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Abstract

Background: Congenital hearing loss affects approximately 1–2 infants out of every 1000, with 50% of the cases
resulting from genetic factors. Targeted gene panels have been widely used for genetic diagnosis of hearing loss.
This study aims to reveal new diagnoses via reanalyzing historical data of a multigene panel, and exam the reasons
for new diagnoses.

Methods: A total of 210 samples were enlisted, including clinical reports and sequencing data of patients with
congenital/prelingual hearing loss who were referred to clinical genetic testing from October 2014 to June 2017. All
variants listed on the original clinical reports were reinterpreted according to the standards and guidelines
recommended by the American College of Medical Genetics and Genomics and the Association for Molecular
Pathology (ACMG/AMP). Expanded analysis of raw data were performed in undiagnosed cases.

Results: Re-analysis resulted in nine new diagnoses, improving the overall diagnostic rate from 39 to 43%. New
diagnoses were attributed to newly published clinical evidence in the literature, adoption of new interpretation
guidelines and expanded analysis range.

Conclusion: This work demonstrates benefits of reanalysis of targeted gene panel data, indicating that periodical
reanalysis should be performed in clinical practice.
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Background
Congenital hearing loss affects approximately 1–2 in-
fants out of every 1000, with 50% of the cases resulting
from genetic factors [1]. Molecular diagnosis of hearing
loss can help direct the genetic counseling and clinical
management of probands and their family members [2].
One of the molecular testing methods used to diagnose
hearing loss is Sanger sequencing. However, Sanger se-
quencing diagnoses usually begin by testing a limited
number of selected genes (generally starting with GJB2
in hearing loss), resulting in a low detection rate [3];
well-established genetic knowledge about the target

population may therefore be necessary to determine
which genes should be tested first. Furthermore, the
genetic heterogeneity of hereditary hearing loss [4]
makes sequential gene-by-gene testing unrealistic and
costly.
With the advance of next generation sequencing

(NGS) techniques, targeted genomic capture and mas-
sively parallel sequencing has become an important
diagnostic tool for hereditary hearing loss [5]. This
method can be used to examine over one hundred
known deafness-related genes simultaneously. The diag-
nostic yield of comprehensive NGS hearing loss testing
panels is close to 40% [4, 6], much higher than that of
Sanger sequencing.
It was recently reported that reanalysis of genome-wide

NGS data with updated knowledge can improve the diag-
nostic rate [7, 8]. For instance, diagnostic yield increased
by 13% following reanalysis of genome-wide data from pa-
tients with severe developmental disorders [9] and by 11%
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in a cohort of 37 families with suspected Mendelian disor-
ders (primarily intellectual disabilities) [10]. Reanalysis of
data from gene panels targeting known disease genes will
not yield new diagnoses resulting from novel gene discov-
ery since the panels have a fixed design, but it may still be
beneficial due to improvements in variant interpretation.
However, reports of such reanalysis are currently lacking.
In this study, we recruited patients with congenital/

prelingual hearing loss. We sought to reveal new diagno-
ses via reanalyzing their targeted gene panel data, and
exam the reasons for new diagnoses.

Methods
Patients
A total of 210 patients with congenital or prelingual
hearing loss, defined as detection before three years of
age, were retrospectively studied. They had been referred
to clinical genetic testing from October 2014 to June
2017 and consented to anonymous use of their data for
scientific research. Healthy relatives of the patients were
not included. The Institutional Review Board of the BGI
approved this study.

HearingCare NGS testing
After a clinical diagnosis of hearing loss, peripheral
blood samples were submitted for testing with commer-
cial exome sequencing panels, either HearingCare_127
or HearingCare_81. The two tests use the same gene
panel but involve analysis of a different number of genes,
with 127 genes analyzed in HearingCare_127 and 81 in
HearingCare_81. The gene list is presented in Add-
itional file 1: Table S1. All tests were performed using
target capture (Agilent, Santa Clara, CA, USA) followed
by sequencing on a Hiseq-2500 (Illumina, San Diego,
CA, USA). The coding regions and splice sites (±10 bp)
of the target genes were analyzed. Bioinformatics pipe-
lines included alignment of sequencing reads using the
Burrows-Wheeler Aligner (0.7.12) [11] and variant call-
ing using the Genome Analysis Tool Kit (GATK 3.4)
[12].

Variant filtering and prioritization
Variant filtering and prioritization were first based on
population databases (the Exome Aggregation Consor-
tium (ExAC), the Genome Aggregation Database (gno-
mAD), Exome Sequencing Project v. 6500 (ESP6500),
1000 Genomes and local databases). Variants at a minor
allele frequency of > 1% in either one of the databases
were excluded except for hotspot variants, such as
NM_004004.5(GJB2):c.109G > A. Then, the functional
consequences of the remaining variants were predicted
by Condel [13]. If no diagnosis was found for a patient
through single nucleotide variants (SNVs), then copy
number variants (CNV) were characterized. An in-house

spreadsheet that computes the inter-sample normalized
depth of coverage per exon was used starting in 2015.
All reported SNVs were confirmed via Sanger sequen-
cing and CNVs were confirmed via qPCR.

Variant interpretation and reporting
Variants were interpreted according to the standards
and guidelines published in the literature [14–16]. Each
variant was classified into one of five categories: patho-
genic (P), likely pathogenic (LP), variant of uncertain sig-
nificance (VUS), likely benign (LB) or benign (B).
In clinical reports, P/LP variants were all listed. How-

ever, VUS in undiagnosed patients were only reported if
certain conditions were met. If a VUS was found concur-
rently in a gene with a P/LP variant, the VUS was re-
ported. In cases where no P/LP variant was curated, a
VUS was reported based on patients’ phenotypes.

Reanalysis workflow
The reanalysis workflow consisted of reinterpretation
and expanded analysis (Fig. 1). The purpose of variant
reinterpretation was to reassess the pathogenicity of var-
iants (Table 1). All variants were reinterpreted according
to the standards and guidelines recommended by the
American College of Medical Genetics and Genomics
and the Association for Molecular Pathology (ACMG/
AMP) [17]. Undiagnosed cases were then processed
through expanded analysis, which focused on CNV de-
tection and examined 127 genes irrespective of the ini-
tially tested panel (Table 1). Those remained
undiagnosed should be subject to periodic reanalysis.

Statistical analysis
For categorical data, summary data were reported as fre-
quencies and percentages, and chi-square tests were
used for between-group comparisons. A P value of less
than 0.05 was considered statistically significant. Statis-
tical analysis was performed with IBM SPSS Statistics,
version 24 (SPSS).

Results
Cohort and overall results
Out of 210 patients, 49% were male. A total of 52 pa-
tients (25%) have a self-reported family history of hear-
ing loss. The majority of cases had been tested with
HearingCare_127 (83%; 174), while the remainder used
HearingCare_81 (17%; 36) (Table 2).
Molecular diagnoses were initially made in 82 out of

210 patients (39%). The diagnostic yields of Hearing-
Care_127 and HearingCare_81 were 41 and 28%, re-
spectively (p = 0.128). The diagnostic rate was not
significantly different in patients with or without a family
history (40% vs. 39%, p = 0.820) or in patients from dif-
ferent calendar years (p = 0.220). In diagnosed patients,
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GJB2 and SLC26A4 were the most significant contribu-
tors, present in 45 and 35% of cases, respectively. As ex-
pected, autosomal recessive inheritance was the most
common inheritance pattern in congenital/prelingual
hearing loss patients (Additional file 2: Table S2).

Improvement of diagnosis
The overall diagnostic rate improved from 39 to 43%
(Table 2). Of the nine new diagnoses, five patients (Pa-
tients 1–5) were upgraded in light of new evidence from
studies published after the reports were first released.
Pathogenic moderate evidence (PM5: a different mis-
sense change determined to be pathogenic has been seen

before) from ACMG/AMP guidelines [17] was applied
twice to upgrade two reports (Patient 6 and 7). In
addition, a pathogenic variant with autosomal dominant
inheritance was discovered in a gene which was beyond
the initial analysis range (Patient 8). A CNV was found
in patient 9 via expanded analysis, paired as a compound
heterozygote with a single-nucleotide variant (Table 3).
All the new diagnoses were attributed to the recategori-
zation of a single variant; none were due to the recate-
gorization of two different AR variants in the same gene.
The new diagnoses were not enriched in a specific year.
In addition, one initial diagnosed case was reclassified

to undiagnosed due to downgrade of a X-linked

Table 1 Purpose and potential sources of improvement by variant reinterpretation and expanded analysis

Step Purpose Potential sources of improvement

Variant reinterpretation To reassess the pathogenicity of variants New evidence from publications to upgrade the
pathogenicity
New standards and guidelines for variant interpretation

Expanded analysis To detect copy number variants
To expand analysis to other hearing
loss related genes

Missed copy number variants
Phenotypic heterogeneity
Incorrect targeted panel tested

7 new diagnosed patients
1 undiagnosed patient

2 new diagnosed patients

210 patients (82 diagnosed)

Variant reinterpretation

229 distinct variants

7 variants were upgraded from VUS to LP
7 variants were downgraded from P/LP to LB/VUS

Expanded analysis

122 undiagnosed patients

120 undiagnosed patients

Fig. 1 Flowchart of variant reinterpretation and expanded analysis. P, pathogenic; LP, likely pathogenic; VUS, variant of uncertain significance; LB,
likely benign. The one undiagnosed patient was attributed to the downgraded of a X-linked dominant variant (NM_000495.4(COL4A5):c.2858G > T)
from likely pathogenic to likely benign
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dominant variant (NM_000495.4(COL4A5):c.2858G > T)
from likely pathogenic to likely benign (Fig. 1). The vari-
ant was interpreted and reported in March 2015. The
availability of public genomic databases, such as ExAC
and gnomAD [18], provided population evidence to re-
classify this variant to likely benign. Moreover, we noted
that the 7 upgraded variants resulted in 7 new diagnoses
(7/7; 100%), whereas 7 downgraded variants only re-
sulted in 1 patient from “diagnosed” to “undiagnosed”
(1/7; 14%), reaching a significant difference (P < 0.001).

New publications (patients 1–5)
Variants that were reclassified from VUS to likely patho-
genic in patients 1–5. The upgrade of NM_016
239.3(MYO15A):c.10245_10247delCTC resulted in two
probands getting diagnosed (patient 1 and 2). This vari-
ant was first reported in 2015 as a compound heterozy-
gote with MYO15A c.8198A > C [19]. Because the
pathogenicity of the latter variant was undetermined, the
pathogenicity of c.10245_10247delCTC could not be
upgraded. This changed in February 2018 when a new
publication provided solid evidence that the variant seg-
regated with nonsyndromic hearing loss in a Korean
family [20]. The pathogenicity of the variant in patient 3
was also supported by evidence of segregation [21].
In patients 4 and 5, two missense amino acid changes

occurred in MITF at the same position. The pathogen-
icity of p.Arg341Cys was reclassified because it was
proven to be de novo and to cause prelingual hearing
loss in a five-year-old girl in April 2016 [22]. The reclas-
sification of p.Arg341Cys in turn supported the patho-
genicity of Arg341Gly. Two years later, p.Arg341Gly was

reported as a pathogenic variant in a Chinese family in
June 2018 [23], and in a Indian family in November
2018 [24], further supporting its pathogenicity. It is
worth noting that NM_198159.2(MITF):c.1021C > T
(p.Arg341Cys) was discovered from original file of an
unreported VUS in patient 5, who presented only con-
genital profound hearing loss when they were referred
for genetic testing.

ACMG/AMP guidelines (patients 6–7)
Two patients were reclassified due to the application of
standards and guidelines for the interpretation of se-
quence variants recommend by ACMG/AMP [17]. Spe-
cifically, TMC1 p.Gly417Glu and CDH23 p.Pro346Arg
were detected in patient 6 and patient 7, respectively.
Pathogenic missense changes at the positions of these
two variants have been established before [25, 26], pro-
viding moderate evidence to reclassify the variants.

Expanded analysis (patients 8–9)
Patient 8 was clinically diagnosed with nonsyndromic
hearing loss, and their sample was tested using Hearing-
Care_81 panel. The number of genes analyzed was in-
creased to 127 during reanalysis. An autosomal
dominant frameshift variant, NM_001127366.2(PAX3):-
c.870_871insC, was discovered and is known to be the
genetic cause of Waardenburg Syndrome [27]. Pene-
trance of individuals with Waardenburg Syndrome var-
ied, and sensorineural hearing loss was a presenting
feature in 47%~ 58% patients [27].
Patient 9 was reported to have congenital hearing

loss without a family history, and his report listed
only the pathogenic variant c.1333C > T in TMC1
alone at December 2014. The expanded analysis un-
covered a CNV in conjunction with this SNV. The
exon-level deletion from exon 6 to exon 10 was
missed in the earlier analysis because CNV analysis
was not available at that time.

Discussion
In this study, we increased the diagnostic yield of con-
genital/prelingual hearing loss patients from 39 to 43%
by reanalysis of targeted gene panel data. Considering
that the contribution of genetic factors to congenital
hearing loss is around 50% [1], the improvement to 43%
is significant. The residual cases might be attributable to
untargeted, novel, or unknown deafness-related genes,
non-exonic sequence variants, or structural variations
that could be detected by whole genome/exome sequen-
cing [9, 28, 29].
Reanalysis of targeted gene panel data for a specific

disease is reliable and valuable. To date, all published re-
analysis research has focused on WES data for a wide
spectrum of disorders [7, 9, 10]. The diagnostic yield

Table 2 Characteristics and diagnosed yield of the study cohort

Patients,
No. (%)

Diagnosed yield
before reanalysis,
No. (%)

Diagnosed yield
after reanalysis,
No. (%)

All 210 (100) 82 (39) 90 (43)

Sex

Male 102 (49) 42 (41) 44 (43)

Female 108 (51) 40 (37) 46 (43)

Family history

Yes 52 (25) 21 (40) 25 (48)

No 158 (75) 61 (39) 65 (41)

Selection

HearingCare_127 174 (83) 72 (41) 77 (44)

HearingCare_81 36 (17) 10 (28) 13 (36)

Year

2014 10 (5) 2 (20) 4 (40)

2015 62 (30) 30 (48) 32 (52)

2016 93 (44) 33 (35) 35 (38)

2017 45 (21) 17 (38) 19 (42)
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increased by 11~13%, mainly due to the discovery of
new genes linked with the disorders [9, 10]. By compari-
son, in our reanalysis new evidence from publications to
reclassify the pathogenicity of variants was the leading
contributor of novel diagnoses. Furthermore, the dra-
matic increase in the number of pathogenic variants cu-
rated (9210 pathogenic variants per year) [7] reinforces
the value of variant reinterpretation for such data.
Although a recent study revealed that reinterpretation

of genomic test results should be performed at least
every two years [30], and it is clear that periodic reanaly-
sis of undiagnosed cases is beneficial because of the
growth in knowledge linking variants and diseases, fre-
quent reassessment is both expensive and
time-consuming, rendering this approach to be static in
practice. Framework to improve the efficiency of re-
analysis is further required.
Consistent with previous publications, GJB2 and

SLC26A4 were the major genetic causes of hearing loss in
the Chinese population; the main contributing variants
were GJB2 c.235delC, GJB2 c.109G >A, and SLC26A4
c.919-2A >G [31, 32]. In our reanalysis, we upgraded a
three-base deletion, NM_016239.3(MYO15A):c.102
45_10247delCTC, from VUS to pathogenic in light of evi-
dence that it cosegregates with the disease [20]. This
variant was detected in two probands (compound hetero-
zygous in patient 1 and homozygous in patient 2). The al-
lele frequency was 0.299% in our in-house hearing loss
patient database, whereas it was 0.06% in Eastern Asian
and was not detected in other ethnic groups in the Gen-
ome Aggregation Database [18]. Together, these findings
support the notion that this pathogenic allele is enriched
in the Asian population.
Many challenges remain for variant interpretation in

practice. First, transcript discrepancy can lead to in-
accurate variant interpretation [33]. For example, an
autosomal dominant variant was curated as
NM_198159.2(MITF):c.1021C > G in patient 6, whereas
it was reported as NM_000248.3(MITF):c.718C > G [23],
creating a significant barrier to discovery for geneticists.
Many genes produce multiple transcripts, and determin-
ing which should be used as a reference for evaluating the
impact of a variant often presents a challenge [34]. Re-
cently, clinically relevant transcripts of deafness-related
genes were systematically curated [35], offering a path to
unify the use of transcripts in analyzing hereditary hearing
loss. The framework for transcript curation and selection
might offer a good example of consistency in variant
interpretation.
Second, genetic heterogeneity (in terms of alleles and

loci) is notable in inherited diseases, especially hearing
loss, making it harder to identify causal variants. Allelic
heterogeneity sometimes leads to heterogeneity in the
clinical phenotype. In our study cohort, patient 8

presented with congenital nonsyndromic hearing loss,
leading to the use of HearingCare_81 panel, which
mainly targets nonsyndromic hearing loss genes. As a re-
sult, the Chinese hotspot variant NM_00400
4.5(GJB2):c.109G > A was detected and reported in a
heterozygous state. Our expanded analysis revealed a
frameshift autosomal dominant variant, NM_0011
27366.2(PAX3):c.870_871insC, in the original unfiltered
files. Since PAX3 is linked with Waardenburg syndrome
with variable clinical features [27], it was not included in
the HearingCare_81 panel and thus not considered as
the molecular etiology of this case. The heterogeneity
and penetrance of the phenotype misled audiologists,
resulting in this patient initially being undiagnosed.
High levels of locus heterogeneity present another

challenge. In the database of Online Mendelian Inherit-
ance in Man, over 100 genes are associated with hearing
loss. This means that numerous VUS from different
genes were curated and interpreted, presenting a chal-
lenge for geneticists in determining which VUS to
prioritize and report when no pathogenic variant is de-
tected. To date, professional societies have not provided
specific recommendations about VUS reporting [36, 37],
and reporting practices for VUS vary dramatically be-
tween different laboratories [38].
Third, the interpretation of the criteria in the ACMG/

AMP guidelines is not always consistent between labora-
tories. For example, the application of variant frequency
in publicly available population databases is recom-
mended, whereas the cutoffs are not indicated except for
benign variants alone (allele frequency > 5%) [17]. Simi-
lar ambiguity can be seen in PM3 (For recessive disor-
ders, detected in trans with a pathogenic variant) and
PP1 (Cosegregation with disease in multiple affected
family members in a gene definitively known to cause
the disease), in which stronger conclusions can be drawn
on the basis of more data [17]. Recently, expert specifi-
cations of the ACMG/AMP variant interpretation guide-
lines for genes and disorders have been published [39,
40], and the guidelines are expected to continue to be-
come more specific in the future.
Although we did not recontact the patients for the up-

dated results yet, we noted that a number of genetic cen-
ters are recontacting patients occasionally or periodically
for modified results [41], which may pose ethical and
legal issues. For example, reinterpretation may upgrade a
participant’s results from negative to positive. How-
ever, the participant may not want positive genomic
results in their medical records for their own reasons.
In this circumstance, the participant’s autonomy
should be respected [42]. Recently, the American So-
ciety of Human Genetics developed a position state-
ment to provide necessary guidance, which will
facilitate researchers to appropriately operationalize
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patient recontact after reinterpretation of genetic and
genomic research results [43].

Conclusions
In conclusion, this work demonstrates benefits of re-
analysis of targeted gene panel data from congenital/pre-
lingual hearing loss patients. A total of 9 previously
undiagnosed case obtained diagnosis, improving the
overall diagnostic rate from 39 to 43%. New diagnoses
are attributed to newly published clinical evidence in the
literature, adoption of new interpretation guidelines and
expanded analysis range. In spite of the fixed design of
targeted gene panels, reanalysis of such data is still bene-
ficial due to the improvements in variant interpretation.
We propose that periodical reanalysis should be per-
formed in clinical practice.
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