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Abstract

Background: Most statistical methods used to identify cancer driver genes are either biased due to choice of
assumed parametric models or insensitive to directional relationships important for causal inference. To overcome
modeling biases and directional insensitivity, a recent statistical functional chi-squared test (FunChisq) detects
directional association via model-free functional dependency. FunChisq examines patterns pointing from
independent to dependent variables arising from linear, non-linear, or many-to-one functional relationships.
Meanwhile, the Functional Annotation of Mammalian Genome 5 (FANTOM5) project surveyed gene expression at
over 200,000 transcription start sites (TSSs) in nearly all human tissue types, primary cell types, and cancer cell lines.
The data cover TSSs originated from both coding and noncoding genes. For the vast uncharacterized human TSSs
that may exhibit complex patterns in cancer versus normal tissues, the model-free property of FunChisq provides us
an unprecedented opportunity to assess the evidence for a gene’s directional effect on human cancer.

Results: We first evaluated FunChisq and six other methods using 719 curated cancer genes on the FANTOM5 data.
FunChisqg performed best in detecting known cancer driver genes from non-cancer genes. We also show the capacity
of FunChisq to reveal non-monotonic patterns of functional association, to which typical differential analysis methods
such as t-test are insensitive. Further applying FunChisq to screen unannotated TSSs in FANTOM5, we predicted 1108
putative cancer driver noncoding RNAs, stronger than 90% of curated cancer driver genes. Next, we compared
leukemia samples against other samples in FANTOM5 and FunChisq predicted 332/79 potential biomarkers for
lymphoid/myeloid leukemia, stronger than the TSSs of all 87/100 known driver genes in lymphoid/myeloid leukemia.

Conclusions: This study demonstrated the advantage of FunChisq in revealing directional association, especially in
detecting non-monotonic patterns. Here, we also provide the most comprehensive catalog of high-quality
biomarkers that may play a causative role in human cancers, including putative cancer driver noncoding RNAs and
lymphoid/myeloid leukemia specific biomarkers.
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Background

Greatly outnumbering coding genes, noncoding RNA
(ncRNA) genes remain elusive in our understanding of
their function. Among various ncRNAs, microRNA, long
noncoding RNA, and enhancer RNA are the most heav-
ily studied and some are deregulated in cancer [1-3]. Due
to technical challenges caused by their typically low abun-
dance, ncRNA profiles of cancer are yet widely available.
For example, even in The Cancer Genome Atlas (TCGA)
project [4], the expression of non-polyadenylated ncR-
NAs in tumor samples is not provided. Encouragingly, the
Functional Annotation of Mammalian Genome 5 (FAN-
TOMS5) project [5] measured promoter-level transcrip-
tome data at 209,911 transcription start sites (TSSs) in 752
human samples covering all major human tissue types,
primary cell types, and notably many cancer cell lines
represented by 225 samples. Such a sampling diversity
captured a wealth of system dynamics. Additionally, tech-
nical variations introduced in data acquisition are minimal
because all samples in the project were sequenced at the
same facility housed in RIKEN, Japan. More than half
(107,139) of the TSSs are unannotated, pointing to most
likely novel ncRNAs. Therefore, the FANTOMS5 data set
opens up an enormous opportunity to study the role for
ncRNAs in cancer.

Most statistical methods used to identify cancer marker
genes [6, 7] are either biased due to parametric model
choices, insensitive to directional causal relationships, or
unable to reveal non-monotonic patterns. Table 1 summa-
rizes advantages and disadvantages of several widely used
biomarker detection methods. A symmetric association
test reveals no directionality of a pattern, and thus cannot
infer causality. Differential gene expression analysis meth-
ods are often unable to detect non-monotonic patterns
from gene to phenotype, commonly seen in biological
systems. Logistic regression can fit a nonlinear function
but requires a correct parametric model. To overcome
these issues, the functional chi-squared test (FunChisq)

Table 1 Comparison of widely used biomarker detection
methods

Methods

Advantages

Model free No
directionality

Disadvantages

Pearson’s chi-squared test

No non-
monotonicity

t-test No discretization

Wilcoxon test Nonparametric No non-
monotonicity
Logistic regression Nonlinear No Requires a
discretization parametric
model
DESeq2; edgeR Generalized linear Requires a
model parametric
model
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[8-10] is a recently developed statistical test for direc-
tional association via model-free functional dependency.
The FunChisq test statistic is computed from a con-
tingency table, where the row variable represents inde-
pendent variable X and the column variable for depen-
dent variable Y. When both X and Y are numeric
or ordinal, we can define the monotonicity of a pat-
tern. X to Y is monotonically increasing/decreasing if
Y never decreases/increases as X increases. X to Y is
non-monotonic if ¥ can both increase at one point and
decrease at another as X increases. The FunChisq test
statistic is maximized by either one-to-one or many-to-
one non-constant functions from X to Y given marginal
sums of dependent variable Y. Thus, FunChisq is sensitive
to both monotonic and non-monotonic functional pat-
terns. The original FunChisq test established an asymp-
totic chi-squared null distribution for the test statistic
[8]. An exact functional test using the same test statistic
has been developed to compute its statistical significance
based on an exact, instead of asymptotic, null distribution
[9]. We also introduce function index &, derived from the
FunChisq statistic, to measure the effect size of functional
dependency. The relationship of the index to the p-value
of the FunChisq test statistic is analogous to that of fold-
change to p-value in differential gene expression analysis.
The pair of fold change and p-value is often visualized
together in a volcano plot. Similarly, examining both the
function index and the FunChisq p-value disfavors pat-
terns either weak in functional dependency or statistically
insignificant, leading to increased confidence in causal
inference.

The Heritage Provider Network (HPN)-Dialogue
for Reverse Engineering Assessments and Methods
(DREAM) network inference challenges aimed to deci-
pher causal gene networks connecting signaling proteins
in human breast cancer [11]. It evaluated network infer-
ence approaches employed or designed by about 80
participating teams for their effectiveness on revealing
signaling networks. On the in silico data from a non-linear
dynamical system model, FunChisq performed the best
among all submissions. On the experimental phospho-
protein data measured from cancer cell lines in response
to stimuli, prior biological knowledge about molecu-
lar interactions was allowed to be integrated. Notably,
FunChisq, without incorporating any prior information,
was ranked the 7th after six methods all using prior
knowledge. In the post-challenge evaluation, combining
prior knowledge with FunChisq led to substantial better
performance over the best performer on the experimental
data [11]. The outstanding performance of FunChisq
supports its practicality in causal inference. Its advantage
in distinguishing interaction directionality and sensitivity
to non-monotonic patterns motivated us to study genes
involved in cancer using FANTOMS5 data.
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On FANTOMS5 data, we first evaluated FunChisq and
six other methods using 719 curated cancer genes. Fun-
Chisq performed best in detecting known cancer driver
genes from non-cancer genes. We also show the capac-
ity of FunChisq to reveal non-monotonic patterns, to
which typical differential analysis method such as ¢-test
are insensitive. We further applied FunChisq on unan-
notated human TSSs in FANTOMS5, and predicted 1108
ncRNAs as putative cancer drivers. They have directional
association to cancer stronger than 90% of the curated
cancer driver genes. Next, we compared leukemia sam-
ples against other samples in FANTOMS5 and FunChisq
predicted potential biomarkers for lymphoid leukemia
and for myeloid leukemia, stronger than all known driver
genes of the two leukemia types.

This study demonstrates that FunChisq indeed detected
many non-monotonic TSS-cancer association patterns,
to which previous methods may be blind. As the TSS-
cancer associations are predicted by directional functional
dependency without assuming a parametric model, we
have provided the most comprehensive and unbiased cat-
alog of high-quality noncoding and coding RNA TSSs that
may be causative factors to human cancers.

Results
FunChisq is powerful in detecting known human cancer
genes
We evaluated the performance of FunChisq and six other
tests in distinguishing 719 curated cancer genes on FAN-
TOMS5 human data. The six other tests include Pearson’s
chi-squared test [12], Wilcoxon test [13], t-test [14], logis-
tic regression [15], DESeq2 [16], and edgeR [17]. The
curated cancer genes were obtained from Cancer Gene
Census [18] in COSMIC Release v83. The ground truth
in the evaluation was generated with true cancer driver
genes and non-cancer-associated genes. For each cancer
driver gene, we extracted its representative TSS, which
was the most transcribed among all TSSs of the same gene.
However, non-cancer-associated genes are not typically
reported in the literature. Thus, excluding curated cancer
genes, we randomly picked the same number of TSSs—
most likely non-cancer TSSs. Then we evaluated all seven
methods for their performance in revealing true cancer
driver gene TSSs. DESep2 and edgeR were tested on raw
read count data, while the other methods on discrete
data transformed from expression data in the unit of tags
per million (TPM). Specifically, we used the R package
Ckmeans.1d.dp [19, 20] to discretize the log-transformed
TPM abundance from all samples for each TSS, before
which numbers of discretization levels for each gene were
automatically determined by R package mclust [21] by
fitting a finite Gaussian mixture model.

The performance of the seven methods on detecting
cancer TSSs from FANTOMS5 data is summarized in
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Fig. 1. The receiver operating characteristic (ROC) curves
in Fig. 1a and precision-recall (PR) curves in Fig. 1b indi-
cate that FunChisq outperformed the other six methods.
We repeated the same evaluation on 100 different sets
of randomly selected non-cancer TSSs. Figure 1c,d show
that the areas under the ROC and PR curves of FunChisq
are markedly better than all other six methods, demon-
strating the advantage of FunChisq. The fact that direc-
tional FunChisq scored better than directionless Pearson’s
chi-squared test suggests the importance of direction in
detecting cancer genes. FunChisq also performed much
better than the other five methods (Wilcoxon test, ¢-test,
DESeq2, edgeR, and logistic regression) not designed for
detecting non-monotonic patterns, suggesting the impor-
tance of detecting such patterns when analyzing cancer
driver gene expression, as demonstrated in the next sub-
section.

FunChisq is sensitive to non-monotonic patterns

On the whole-body FANTOMS5 human transcriptome
data, we showcase non-monotonic interaction patterns
between TSS abundance of two known cancer genes,
KAT6A (also known as MYST3 and MOZ) [22] and BRAF
[23], and their cancer status of human samples in Fig. 2.
The non-monotonicity was detected only by FunChisq,
while approaches based on comparison of means, such as
t-test, would fail, because the means of non-monotonic
patterns between cancer and non-cancer samples may
not differ significantly. KAT6A has been implicated to
either promote or inhibit senescence [24], important for
tumor formation and growth [25]. KAT6A is associ-
ated with oncogenesis [22] in both leukemia [26—-29] and
breast cancer [30], because of dysregulation of its his-
tone acetyltransferase activity or its aberrant expression.
KAT6A was also hypothesized to suppress tumor when
severe DNA damage happened [24, 31]. Thus, KAT6A
may both promote and suppress cancer, playing compet-
ing roles depending on the cellular context. BRAF has
long been established as a proto-oncogene [32]. However,
BRAF paradoxically inhibits stem cell renewal [33]; also
in BRAF-driven mouse model of colon cancer, tumor for-
mation is suppressed [33]. Therefore, BRAF may either
promote or inhibit cancer depending on the context. Both
examples illustrate the capacity of FunChisq in recog-
nizing non-monotonic patterns, which t-test and other
statistical analysis methods based on the comparison of
group means may not manage to differentiate.

FunChisq is empirically efficient in runtime

We measured the total runtime of the seven meth-
ods evaluating the relationship of all TSSs to cancer, as
summarized in Table 2. The input to each method is
the FANTOMS5 data covering 209,911 TSSs across 752
samples, including 527 cancer cell lines and 225 normal
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Fig. 1 FunChisq outperformed six widely-used methods in detecting known cancer genes from FANTOM5 data. FunChisq test, Pearson'’s
chi-squared test, Wilcoxon test, t-test and logistic regression used transformed expression data. DESeq2 and edgeR used raw read count data. a ROC
curves of each method. b PR curves of each method. ¢ AUROC distributions after repeating the randomized evaluation 100 times. d AUPR

distributions after repeating the randomized evaluation 100 times

primary/tissue cells. The program ran on a single thread
of a server with 12 x2.40GHz Intel(R) Xeon(R) CPU E5645
and 192GB RAM under openSUSE Leap 15.0 OS. Fun-
Chisq, Pearson’s chi-squared test, Wilcoxon test and ¢-test
took the least time of less than 10 minutes. Logistic regres-
sion and edgeR took much longer time fitting default
models. DESeq2 costed most time due to raw read count
normalization, dispersion estimation, and generalized lin-
ear model fitting. In summary, the empirical runtime
comparison suggests that FunChisq is practically efficient.

FunChisq reveals putative cancer driver noncoding rNAs

The latest FANTOMS5 annotation has identified most cod-
ing genes in the human genome. Thus, we hypothesize
that the majority of the 107,139 unannotated TSSs may
belong to potential novel ncRNAs. To identify the direc-
tional effect from TSS to cancer, we applied FunChisq on
the expression of each TSS in cancer versus non-cancer

samples to report function indices and p-values. Figure 3
shows the distribution of function index of representa-
tive TSSs from the 719 known cancer genes, versus that
of all other TSSs. The two distributions demonstrate that
known cancer TSSs have a greater average function index
than other TSSs, indicating that the cancer status has
stronger dependency on known cancer TSSs than other
TSSs.

Rather than picking a fixed function index cutoff, we
selected the threshold at 90 percentile of known cancer
TSS function index values (Fig. 3). The criterion is strin-
gent to select the most relevant candidates. At the 90
percentile function index cutoff of 0.40 and an adjusted
p-value threshold of 0.05, we selected 1108 unannotated
TSSs with a directional effect on cancer status. Thus they
are stronger than 90% of representative TSSs of all known
cancer driver genes, constituting putative cancer driver
ncRNAs. Figure 4 shows two such predicted ncRNAs, one
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Fig. 2 Non-monotonic directional interaction patterns from two known cancer genes to the cancer status of human samples. The horizontal axes
are log-scaled abundance of the most expressed TSS of each gene from FANTOM5. The vertical axes of the two top plots represent tissue types.
‘Cancer’ indicates a sample is from a cancer cell-line, ‘Normal’ for a sample from a non-cancer tissue. The vertical axes of the two bottom plots are
the probability density of gene expression level. FunChisq reported high statistical significance of both genes’ directional association with cancer
suggested by the low p-values, while t-test returned insignificant results indicated by large p-values. a p1@KAT6A, the most transcribed TSS of
known cancer gene KAT6A, is either up- or down-regulated in 527 non-cancer samples of various tissues, but has an intermediate level of expression
in 225 samples of various cancers. b pT@BRAF, the most transcribed TSS of known cancer gene BRAF, has a similar non-monotonic expression profile
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with a monotonic interaction pattern with cancer status
and the other a non-monotonic pattern. All 1108 pre-
dicted noncoding cancer TSSs are listed in Additional
file 1. We expect cancer biologists to find these ncRNA
biomarkers interesting and to apply either RNA silencing
or gene editing to study their functions in cancer.

Putative cancer-type specific biomarkers for lymphoid and
myeloid leukemias

Both lymphoid and myeloid leukemia samples have the
largest sample size among all cancer types sequenced by
the FANTOMS project. We contrast samples of a cancer
type and all remaining samples which also include other
cancer types, such that the markers identified are only
specific to the cancer type of interest. This strategy is only
possible with FANTOMS5 data in that they cover all major
tissue, cell, and cancer types in human.

Table 2 Empirical runtime of seven methods in evaluating
association of 209,911 transcription start sites with cancer

Methods Runtime
t-test 2m 26s
Pearson’s chi-squared test 8m 32s
FunChisq 8m 40s
Wilcoxon test 8m41s
edgeR 43m 44s
Logistic regression 44m 01s
DESeq2 54h 08m

The methods are sorted in the increasing order of runtime

We first searched for potential biomarkers of lymphoid
leukemia by testing the directional effect of each TSS
on lymphoid leukemia status. Among all 752 samples
from FANTOMS, there are 23 lymphoid leukemia and 48
related normal lymphoid samples. We divided the samples

0.25 0.50 0.75 1.00

Function index

0.00

Representative TSSs of known cancer gene
|:|TSSs of other genes & unannotated TSSs

Fig. 3 Distributions of function index measuring the directional
association from TSSs to cancer status. The red curve is the
distribution of the index from representative TSSs of known cancer
genes to cancer status. The blue curve is the distribution of
representative TSSs of non-cancer genes to cancer status. Cancer
gene TSSs apparently have more larger index values than non-cancer
gene TSSs, implying that the former group is more powerful than the
latter group at predicting cancer status. About 90% of known cancer
gene representative TSSs have an index value of less than 0.40, as
indicated by the vertical red dashed line
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Fig. 4 Two unannotated transcription start sites predicted as putative cancer driver ncRNAs. The horizontal axes are log-scaled TSS expression from
FANTOMS. The vertical axes of the two top plots represent tissue types. ‘Cancer’ indicates a sample is from a cancer cell-line, ‘Normal' for a sample
from a non-cancer tissue. The vertical axes of the two bottom plots are the probability density of gene expression level. a Putative cancer ncRNA
hg_112446.1 has a monotonic pattern with cancer status. b Putative cancer ncRNA hg_195085.1 exhibits a non-monotonic pattern with cancer status
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into two groups: the first group contains 23 lymphoid
leukemia samples and the second group has all other
729 samples (including the 48 normal lymphoid samples
and all cancer types other than lymphoid leukemia). We
then performed the FunChisq test on each TSS to hunt
for ones on which lymphoid leukemia status functionally
depend. By requiring a p-value under 0.05 and a function
index greater than all 87 known lymphoid leukemia driver
gene TSSs, we identified 332 putative lymphoid leukemia
biomarkers.

Next we performed the same procedure to search for
biomarkers for myeloid leukemia by contrasting the 28
myeloid leukemia samples with the remaining 724 sam-
ples (including 26 normal myeloid samples and all cancer
types other than myeloid leukemia). We detected 79 sta-
tistically significant putative myeloid leukemia biomark-
ers, with a p-value no more than 0.05 and function index
greater than the TSSs of all 100 known myeloid leukemia
driver genes.

Figure 5 illustrates the expression patterns of four
biomarker candidates that are distinct between the spe-
cific leukemia and other samples. Only in lymphoid
leukemia, pI@SNX9 is under-expressed but not in any
other samples (Fig. 5a); hg 153880.1 is mostly highly
expressed only in lymphoid leukemia (Fig. 5b). p4@LMO2
is exclusively highly expressed in myeloid leukemia
(Fig. 5¢); hg 35610.1 also exhibited the highest expression
in myeloid leukemia (Fig. 5d).

Distributions of detected biomarkers along each chro-
mosome for lymphoid and myeloid leukemias are shown
in Fig. 6. In lymphoid leukemia samples, chromo-
somes 12 contain the highest number of biomark-
ers, while in myeloid leukemia samples, chromosome
6 and 19 has much more biomarkers than others. In

chronic lymphocytic leukemia (CLL), trisomy 12 has been
reported to be the third most frequent chromosomal
aberration and is often present as a unique cytogenetic
alteration [34]. In acute myeloid leukemia (AML), tri-
somy chromosome 6 has been reported as a sole cyto-
genetic abnormality in AML-M5 [35], and chromosome
19 abnormalities are commonly seen in AML-M7 [36].
Our findings of the biomarker genomic locations are con-
sistent with these known chromosomal abnormalities in
subtypes of leukemia, which supports potential cancer-
related functions of the putative biomarkers detected.

The predicted biomarkers of both lymphoid and
myeloid leukemias are reported in Additional file 2 (see
section Additional files).

Discussion

FunChisq measures the functional strength from row vari-
able X to column variable Y in a contingency table via
a model-free approach. Given the column sums, a con-
tingency table maximizes the FunChisq statistic if and
only if column variable Y is a non-constant mathemati-
cal function of row variable X. This theoretical optimality
makes FunChisq model-free in promoting all forms of
functional patterns regardless of parametric family, lin-
earity, or monotonicity. This flexibility unconstrained by
functional forms offers one a greater capacity in inferring
causality with reduced biases than other methods.

The model-free property of FunChisq aligns well to
the need of unbiased knowledge discovery in the anal-
ysis of vast uncharacterized human noncoding genes
as uncovered by the FANTOMS5 project, providing
us a powerful instrument to assess objectively the
evidence for a gene’s directional effect on human
cancer.
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Fig. 5 Gene expression patterns of four potential leukemia biomarkers are nearly exclusively cancer-type specific. The horizontal axes are TSS levels
of gene expression from FANTOM5. The vertical axes are sample types. a Putative lymphoid leukemia biomarker SNX9. b Putative lymphoid
leukemia biomarker hg_153880.1. € Putative myeloid leukemia biomarker LMO2. d Putative myeloid leukemia biomarker hg_35610.1

Conclusions

We have shown that the FunChisq statistical method is
powerful in detecting directional association, sensitive
to both monotonic and non-monotonic patterns. Strong
functional patterns provide evidence for causality. Apply-
ing the method on the FANTOMS5 data covering the
largest number of potential noncoding genes for many
cancer types, we revealed putative cancer driver ncRNAs
with a directional effect on cancer status stronger than
90% of all 719 curated cancer genes. Furthermore, we
predicted 332 potential cancer biomarkers for lymphoid
leukemia and 79 for myeloid leukemia, stronger than all
known lymphoid or myeloid leukemia genes. Our study
thus contributes a catalog of novel biomarker candidates
that may signify a deeper understanding of cancer biology.

Methods

We used the normalized functional chi-squared test with
an asymptotic normal null distribution to discover direc-
tional association in contingency tables [8, 11]. The test

detects model-free functional dependency and does not
need a prescribed functional form. The directional func-
tional dependency can potentially indicate the causal
direction of an interaction based on the causality-by-
functionality principle [37].

An observed r x ¢ contingency table O has r rows rep-
resenting the discrete levels for independent variable and
¢ columns representing the discrete levels for dependent
variable. Let O; denote the sample counts at row i and
column j. Let O;. be the row sum of row i and O be the
column sum of column j, defined as

c r
0.=» 0; and O;=) 0y 1)
— -~

Let n represent the sample size of table O. The FunChisq
statistic of observed table O is defined by

Cc L 2
XF(0) = [ZZ (O”OOZ o ] > )

i=1 j=1 l j=1 Vl/C
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Fig. 6 Chromosomal locations of putative leukemia biomarkers. Chromosomal counts of putative biomarkers for (a) lymphoid and (b) myeloid
leukemia. Genomic maps of putative biomarkers for (€) lymphoid and (d) myeloid leukemia

which asymptotically follows a chi-squared distribution
with v = (r — 1)(c — 1) degrees of freedom, under the null
hypothesis of the row and column variables being statis-
tically independent and an assumption of the dependent
variable being uniformly distributed. We further define
the normalized FunChisq by mean-shifting and standard-
deviation-scaling Xf(O) to

XxF(0) —v
Vav

(Normalized FunChisq)

which asymptotically follows a standard normal distribu-
tion when the degrees of freedom v is high [38] under
the null hypothesis. Our empirical evaluation in Fig. 1
suggests that the normalized FunChisq is effective at
detecting functional dependency even if v is small.

We also introduce the function index & to measure the
effect size of FunChisq test:

g O @
f = 2
¢ (0 —nfc)
NS 77
n(c—1) ]; YR
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The index assesses the strength of functional dependency
of column variable Y on row variable X. It ranges from 0 to
1, with greater values representing stronger non-constant
functionality. The index should be used in conjunction
with the p-value of the test statistic to ensure both a
sufficient effect and an acceptable statistical significance.
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