expression
level was higher for luminal patients and the gene
showed a statistically significant difference between lu-
minal and BLBC patients (adjusted p-value < 0.05).
On a systems view, a heat map of unsupervised hierarch-

ical clustering showed patient mRNA expression patterns
for those genes that encode the proteins demonstrating
PAM50-subtypic secretion in TCGA patients (Fig. 3). In a
statistically significant manner, we identified a secretome-
to-patient transcriptome or secreto-transcriptomic link for
some genes that encode PAM50-subtypic secreted proteins,
i.e., we found a secretion-correlated mRNA overexpression
pattern or SeCEP wherein the PAM50-subtypic secretion
of some proteins showed cis-mRNA expression of their en-
coding genes in patients with the corresponding
PAM50-subtypes (Fig. 4). For example, mRNA overexpres-
sion of 57 genes that encode BLBC-specific secreted pro-
teins clustered BLBC patients while 60 genes that encode
luminal-specific proteins with increased secretion
showed mRNA overexpression in luminal patients.
These results indicated that these secretome genes are
fully translated into the oncogenically active secretome
in a BC-subtypic manner.
Further, we observed interpatient heterogeneity in the

mRNA expression pattern of secretome genes within

each PAM50 subtype, i.e., not all SeCEP genes were sim-
ultaneously overexpressed at the mRNA level in each in-
dividual BLBC or luminal patient. Bearing in mind that
mRNA expression patterns of PAM50 genes are insuffi-
cient to stratify the patient subsets with different clinical
outcomes or prognoses, we reasoned that, within a
single PAM50-classified subtype, these patient mRNA
expression variations of select SeCEP genes can mark
the patient subpopulations with distinct prognoses.

Patient-specific mRNA co-overexpression patterns of
select secretome-encoding genes mark the high-risk
subpopulations of PAM50-subtypic patients with poor
prognosis
To identify BC-subtypic secreted proteins of prognostic
significance, we performed Kaplan-Meier (KM) analysis
on PAM50-subtypic patients in the two independent
datasets TCGA and METABRIC [29, 30] for any com-
bination of up to five SeCEP genes having mRNA over-
expression (z-score > median z-score) for all genes in the
combination. The statistical significance of each gene
combination was determined by a multi-parameter
threshold including log-rank p value < 0.05 and lower 95
confidence interval for the hazard ratio > 1 in both the
TCGA and METABRIC datasets.
For example, we identified subpopulations of approxi-

mately 8% or more BLBC patients who showed mRNA
co-overexpression of four BLBC-specific SeCEP genes,
YWHAZ, GDA, MFAP2, and PRKCSH in correlation
with poor survival (Fig. 5a,b). YWHAZ, which encodes
the 14–3-3ζ protein, was characterized as a promoter of
cell survival which, when overexpressed, is associated
with poor prognosis and disease-free survival. [50, 51]
Another SeCEP gene combination indicating the
co-overexpression-correlated poor prognosis was ADM,
PSMB6, SERPINH1, and SFN (Fig. 5c,d). ADM was
known to promote angiogenesis, cell survival, and me-
tastasis, [52, 53] and was associated with poor prognosis
in ovarian cancer patients. [54] Interestingly, although
SFN (14–3-3σ or stratifin) was considered as a tumor
suppressor, overexpression in BLBC was reported. [55]
Recently, overexpression of SFN was found to be associ-
ated with tumor invasion and migration. [56] Another
BLBC subpopulation showed co-overexpression of GAL,
MMP12, MSLN, and a multifunctional oncoprotein SET
[57] (Fig. 5e,f ).
Similarly, this secreto-transcriptomic approach enabled

identifications of the distinct subpopulations of luminal
patients with poor prognosis. Further, as an example of
how the co-overexpression of multiple SeCEP genes
improves the specificity and sensitivity in predicting per-
sonalized prognosis, as shown in Fig. 6a,b, overexpres-
sion of CLEC3A alone indicated modest differences in
the overall survival rate of two major luminal patient
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Fig. 3 (See legend on next page.)
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(See figure on previous page.)
Fig. 3 Heatmap of the unsupervised hierarchical clustering of mRNA expression of SeCEP genes (rows) in the TCGA patient cohort (columns). The
PAM50 subtype of each patient is indicated by the row above the heatmap. Proteomic (left) and transcriptomic (right) subtype-specificity are
indicated by the columns to the right of the heatmap. Within the heatmap red represents higher expression, blue represents lower expression,
and white represents mean expression

A

B

Fig. 4 Box plots showing the statistically significant altered mRNA expression (x-axis) for a BLBC and b luminal secreted proteins among TCGA
patients. The distribution of mRNA expression for BLBC patients is shown in red on the left, and for luminal A/B patients in blue on the right. The
z-scored mRNA expression is displayed on the y-axis. Values > 1 are considered to be significantly up-regulated, values < − 1 to be significantly
downregulated, and values between − 1 and 1 are considered “not altered”. The median value is displayed as a black bar inside the box. A Mann-
Whitney-Wilcoxon Test to ascertain the expression differences between the two PAM50-subtypic populations was performed. The p-value is
displayed above the x-axis with p-values < 0.05 colored red if expression is higher for BLBC and blue if expression is higher for luminal samples
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subpopulations. However, the luminal patient subsets
showing co-overexpression of CLEC3A with CTTN,
IGFBP5, NRCAM were statistic-significantly correlated
with worse prognosis and can be readily discriminated
from other luminal patients (Fig. 6c,d). Among these
SeCEP genes, CLEC3A is a C-type lectin that promotes
tumor adhesion in breast cancer [58] and was recently
found to enhance plasminogen activation by tissue-type
plasminogen activator. [59] CTTN encodes cortactin, an
actin cytoskeleton regulator that promotes metastasis in
breast cancer. [60] Meanwhile, co-overexpression of
CLEC3A with ALDOA, EEA1, and FKBP4 was also asso-
ciated with substantially worse prognosis than CLEC3A
alone (Fig. 6e,f ).
Importantly, the use of co-overexpressed SeCEP genes

can further resolve individual luminal subtypes among
luminal patients to identify the high-risk subpopulations
of luminal-A or luminal-B patients. For example, the
luminal-A subpopulations overexpressing CAPZA2,
FKBP4, KRT18, and OLFML3 exhibited poor prognosis
with decreased overall survival, but this combination did
not distinguish any subpopulation of luminal-B patients
or combined luminal A/B groups (Additional file 5: Fig-
ure S5 a,b). Also, co-overexpression of FASN, IGFBP5,
ISOC1, and PIP was likewise specific to the luminal-A
group (Additional file 5: Figure S5 c,d). Interestingly,
although each of these genes has been reported to play a
role in breast cancer development, progression, or
metastasis, [61–64] over-expression of these genes indi-
vidually did not provide subtype-specific prognostic
value. Overall, we found 52 gene combinations with co-
overexpression that showed poor survival among
luminal-A patients but not in other BC subtypes.
Several gene co-overexpression patterns specifically

correlated with luminal-B patient prognosis were also
identified. In the co-overexpression pattern involving
HSP90B1, EEF1A2, EIF4B, and KRT18, (Additional file 6:
Figure S6 a,b) HSPB1 was known to play a role in
epithelial-mesenchymal transition and tumors overex-
pressing HSPB1 demonstrated enhanced drug resistance.
[65] Similarly, luminal-B patients overexpressing a com-
bination of AGR2, CYFIP2, KRT18, and RAB1B exhib-
ited worst overall survival while luminal-A patients and
the combined luminal A/B group showed no significant
differences in survival (Additional file 6: Figure S6 c,d).
In total we identified 39 gene combinations that, when

overexpressed, indicated poor overall survival specifically
among luminal-B patients. Our combined results dem-
onstrated that patient-specific co-overexpression of
SeCEP genes can resolve the interpatient heterogeneity
within different PAM50-subtypes, confirming that these
gene expression alteration patterns are prognostically
meaningful in distinguishing the subsets of BLBC or
luminal patients with distinct clinical outcomes with
multi-testing of large patient cohorts.
Notably, unsupervised hierarchical clustering mRNA ex-

pression of luminal and basal SeCEP genes using the
TCGA patient cohort revealed that HER2-overexpressing
or -enriched patients did not cluster together but were in-
terspersed among primarily luminal A/B patients. (Fig. 3)
This result implied that various clinical outcomes of
HER2-enriched patients could be represented by select lu-
minal SeCEP genes. We therefore searched for altered
mRNA expression patterns of luminal SeCEP genes in
correlation with destinct clinical outcomes of HER2+
patients. Generally, patients with the HER2-enriched sub-
type show overall poor survival similar to BLBC patients.
[66] In KM analysis, we identified unique gene combina-
tions associated with poor survival among HER2-enriched
patient subpopulations which were not prognostically
significant among luminal patients. For example, HER2-
enriched patients showing co-overexpression of CAPZA2,
CBX1, G6PD, and NQO1 had worse survival (Additional
file 7: Figure S7 a,b). NQO1 was highly expressed in BC
patients with high HER2 expression and was linked to in-
creased metastasis. [67] High expression of CYFIP1,
DDR1 and GYG1 was also associated with worse survival
(Additional file 7: Figure S7 c,d), and DDR1 was linked to
BC invasion and drug resistance. [68, 69] Another
HER2-enriched subpopulation with poor survival showed
co-overexpressed G6PD, CYFIP1, PSMC2, and KYNU
(Additional file 7: Figure S7 e,f ), the latter of which has
been implicated in increased metastasis and tumor aggres-
siveness. [70] In sum, these results indicate that altered
mRNA expression patterns of select luminal SeCEP genes
can be used to distinguish the distinct subpopulations of
HER2-enriched patients with poor prognosis.
More importantly, the majority of the genes encoding

BLBC- or luminal-specific secretome in networks showed
statistically significant, secretion-correlated cis-mRNA ex-
pression in some BC patients. Further, by identifying their
co-overexpressed patterns in BC-subtypic patients, we

(See figure on previous page.)
Fig. 5 Correlation between Kaplan-Meier survival plots of the clinical outcomes and mRNA co-overexpression of indicated basal SeCEP genes
based on TCGA (a, c, e) and METABRIC (b, d, f) patient data. “N” refers to “Number of patients,” and “NE” refers to “Number of Events (Overall
Survival status = DECEASED)”. Each plot shows the log-rank p-value and Hazard Ratio (HR) with 95% Confidence Interval (CI) between the two
groups. The red line designates the patient subpopulation showing statistically significant overexpression of the indicated basal-specific genes
(“altered”). The blue line designates the group of patients not showing statistically significant overexpression of the indicated basal-specific genes
(“not altered”)
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revealed the pathological or prognostic significance of
these secreted proteins in multiple interactive sub-net-
works (Fig. 7a). Strikingly, the majority of the
BLBC-specific proteins involved in the interactive subnet-
works were associated with unfolded protein response, cell
migration, and negative regulation of cell death. Specific-
ally, the glycoprotein THBS1 promoted BC invasion and
metastasis and was associated with disease recurrence in
BC patients. [71, 72] Similarly, higher serum levels of
metallopeptidase inhibitor TIMP-1 were associated with
increased likelihood of BC metastasis. [73] Further, the
disulfide isomerase PDIA6 promoted tumor immune
evasion [74] and enhanced cell proliferation by activating
Wnt/β-catenin signaling. [75] Three of four genes in the
combination of CORO1C, MSN, ICOSLG, and
HIST1H1B are in this subnetwork, and KM analysis re-
veals a significant decrease in the overall survival rate of
BLBC patients overexpressing these genes (Fig. 7b,c).
Luminal-specific subnetworks were also identified,

(Fig. 8a) however there was no biological process enrich-
ment observed. These oncogenically active interacting
proteins included BAG3 which reduced BC cell adhesion
and increased motility. [76] This network also included
RHOC, a small GTPase that regulates cytoskeletal archi-
tecture [77] and is associated with increased rates of me-
tastasis. [78] SNCG, a neuronal protein overexpressed in
BC was also associated with higher likelihood of metas-
tasis. [79] TCGA and METABRIC patients exhibiting a
four gene co-overexpression pattern involving SNCG,
CLEC3A, DNPEP, and KRT18, three of which are mem-
bers of the interacting subnetworks, had lower overall
survival rates (Fig. 8b,c). Together, these results indicate
the coordinated, extracellular oncogenic activity of the
networked proteins.

Secreto-transcriptomic analysis identified patient-specific
co-overexpression patterns of select secreted proteins as
prognostic markers to predict personalized response to
therapy
Nether the TCGA nor the METABRIC study was de-
signed to answer specific clinical questions. To assess
the clinical significance of altered mRNA expression of
multiple SeCEP genes in predicting the response to spe-
cific therapeutic interventions, we next looked for dis-
tinct combinations of SeCEP genes showing statistically

significant changes in distant relapse free survival
(DRFS) among patients receiving neoadjuvant taxane-
anthracycline therapy in the clinical trial GSE25066. [80]
Following similar procedures to those described above
for TCGA and METABRIC, we performed KM analysis
on the BLBC-SeCEP genes in combinations of up to five
genes having mRNA overexpression (z-score > median
z-score) for all genes in the combination.
Among BLBC patients, we found 12 combinations

with > 10% of both GSE25066 and TCGA patients over-
expressing each gene in the combination and having a
significant difference in DRFS. (Additional file 12: Table
S4). Examples are shown in Fig. 9a,b. One such combin-
ation was ANXA2, CALR, MFAP2, and SERPINH1.
ANXA2 has been reported as an independent predictor
of poor prognosis in breast cancer patients receiving
neoadjuvant therapy, [81] however overexpression of
ANXA2 alone did not have a statistically significant im-
pact on DRFS among GSE25066 patients. Likewise,
co-overexpression of ADM, MAGEA4, and PRKCSH
was also associated with a statistically significant change
in DRFS. Similar analysis of luminal-SeCEP gene combi-
nations yielded five combinations with at least 10% of
patients in both the GSE25066 and TCGA datasets
overexpressing all genes in the combination and p
value < 0.05. (Additional file 13: Table S5) One com-
bination was BLVRB, EIF4B, and ISOC1 (Fig. 9c). Im-
portantly, BLVRB is associated with the development
of chemotherapeutic resistance, though overexpression
of BLVRB alone did not predict worse patient out-
comes. [82]
Overall, these analyses identified the subpopulations

within each PAM50 subtype with resistance to neoadju-
vant anthracycline-taxane therapy along with the correl-
ation to their poorer overall survival. Thus, we
demonstrate the potential clinical uses of the analysis to
aid the clinician in determining the appropriate thera-
peutic intervention to be employed.

Discussion
The development of a novel secreto-transcriptomic
approach underlies our innovation in the identification
of liquid biopsy biomarkers capable of discriminating
between patient subpopulations having variable out-
comes. Recognizing that single-omics approaches are

(See figure on previous page.)
Fig. 6 Correlation between Kaplan-Meier survival plots of the clinical outcomes and mRNA co-overexpression of indicated luminal SeCEP genes
based on TCGA (a, c, e) and METABRIC (b, d, f) patient data. “N” refers to “Number of patients,” and “NE” refers to “Number of Events (Overall
Survival status = DECEASED)”. Each plot shows the log-rank p-value and Hazard Ratio (HR) with 95% Confidence Interval (CI) between the two
groups. The red line designates the patient subpopulation showing statistically significant overexpression of the indicated luminal-specific genes
(“altered”). The blue line designates the group of patients not showing statistically significant overexpression of the indicated luminal-specific
genes (“not altered”). Overexpression of CLEC3A provides less prognostic value than overexpression of CLEC3A in combination with other
secreted factors
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Fig. 7 a The interactive subnetworks of basal SeCEP genes. B,C) Correlation between Kaplan-Meier survival plots of the clinical outcomes and
mRNA co-overexpression of indicated luminal SeCEP genes based on TCGA (b) and METABRIC (c) patient data. “N” refers to “Number of patients,”
and “NE” refers to “Number of Events (Overall Survival status = DECEASED)”. Each plot shows the log-rank p-value and Hazard Ratio (HR) with 95%
Confidence Interval (CI) between the two groups. The red line designates the patient subpopulation showing statistically significant
overexpression of the indicated basal-specific genes (“altered”). The blue line designates the group of patients not showing statistically significant
overexpression of the indicated basal-specific genes (“not altered”). Three of the four overexpressed genes are members of basal-specific
interactive subnetworks
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insufficient for making these distinctions, due to the
negligible data on the oncogenic phenotype provided by
genomics/transcriptomics and the inadequate pheno-
typic coverage of patient-specific alterations proteomics
offers, our secreto-transcriptomic workflow is a
multi-omic integrated method which offers a robust and
efficient scheme to distinguish patient subpopulations
within each BC subtype. First, by using a label-free
quantitation (LFQ)-based nanoLC-MS/MS approach for
secretome profiling, [34] we comparatively analyzed the
compositional differences in the extracellular proteins

secreted from a series of BC cell lines representing vari-
ous BC- or PAM50-subtypes. We then determined the
clinicopathological relevance of the proteins showing
subtype-specific or subtypic secretion by a retrospective
proteo-transcriptomic analysis [20] of the BC patient
datasets (> 2600 patients) from The Cancer Genome
Atlas (TCGA) [28] and METABRIC (Molecular Tax-
onomy of BC International Consortium). [29] We found
a PAM50-subtypic Secretion-Correlated mRNA Expres-
sion Pattern (SeCEP) wherein the PAM50-subtypic se-
cretion of some proteins showed statistically significant

A B

C

Fig. 8 a The interactive subnetworks of luminal SeCEP genes. B,C) Correlation between Kaplan-Meier survival plots of the clinical outcomes and
mRNA co-overexpression of indicated luminal SeCEP genes based on TCGA (b) and METABRIC (c) patient data. “N” refers to “Number of patients,”
and “NE” refers to “Number of Events (Overall Survival status = DECEASED)”. Each plot shows the log-rank p-value and Hazard Ratio (HR) with 95%
Confidence Interval (CI) between the two groups. The red line designates the patient subpopulation showing statistically significant
overexpression of the indicated luminal-specific genes (“altered”). The blue line designates the group of patients not showing statistically
significant overexpression of the indicated luminal-specific genes (“not altered”). Three of the four overexpressed genes are members of luminal-
specific interactive subnetworks
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cis-mRNA expression of the genes that encode them in
patients with the corresponding PAM50-subtypes. This
expression-to-secretion correlation highlighted those
genes that are fully translated into the oncogenically
active secretome in a PAM50-subtypic manner. Further,
we observed that patient-to-patient mRNA expression
variations of individual secretome genes describe the
interpatient heterogeneity within each single PAM50 sub-
type. In this regard, patient-specific co-overexpression of
distinct SeCEP genes were found in correlation with spe-
cific prognoses within distinct subsets of BLBC or

luminal-A and luminal-B patients. Currently, available
blood-based tests for cancer prognosis or diagnosis are
often based on a single gene or protein marker, therefore
lacking the specificity and sensitivity in determining indi-
vidualized clinical outcomes. [83] Our identification of
multi-gene or multi-protein panels as systems signatures
can precisely describe the predominant tumor phenotype
with significantly improved phenotype accuracy. Because
our workflow starts with the identification of tumor-
phenotypic alterations and work back to the genotypic
data with the coverage of patient-specific alterations, we

A

C

B

Fig. 9 Correlation between Kaplan-Meier survival plots of the clinical outcomes and mRNA co-overexpression of indicated basal (a, b) or luminal
(c) SeCEP genes based on GSE25066 patient data. “N” refers to “Number of patients,” and “NE” refers to “Number of Events (Distant Relapse Free
Survival status = 1)”. Each plot shows the log-rank p-value and Hazard Ratio (HR) with 95% Confidence Interval (CI) between the two groups. The
red line designates the patient subpopulation showing statistically significant overexpression of the indicated subtype-specific genes (“altered”).
The blue line designates the group of patients not showing statistically significant overexpression of the indicated subtype-specific genes (“not
altered”). See also Additional file 8: Figure S8
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are able to bypass the need for extensive modeling [84] or
analysis of a large number of patients [85] by pinpointing
a few prognostically significant marker genes.
Our dissection of the BC-subtypic secretomes high-

lights the differences between subtype-characteristic
extracellular functions reflecting the divergent under-
lying pathologies of each subtype. We found that
although both luminal and basal secreted proteins fall
into the same broad categories (e.g. cell motility), the
functional roles of these proteins are significantly differ-
ent between subtypes. For example, cellular movement
was a highly overrepresented category in the secretomes
of both subtypes, but the basal-specific proteins were pro-
motive of cell motility while the luminal-specific proteins
were inhibitive, which is in line with the more aggressive
nature of BLBC subtype in general. Similarly, pathway ac-
tivation analysis found the same pathways enriched in
both subtypes, but with opposite activation states.
We identified multiple over-secreted proteins exhibit-

ing a BC-subtypic SeCEP consistently in both TCGA
and METABRIC databases with > 2600 BC patients
which constitute the subtype-specific fully translated
oncogenic-active secretome. Additionally, the co-over-
expression of multiple SeCEP genes in unique combi-
nations was prognostic of differential survival rates of
subpopulations within each PAM50-subtype. Further,
these co-overexpressed gene combinations were dis-
tinct for each subtype, i.e. combinations showing de-
creased overall survival in one subtype did not exhibit
altered survival rates in other subtypes.
There are some important considerations to note in this

study. First, due to the significant breast tumor heterogen-
eity our work cannot, and is not intended to, identify all of
the secreted proteins relevant to the characteristics of a
given tumor. We used breast cell lines as a model system
to identify potential markers and reinforce these identifica-
tions with a broad set of patient data. In order to efficiently
connect patient outcomes to potential markers, we must
select practical criteria. The high expression/high secretion
correlation provides a reasonable and straightforward link
between the secretome and the transcriptome. Alternate
expression/secretion patterns are observed, however these
are harder to quantify and correlate. Importantly, it is not
necessary to identify every gene combination of relevance
in order to identify specific patient subpopulations with
poorer outcomes. The present study also has some limita-
tions which preclude the ability to identify all such sub-
groups, including the number of basal and luminal cell
lines examined and the exclusion of the HER2-enriched
subtype from the secretome analysis. Despite these limita-
tions our work names several noteworthy gene combina-
tions which define specific patient subpopulations, but
more importantly provides a template for the further iden-
tification of combinations defining other subgroups.

Because multiple SeCEP genes showing prognostically-
significant mRNA co-overexpression in a marker panel
were identified as over-secreted proteins in a single BC
subtype, these gene-coded proteins are putative liquid
biopsy markers to distinguish high-risk populations
within PAM50-subtypic classification. Importantly, we
also demonstrated the clinical utility of this method in
identifying patient subpopulations with the worst out-
comes in response to specific therapeutic interventions.

Conclusions
In summary, our novel secreto-transcriptomic method
efficiently and precisely delineated high-risk subpopula-
tions within each PAM50-subtype by linking oncogeni-
cally secreted proteins to patient-specific transcriptomic
alterations that correlate with distinct clinical outcomes.
This multi-omics approach leverages the discrimination
of a few tumorigenic/oncogenic alterations in broad
transcriptomic profiles of > 18,000 genes, which provide
an advantage over any single omics approaches. These
multi-gene prognostic markers offer individualized spe-
cificity and sensitivity which may guide the clinician to
optimize the treatment plan for distinct patient subsets
in blood test.

Additional files

Additional file 1: Figure S1. A) A heatmap of unsupervised hierarchical
clustering analysis of z-score normalized protein secretion by one non-
malignant control (MCF10A), two basal breast cancer (MDA-231 and
HCC1806), and two luminal breast cancer (MCF7 and T47D) cell lines
highlights intra-subtype heterogeneity. Each cell line is represented by 3
biological replicates and 2 technical replicates. Red indicates higher
secretion, green indicates lower secretion, and white indicates mean
secretion. Profile plots of 4 representative clusters are shown which
demonstrate proteins B) higher in BLBC, C) lower in luminal BC, D) lower
in BLBC, and E) higher in luminal BC. Each line represents one protein
and the color indicates the density of proteins with similar expression
levels. (PPTX 170 kb)

Additional file 2: Figure S2. Western blot validation of LFQ data. (PPTX
1693 kb)

Additional file 3: Figure S3. A) Over-represented biological processes
in the basal-like and luminal BC subtypes. Bars representing the negative
log p-values of BLBC process enrichment are displayed in orange and
luminal values are in blue. B) Biological functions activated (positive z-
score) or suppressed (negative z-score) in the BLBC (orange) and luminal
(blue) PAM50 subtypes. C) Pathway activation analysis of PAM50 sub-
types. Orange bars represent BLBC values and blue bars represent luminal
values. Positive z-scores indicate pathway activation; negative z-scores
indicate pathway suppression. (PPTX 53 kb)

Additional file 4: Figure S4. Protein-protein interaction analysis of A)
basal-specific and B) luminal-specific secreted proteins. (PDF 6934 kb)

Additional file 5: Figure S5. Correlation between Kaplan-Meier survival
plots of the clinical outcomes and mRNA co-overexpression of indicated
luminal SeCEP genes based on TCGA (left column) and METABRIC (right
column) patient data. “N” refers to “Number of patients,” and “NE” refers
to “Number of Events (Overall Survival status = DECEASED)”. Each plot
shows the log-rank p-value and Hazard Ratio (HR) with 95% Confidence
Interval (CI) between the two groups. The red line designates the patient
subpopulation showing statistically significant overexpression of the
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indicated luminal-specific genes (“altered”). The blue line designates the
group of patients not showing statistically significant overexpression of
the indicated luminal-specific genes (“not altered”). Co-overexpression of
distinct sets of genes correlate with statistically significant changes in
overall survival in Luminal A patients but not Luminal B or other BC
subtypes. (PDF 153 kb)

Additional file 6: Figure S6. Correlation between Kaplan-Meier survival
plots of the clinical outcomes and mRNA co-overexpression of indicated
luminal SeCEP genes based on TCGA (left column) and METABRIC (right
column) patient data. “N” refers to “Number of patients,” and “NE” refers
to “Number of Events (Overall Survival status = DECEASED)”. Each plot
shows the log-rank p-value and Hazard Ratio (HR) with 95% Confidence
Interval (CI) between the two groups. The red line designates the patient
subpopulation showing statistically significant overexpression of the indi-
cated luminal-specific genes (“altered”). The blue line designates the
group of patients not showing statistically significant overexpression of
the indicated luminal-specific genes (“not altered”). Co-overexpression of
distinct sets of genes correlate with statistically significant changes in
overall survival in Luminal B patients but not Luminal A or other BC
subtypes. (PDF 144 kb)

Additional file 7: Figure S7. Correlation between Kaplan-Meier survival
plots of the clinical outcomes and mRNA co-overexpression of indicated
SeCEP genes based on patient data. “N” refers to “Number of patients,”
and “NE” refers to “Number of Events (Overall Survival status = DE-
CEASED)”. Each plot shows the log-rank p-value and Hazard Ratio (HR)
with 95% Confidence Interval (CI) between the two groups. The red line
designates the patient subpopulation showing statistically significant
overexpression of the indicated luminal-specific genes (“altered”). The
blue line designates the group of patients not showing statistically
significant overexpression of the indicated luminal-specific genes (“not
altered”). (PDF 792 kb)

Additional file 8: Figure S8. Correlation between Kaplan-Meier survival
plots of the clinical outcomes and mRNA co-overexpression of indicated
SeCEP genes based on patient data. “N” refers to “Number of patients,”
and “NE” refers to “Number of Events (Overall Survival status = DE-
CEASED)”. Each plot shows the log-rank p-value and Hazard Ratio (HR)
with 95% Confidence Interval (CI) between the two groups. The red line
designates the patient subpopulation showing statistically significant
overexpression of the indicated genes (“altered”). The blue line designates
the group of patients not showing statistically significant overexpression
of the indicated genes (“not altered”). (PDF 121 kb)

Additional file 9: Table S1. All proteins LFQR2. (XLSX 644 kb)

Additional file 10: Table S2. Basal-Specific Secreted ProteinsR2. (XLSX
52 kb)

Additional file 11: Table S3. Luminal-Specific Secreted ProteinsR2.
(XLSX 94 kb)

Additional file 12: Table S4. Basal GEO + TCGAR2. (XLSX 9 kb)

Additional file 13: Table S5. Luminal GEO + TCGAR2. (XLSX 8 kb)
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