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Abstract

Background: To facilitate the investigation of the pathogenic roles played by various immune cells in complex
tissues such as tumors, a few computational methods for deconvoluting bulk gene expression profiles to predict
cell composition have been created. However, available methods were usually developed along with a set of
reference gene expression profiles consisting of imbalanced replicates across different cell types. Therefore, the
objective of this study was to create a new deconvolution method equipped with a new set of reference gene
expression profiles that incorporate more microarray replicates of the immune cells that have been frequently
implicated in the poor prognosis of cancers, such as T helper cells, regulatory T cells and macrophage M1/M2 cells.

Methods: Our deconvolution method was developed by choosing e-support vector regression (e-SVR) as the core
algorithm assigned with a loss function subject to the L7-norm penalty. To construct the reference gene expression
signature matrix for regression, a subset of differentially expressed genes were chosen from 148 microarray-based
gene expression profiles for 9 types of immune cells by using ANOVA and minimizing condition number.
Agreement analyses including mean absolute percentage errors and Bland-Altman plots were carried out to
compare the performances of our method and CIBERSORT.

Results: In silico cell mixtures, simulated bulk tissues, and real human samples with known immune-cell fractions
were used as the test datasets for benchmarking. Our method outperformed CIBERSORT in the benchmarks using
in silico breast tissue-immune cell mixtures in the proportions of 30:70 and 50:50, and in the benchmark using 164
human PBMC samples. Our results suggest that the performance of our method was at least comparable to that of
a state-of-the-art tool, CIBERSORT.

Conclusions: We developed a new cell composition deconvolution method and the implementation was entirely
based on the publicly available R and Python packages. In addition, we compiled a new set of reference gene
expression profiles, which might allow for a more robust prediction of the immune cell fractions from the
expression profiles of cell mixtures. The source code of our method could be downloaded from https://github.com/
holidayO1/deconvolution-to-estimate-immune-cell-subsets.
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Background

Tumors are heterogeneous systems containing not only
cancer cells but also a variety of other types of genetic-
ally normal cells. Those non-cancer cells are not just
unimportant players, and accumulating evidence has
revealed that certain types of immune cells infiltrating in
the tumor microenvironment (TME) may actively inter-
act with cancer cells and thus promote their malignant
phenotypes such as enhancing survival of cancer cells
and supporting their metastasis (for review see [1, 2]).

Modulating the tumor immunity could be an effective
strategy to treat cancers. The success of checkpoint
blockade therapy against CTLA4 or PD1/PDL1 suggests
that immunotherapy of cancers is promising and the
effect could be fairly durable, at least for some patients
with certain tumors. Therefore, more in-depth studies
might help resolve questions such as finding the distinct-
ive expression features of each type of immune cells, and
the association between patients’ immunophenotypes
and responses to differential anticancer treatments.

To further study cancer immunity, quantifying the
composition of the immune infiltrates in cancer tissues
is an important issue. Apart from pure experimental ap-
proaches in cell biology, such as immunohistochemistry
(IHC) and flow cytometry, computational approaches
that can take bulk transcriptome profiling data as the in-
put to estimate the relative abundance of each immune
cell subset have been developed (for review see [3]). The
underlying rationale of such computational approaches
is treating bulk expression profiles as a linear combin-
ation of the expression profiles of a variety of cell sub-
sets, and thus deconvolution of the mixture of profiles
may recover the fractions of different types of cells.

A number of different methods have been proposed to
perform the deconvolution of the gene expression profiles
of cell mixtures, including linear least squares regressions
[4, 5], non-negative matrix factorization [6-8], quadratic
programming [9, 10], v-support vector regression [11], etc.
Among the approaches, Newman et al. developed a novel
tool, CIBERSORT, which can perform linear support
vector regression (SVR) to deconvolute a mixture of gene
expression profiles [11]. One of the benchmark experi-
ments of CIBERSORT, which was performed by taking
the samples of peripheral blood mononuclear cells
(PBMC) with the fractions of cell subsets confirmed by
flow cytometry, revealed a high Pearson correlation of
approximately 0.5 to 0.76 between the predicted abun-
dance and the ground truth. Furthermore, to enumerate
different types of immune cells, CIBERSORT utilizes a
reference set consisting of 113 gene expression profiles,
which correspond to 22 types of immune cells, to con-
struct a reference gene signature matrix LM22. This
means that CIBERSORT has been designed to predict the
relative proportions of diverse immune cell types.
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However, there is some bias in the choice of reference
gene expression profiles to build LM22, which makes
CIBERSORT a tool that might not be very optimized for
the purpose of deconvoluting certain immune cells that
have been reported to modulate cancer immunity, such
as regulatory T cells (Treg), T helper cells (Th), and
macrophage M1 and M2 cells.

For example, even though in LM22 there are 7 and 8
gene expression signatures of naive B cells and memory
B cells respectively, there are only 3 signatures collected
each for Treg cells and Th cells. In addition, in LM22
there are 24 microarray samples collected for monocytes
and macrophage MO cells, whereas there are only 3
microarray samples derived from macrophage M2 cells.
The obviously lower number of replicates in the refer-
ence dataset for certain types of immune cells may intro-
duce a risk of decreasing the robustness in finding the
differentially expressed genes to build specific expression
signatures for those cells, influencing the precision of
the predicted fractions. After all, while monocytes are
found in bone marrow, blood, and spleen, they differen-
tiate into macrophages under the control of a series of
cytokines when recruited into tissues (for review see
[12]). In particular, tumor-associated macrophages
which have been correlated with the poor prognosis of a
number of cancers have been reported to express M2-
like phenotypes (for review see [13—15]). Therefore, in
this study, we developed an immune cell deconvolution
method that might achieve a better accuracy on the ex-
pression profiles derived from complex tissue samples
such as tumor masses.

We built a new dataset of reference gene expression
profiles such that a higher number of microarray sam-
ples could be recruited for the immune cell types that
have been reported to influence the survival of cancer
patients, including Treg, Th, M1, and M2 cells. The ex-
pression levels of well-known marker genes for each of
those immune cells were assessed in the microarray data.
Benchmarking of our method was performed by asses-
sing the cell composition in the microarray datasets of
single-type cells, cell mixtures such as PBMC, and in
silico cell mixtures.

Methods

Study design

The workflow overview of the development of our
method is illustrated in Fig. 1. To construct the refer-
ence gene signature matrix to be used in regression, we
surveyed the NCBI Gene Expression Omnibus (GEO)
microarray datasets and thus we collected the gene ex-
pression profiles for 9 types of immune cells, including
dendritic cells (DCs), macrophage M1 cells, macrophage
M2 cells, natural killer cells (NK cells), naive CD4 T
cells, T helper cells, regulatory T cells, naive CD8+ T
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cells, and memory CD8+ T cells. Then by using
ANOVA and calculating condition numbers we chose a
subset of differentially expressed genes to create the ref-
erence gene expression signature matrix. For implemen-
tation of the computational codes for our method, we
took advantage of the linearSVR class in the Python
package scikit-learn. We chose e-support vector
regression (e-SVR) as the core algorithm to perform de-
convolution in this study, and the LI-loss was applied.
Our &-SVR based deconvolution method could take bulk
expression profiles with unknown cell composition to
predict the fractions of 9 types of immune cells in com-
plex tissues.

Datasets for building the reference expression signature
We downloaded 148 microarray samples from NCBI
GEO, where at least 9 replicate samples were included
for each cell type. The numbers of samples for different
types of immune cells are listed in Table 1 and the NCBI
GEO sample accession numbers for those microarray
samples are provided in Additional file 1: Table S1.

Building the gene expression signature matrix

The microarray platform of all the samples obtained for
building the reference gene signatures is Affymetrix
U133 plus 2 (see Additional file 2: Table S1). The micro-
array data were quantile normalized using the Robust
Multi-array Average (RMA) procedure offered in the R
package affy [16]. Analysis of variance (ANOVA) was
performed using the R package stats to find genes that
have significantly higher values in certain types of
immune cells than in the others. The expression values
of those differentially expressed genes (DEGs) were
taken to build the initial matrix for the gene expression
signatures of the immune cells.

To make the reference gene signature matrix more ro-
bust against input variations or noises, we used condition
number as a means to determine how many DEGs should
be included in the final matrix. Technically, the condition

number of a matrix is the product of the norm of the
matrix and the norm of its inverse. Condition number is a
measurement of how sensitive a mathematical function
might be to changes or errors in the input data. In numer-
ical analysis, a function with a low value of condition
number is considered to be well-conditioned, since it
might have a relatively stable solution when there are
small fluctuations in the input data. A number of cell de-
convolution methods have applied the minimization of
condition numbers to the optimization of the reference
gene signature matrix [4, 9, 11].

To select the genes to generate the final gene expres-
sion signature matrix that has the minimal condition
number, all of the probe sets in the raw expression sig-
nature matrix were firstly sorted by the ANOVA p-value
in ascending order. The condition numbers for the gene
expression matrix consisting of the top G probe sets x
148 arrays were calculated by iterating through different

Table 1 The numbers of microarray samples for building the
reference expression signature for 9 types of immune cells

Immune cell types Subtypes Treatments  Replicates
Dendritic cell Immature 9
Mature 7
Tolerogenic 8
Naive CD4 T cell CD4+ CDA45RA+ 9
Naive CD8 T cell CD3+ CD8+ 13
Memory CD8+ T cell  CD45RO+ 12
Natural killer cell IL-2 treatment IL-2 12
Macrophage M1 IFNy treatment IFNy 9
IFNy + TNF treatment  IFNy +TNF 5
Macrophage M2 IL-4 treatment IL-4 25
T helper cell CD4+1L-12 treatment  CD4+1L-12 11
CD4 +1L-4 treatment  CD4+1L-4 12
Regulatory T cell IFNy treatment IFNy 8
No treatment 8
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G values with a step size of 500. The R function kappa
was used to estimate the condition number of each
matrix.

The list of probe sets that could give the minimal con-
dition number among all of the top lists (i.e. top 500,
1000, 1500, ...) was taken to build the final reference
gene signature matrix. After selecting the final G probe
sets, the median expression level of each probe set for all
of the replicates of one type of immune cells was esti-
mated and thus the final gene expression signature
matrix consists of column vectors for immune cell types,
each column vector containing G values for each im-
mune cell type. Then the R package hgul33plus2.db
was used to map probe sets to human genes. Whenever
multiple probes/probe sets could be mapped to one
gene, they would be collapsed to just one record by
using a homemade R function, where the expression
value of this gene would be assigned with the probe/
probe set that has the highest median value across
samples.

Assessment of the reference gene expression signature in
clustering cells

To further evaluate if the final reference expression sig-
nature of genes might allow for a robust composition
deconvolution of immune cells, linear discriminant ana-
lysis (LDA), which can consider class-label information,
was applied to visualize the clustering of different types
of immune cells in the context of the selected G genes
by using the LinearDiscriminantAnalysis class
in the Python package scikit-learn. In addition,
hierarchical clustering, K-means, and weighted gene co-
expression network analysis (WGCNA) [17] were carried
out to determine if the cell clustering based on the ex-
pression values of the selected G genes agreed with the
cell phenotypes.

€-Support vector regression
Deconvolution can be conceived as finding the solution
to the convolution equation:

bl' = a;1X1 + ;2X2...3; jX;

where b; is the expression level of gene i in a sample
of cell mixture, a;; is the expression level of gene i in cell
type j (derived from the reference expression signature
for this cell type), and x ; is the unknown proportion of
cell type j in the cell mixture. Among the available cell
composition deconvolution tools, CIBERSORT uses a v-
SVR based approach and it outperformed the other tools
in benchmarking experiments [11]. Since SVR might be
superior to the other regression methods in providing a
sparse solution, we chose one type of SVR, e-insensitive
support vector regression (e-SVR), as the core algorithm
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to perform deconvolution in this study. To implement
our method, we took advantage of the 1inearSVR class
in the Python package scikit-learn. Unlike v-SVR
that is used by CIBERSORT, e-SVR does not control the
proportion of the support vectors to use in the final
model [18]. This means that an e-SVR based deconvolu-
tion model might allow for a higher flexibility in com-
bining different predictor variables, without setting a
lower bound on support vectors. After all, for one bulk
tissue without prior knowledge about its cell compos-
ition, it would be arbitrary to decide a lower bound of
immune cell types. In addition, LI-loss function was ap-
plied in order to minimize the mean average error
(MAE) between the predicted and ground truth values
[19]. Li-loss function might make the regression model
more robust to outlier values in the input data than L2-
loss function, since L2-loss function leads to the much
larger error for outliers because of the consideration of
the squared differences.

Benchmark of our deconvolution method

To assess the performance of our cell-type deconvolu-
tion method, a series of benchmarking approaches were
used by recruiting a variety of test samples such as pure
cells, in silico cell mixtures, simulated bulk tissues,
and PBMC samples with flow cytometry results.

Analysis of pure cell types

We started with the analysis of pure cell types by using
a leave-one-out strategy. In each test run, one of the
148 microarray samples obtained from NCBI GEO for
building the reference gene expression signature for
the 9 types of immune cells was used as the test data-
set to perform deconvolution, while the remaining 147
samples were put through to build the reference gene
expression signature for testing by using the aforemen-
tioned ANOVA-based procedure. Box plots and bar
charts were produced to show the distributions of the
predicted cell-type fractions in those pure-cell samples.
The results were compared with the predictions made
by CIBERSORT.

Analysis of in silico cell mixtures

To further evaluate the performance of our method in
predicting the immune cell composition, we prepared
expression profiles of in silico cell mixtures. In silico
mixture samples of 9 types of immune cells were pre-
pared for this benchmark. In each test run, a set of 9 mi-
croarrays, each from one unique immune cell type, were
randomly sampled from the 148 microarrays presented
in Table 1. The expression value for each gene in an in
silico mixture sample was a randomly-weighted sum
across 9 types of immune cells. The remaining 139 mi-
croarrays were used to build the gene expression
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signature matrix dedicated to a single testing run. Bland-
Altman plots were generated by using a homemade R
function in order to assess the agreement of the pre-
dicted cell fractions with the real cell-specific weights in
the in silico cell mixture samples [20]. The agreement
for individual tests was summarized by using the limits
of agreement (LoA) technique [21]. LoA corresponds to
the 95% confidence interval (ClIs) computed as the mean
difference *+ 1.96 x standard deviation (SD) of the differ-
ences. A smaller LoA might suggest that the predicted
cell fractions agree better with the real composition.

Analysis of simulated bulk tissues

To assess if our method might be readily applied to esti-
mate the cell composition using the bulk expression pro-
files derived from tissues consisting of many non-
immune cells, we simulated the bulk gene expression
profiles of tissues by in silico spiking the expression sig-
nals of immune cells into the microarray data of breast
tissues. The microarray sample of three breast tissues,
GSM739223-GSM739225, were downloaded from NCBI
GEO and normalized by using the justRMA function of
R package affy. In the simulated samples, three differ-
ent proportions of the gene expression signals from
breast tissues, namely, 30, 50 and 70% were tested. The
expression profiles of the 9 samples for the immune cells
to be in silico spiked into the simulated bulk breast tis-
sue were randomly sampled and weighted from the 148
microarrays as shown in Table 1. In each test run, the
deconvolution was performed by taking the remaining
139 microarrays to build the reference gene expression
signature matrix for testing. To reveal the agreement
between the predictions made by our method and the
ground truths, Bland-Altman (BA) plots were generated
in order to compare the prediction-truth agreements
between CIBERSORT and our method. The cumulative
percentages of observations for the difference between
predictions and real values were tabulated in order to
facilitate the comparison of performances between our
method and CIBERSORT. Besides, mean absolute per-
centage errors (MAPEs) were calculated to measure the
percentage of errors of the predicted cell fractions rela-
tive to the real cell-specific weights in the simulated bulk
tissues. Box plots were produced to show the distribu-
tions of MAPEs and the results were compared with the
MAPE:s of the predictions made by CIBERSORT.

Analysis of human PBMCs with flow cytometry results

On the other hand, the performance of our method was
assessed by using real mixture gene expression profiles
derived from PBMCs. Three sets of microarray samples
of human PBMCs, including GSE65133 [11], GSE106898
[22], and GSE107990 [22], were downloaded from NCBI
GEO, and the three datasets contain 20, 12, and 164
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microarray samples, respectively. Since each of these
PBMC samples has been determined for its composition
of immune cells by using flow cytometry, the agreement
of the cell abundance predicted by our method with the
experimentally determined composition could be mea-
sured. The platform of those microarray samples is the
Mlumina HumanHT-12 V4.0 expression beadchip, and
the raw data were quantile-normalized by using the R
package preprocessCore. Because our RefGES was
created by using the expression profiles generated by
Affymetrix U133 Plus 2.0 platform, there was an issue
about inconsistent distribution of expression levels when
data generated by non-Affymetrix platforms were used.
Thus, we followed a simple cross-platform quantile
normalization approach as used in [23]. We took the
148 microarrays used in this study as the reference set,
and then the expression profiles generated by the Illu-
mina platform were transformed to make their empirical
cumulative distribution function similar to the reference
set. MAPEs were calculated, BA plots were generated,
and cumulative percentages of observations for the
difference between predictions and real values were
tabulated to compare the performances of our method
and CIBERSORT.

Results

Building the reference gene expression signature matrix
Of the 54,675 probe sets in the Affymetrix GeneChip
Human Genome U133 Plus 2.0 Array, 44,224 probe
sets were found to be differentially expressed across 9
types of immune cells in the ANOVA of the 148
microarray samples for building the reference gene sig-
nature. By using the approach of minimizing the con-
dition number as mentioned, it was determined that
the optimal G value was 21,500 (Fig. 2), corresponding
to 12,366 genes, including 11,114 protein coding genes
and 1252 non-protein coding genes. The gene expres-
sion matrix of 12,366 genes x 148 arrays was further
collapsed to a matrix of 12,366 genes x 9 immune cell
types by taking the median value of the expression
levels of each gene within each type of immune cells.
This matrix was used as the reference gene expression
signature matrix (RefGES) in this study. The RefGES
matrix is provided in Additional file 2: Table S2. Those
12,366 genes as a whole will be described in the follow-
ing text as the signature genes (SGs). To reveal the
global structure of the data [24], these SGs were used
to perform a linear discriminant analysis (LDA) and
the first three axes that can maximize the separation
between multiple classes were taken to generate a
three-dimensional (3D) plot for visualization (Fig. 3a).
In general, different types of cells could be distinctly
separated from the others by rotating the 3D LDA plot,
except for that 3 samples of M1 cells and 2 samples of
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dendritic cells clearly located outside of their respect-
ive clusters (Fig. 3b). Besides, by using WGCNA, the
148 cells could be clustered into nine groups, each
group containing cells exclusively belonging to a single
type of immune cells.

Concordance between the predicted cell composition and
the true proportions

Pure-cell samples

Our method was then assessed by using the gene expres-
sion profiles with known proportions of immune cells.
First, each of the 148 microarray samples was tested by
using a leave-one-out strategy as mentioned in the
Materials and Methods. Since each microarray sample
was derived from only a single type of immune cell, these
microarray samples were labeled as pure-cell samples, and
the true cell composition for each of the pure-cell samples
is 1.00 for its distinctive type of immune cell.

In this benchmark, the prediction made by our
method could recover the major cell composition in
the pure-cell samples. For example, for all of the 12
pure-cell samples consisting of only memory CD8 T
cells (Fig. 4), our method consistently predicted that
memory CD8 T cells were the dominant type of im-
mune cells (> 0.8), and the predicted fractions for other
cell types were mostly lower than 0.10. In addition, the
prediction made by our method also agreed well with

the ground truth for the other 8 types of cells, as illus-
trated in Additional file 1: Figure S1.

The results of this benchmark are summarized in
Table 2. Our method achieved a mean value of at least
0.81 for each type of pure-cell microarray samples,
whereas the mean cell fractions predicted by CIBER-
SORT were much lower for each type of pure-cell
sample. In addition, the cell fractions predicted by
CIBERSORT also showed a higher variation when
deconvoluting the pure-cell samples of DC, M2, NK,
and CD4 T cells, than those predicted by our method.
Among the 9 types of pure-cell samples, the perform-
ance of CIBERSORT was the worst for M1 cells, T
helper cells, Treg cells, and memory CD8 T cells, where
the mean predicted fractions for them were 0.0, ~ 0.05,
~0.09, and ~0.0005, respectively. To sum up, for this
benchmark CIBERSORT failed to recover the dominant
cell type from the gene expression profiles of pure-cell
samples for M1 cells, T helper cells, Treg cells and
memory CD8 T cells, respectively.

In silico cell mixtures and simulated bulk tissues

To evaluate if our method might recover the cell com-
position by taking the expression profiles of cell mix-
tures, we prepared in silico mixtures of immune cells
and simulated bulk tissues. First, one hundred cell mix-
tures were generated, and each mixture with a randomly
assigned fraction. It turns out that for each of the 9
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immune cell types the predicted cell fractions had high
agreements with the true cell proportions (Fig. 5), since
all of the 95% limits of agreement (LoA) in the BA plots
were small (mean of difference =0, all of the LoAs are
within the range of — 8 and 8%).

Next, simulated bulk tissues were created, where 30,
50%, or 70% of the convoluted expression levels were
from breast tissues, and the remaining part was com-
posed of the 9 types of immune cells with randomly
assigned weights. For a performance comparison, the
same set of expression profiles of simulated bulk tissues

were used for cell composition prediction by CIBER-
SORT and by our method. For the benchmark of using
the simulated bulk tissues containing 30% expression
levels from breast tissues and 70% from immune cells,
the result suggests that, across all of the 9 types of im-
mune cells, our method might have higher accuracy than
CIBERSORT. The median value of the mean absolute
percentage errors (MAPEs) of the predictions made by
our method and the true values were 59% at the sample
level. Our method might recover the cell fractions in
each simulated bulk tissue more accurately and more
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consistently than CIBERSORT, as revealed by the
lower median value and the narrower interquartile
range (IQR) of the MAPEs estimated for the predic-
tions made by our method (t-test, p-value <0.001)
(Fig. 6a). The cumulative percentages for the
prediction-truth difference also reveal a trend that the

Table 2 The means and standard deviations (SD) of the
predicted cell fractions by our method and by CIBERSORT,
respectively, using the 148 pure-cell samples

predictions made by our method were less deviated
from the real values, as compared to the predictions
made by CIBERSORT (see Additional file 2: Table S3).
The BA plots suggest that there might be a higher level
of agreement of the predictions made by our method
with the ground truth, since the widths of the limits of
agreement (LoA) of our method were smaller than those of
CIBERSORT (Fig. 6b). In addition, the BA plots for the
predictions made by CIBERSORT show evidence of in-
creasing variability of differences with increasing the aver-

Our method CIBERSORT age of the predicted and real cell compositions (Fig. 6b).
Mean D Mean D By using the simulated bulk tissues containing less
DC 085 009 024 033  than 70% expression levels from immune cells, we
M1 081 007 0 0 noticed that the performance of our method degraded
obviously (see the changes from Figs. 6 and 7 to Fig. 8).
M2 084 014 038 038 \When only 30% of the expression levels of the simulated
NK 081 on 0.26 037 bulk tissues were derived from immune cells, the median
4T 082 008 071 019 values of MAPEs were increased to 96% at the sample
Th 087 0.09 005 004 level (Fig. 8a). The performances of CIBERSORT and
Treg 087 005 009 006  our method were not statistically different at the sample
08T 085 o1 027 010 level (Fig. 8a, t-test, p-value =0.25). The BA plot also
shows evidence of increasing variability of differences,
Memory CD8 T 0.87 0.04 0.0005 0.001

with increasing the average of the predicted and true cell
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compositions, for both of the predictions made by
CIBERSORT and by our method (Fig. 8b). Nonetheless,
the BA plots for this benchmark reveal that our method
might be better in predicting the fractions for naive CD4
T cells, CD8 T cells, dendritic cells, NK cells, and Treg
cells, since for these cell types the widths of the limits of
agreements (LoAs) of our method were smaller than
those of CIBERSORT (Fig. 8b).

The human PBMCs with flow cytometry results
Unlike the previous evaluations of our method where
only pure-cell samples and in silico cell mixtures and

simulated bulk tissues were used, the next set of bench-
marks were based on real human samples consisting of
multiple cell types — the human PBMCs with flow cy-
tometry results. The purpose of these benchmarks was
to evaluate if our method might still perform well when
samples derived from real human tissues were analyzed.
However, one consideration about this assessment is
that our method was not designed to predict the frac-
tions of all of the cell types that have been determined
for the human PBMC samples. For example, only 4 out
of the 9 cell types in the PBMC samples of GSE65133
could be treated by our method. The 9 cell types of the
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PBMC samples of GSE65133 are naive B cells, memory
B cells, CD8 T cells, naive CD4 T cells, resting memory
CD4 T cells, activated memory CD4 T cells, gamma
delta T cells, NK cells, monocytes. Only naive CD4 T
cells, CD8 T cells and NK cells matched exactly with the
types of immune cells that our method could predict
their fractions in a mixture.

Therefore, in order to slightly expand the cell types
that our method could treat for this benchmark, the
fractions predicted by our method for macrophage M1
and M2 cells, as well as dendritic cells, were summed up
as a means to estimate the fraction of the monocytes in
the samples. This approach was used because monocytes
can enter tissues and then be induced to differentiate
into M1/M2 cells and dendritic cells, and those types of
cells might still reserve certain gene expression signature
of monocytes [25]. Besides, the fractions predicted for
naive CD4 T cells, T helper cells, and Treg cells would
be summed up to estimate the fraction for CD4 T cells
in the PBMC samples. Additional file 2: Table S6 is pro-
vided to reveal the aforementioned cell type mapping
from the PBMCs to cell types of LM22 and the RefGES
in this study.

Thus, for the benchmark using GSE65133, the cell
fractions predicted by our method for naive CD8 T cells,
CD4 T cells, natural killer cells, and monocytes were

normalized to a sum of 1. The results of this benchmark
suggest that there was no significant difference in the
MAPEs of the predictions between CIBERSORT and our
method (Fig. 9a). The predictions made by our method
for monocytes might have a better agreement with the
real values (Fig. 9b and Additional file 2: Table S7), al-
though for the other cell types the widths of LoAs of our
method were larger than those of CIBERSORT (Fig. 9b).

On the other hand, for the benchmark using the 12
PBMC samples of NCBI GEO GSE106898, the flow cy-
tometry confirmed data contains the cell composition
of 29 types of immune cells. In order to assess our
method by using this dataset, a mapping table was cre-
ated such that the cell composition of certain subtypes
of immune cells were combined in order to assess its
agreement with the predicted fraction of either one of
the 7 cell types that could be treated by our method
(see Additional file 2: Table S8 for the mapping table).
The results of this benchmark suggest that there was
no significant difference in the MAPEs of the predictions
between CIBERSORT and our method (Fig. 10a). In this
benchmark, the predictions made by CIBERSORT might
have a higher level of agreement with real values than the
ones made by our method, since the widths of LoAs of
our method were larger for NK cells and T helper cells
(Fig. 10b). The cumulative percentages of observations
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for the prediction-truth difference also reveal that the pre-
dictions made by our method were more deviated from
the real values for these cell types (see Additional file 2:
Table S9).

To further evaluate our method, another PBMC data-
set GSE107990, which contained 164 samples, were
downloaded from NCBI GEO database. The mapping
between the 11 types of immune cells in this dataset and
the 9 cell types in this study is given in Additional file 2:
Table S10. In this benchmark, the MAPEs of the predic-
tions made by our method was significantly lower than
those predicted by CIBERSORT at the sample level (t-
test, p-value <0.001) (Fig. 11a). The BA plots show
evidence of increasing variability of differences, with
increasing the average of the predicted and true cell
compositions, for both of the predictions made by
CIBERSORT and by our method (Fig. 11b). Neverthe-
less, the predictions made by our method might have a
better agreement with the ground truth for CD4 T cells,
CD8 T cells, monocytes, and dendritic cells, since for
the 4 types of cells the widths of LoAs of our method
were smaller than those of CIBERSORT (Fig. 11b),
which is also supported by the cumulative percentages
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of observations for the prediction-truth difference (see
Additional file 2: Table S11).

Discussion

We developed a cell composition deconvolution
method that could use the gene expression profiles of
complex samples to predict the cell fractions. Our
method was designed to focus on the types of immune
cells that have been suggested to influence the progno-
sis of cancers. There are several unique features that
make our method very different from the other tools
designed for the same purpose.

First, for each immune cell type to be analyzed in
this study, at least 9 replicates of microarrays were re-
cruited to build our reference gene expression signa-
ture (RefGES) (Table 1). For example, we recruited 16
replicates for Treg cells, 14 replicates for M1 cells, and
25 replicates for M2 cells. Since the general approach
to creating a reference expression profile matrix is to
take the median value of the expression levels of a
gene across all the samples of a single cell type,
between-sample variations for a probe set due to tech-
nical limitations might have a certain impact on the
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GSE107990. a The box plots for the mean absolute percentage errors (MAPEs) at the sample level. b The BA plots for the agreement for each cell
type in each of the samples
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robustness of the RefGES, which might in turn influ-
ence the performance of the cell deconvolution
methods. Therefore in this study, more replicates for
each cell type were included in an attempt to create a
more robust RefGES matrix for the use of regression-
based deconvolution.

Second, since the microarray platform of the samples
for building our RefGES is Affymetrix U133 plus 2, this
means that not only protein-coding genes but also non-
coding RNA genes might be included in the reference
gene expression signature (RefGES) that would be used
to perform cell composition deconvolution. For example,
among the probe sets of Affymetrix U133 plus 2, there
are 6492 probe sets corresponding to 5563 IncRNAs
[26]. We know that the number of human non-coding
RNA genes is still growing, and to date more non-
coding RNA genes than protein-coding genes have been
annotated in the human genome (for the statistics see
[27]). In a modern RNA-seq experiment, it is quite com-
mon that ~ 10k to ~20k non-coding RNAs would be
sequenced. Thus, including non-coding RNA genes in a
RefGES for cell composition deconvolution appears to
be a natural choice if a deconvolution method is to take
RNA-seq data sets as the input.

Third, ANOVA was used in this study to choose
differentially expressed genes across different types of
immune cells. By contrast, other available cell decon-
volution methods have selected their immune signa-
ture genes by recruiting well-known cell specific
markers [28] or by applying a pairwise t-tests approach
to gather differentially expressed genes [11]. Our gene
selection approach leads to the inclusion of ~ 13k
genes in the RefGES. This number is ~23 times
greater than the genes recruited in the reference pro-
file, LM22, that was created and used by CIBERSORT
[11]. At first glance, it seems suspicious that including
so many genes in this method is likely to incorporate
genes with outlier expression levels and thus introduce
more noise into the RefGES. Nonetheless, the bench-
marks of our method reveal that our method along
with the reference profiles might have a performance
at least comparable to the state-of-the-art deconvolu-
tion method, CIBERSORT. In addition, our method
might have the merit that the agreement of the pre-
dicted cell composition with the ground truth did not
degrade in a monotonously increasing manner as the
magnitude of the variable of interest increases, which
is supported by the BA plots for the benchmark of
using simulated bulk tissues with 70 and 30% of ex-
pression levels from immune cells and breast tissues,
respectively, and by the BA plots for the benchmark of
using the PBMC samples of NCBI GEO GSE107990.

There are several limitations on the current results of
our method. Due to the limited sources of testing data
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sets derived from real complex samples, our method has
been evaluated mainly by using expression profile sam-
ples composed of simple pure-cell types, in silico cell
mixtures and simulated bulk tissues. The agreement
analyses in the benchmarks using simulated bulk tissues
suggest that the performance of our method is likely to
degrade by increasing the level of contribution of non-
immune cells to the bulk gene expression profiles. How-
ever, it is difficult to further investigate this issue by
using real samples, since to the best of our knowledge
no public-domain bulk gene expression profiles with ex-
perimentally confirmed cell composition are derived
from real human complex tissues such as tumor masses,
which might contain abundant non-immune cells as well
as immune cells.

On the other hand, the only real complex samples
used for the benchmarking in this study are the three
sets of microarrays of human PBMC samples with flow-
cytometry confirmed cell composition results. However,
our method could predict the fractions of only a subset
of the cell types discovered in the human PBMC data-
sets, since our RefGES matrix does not include the refer-
ence expression profiles for all of the cell types in the
PBMC samples. This means that these PBMC-based
benchmarks could just partially assess the performance
of our method in terms of the scope of immune cell
types, since the accuracy of our method in predicting
the fractions of M1 and M2 cells could not be evaluated
based on real complex samples. The PBMC cell types
missed by our method may still influence the perform-
ance of our method, since the gene expression signals of
the inevitably missed cell types might be falsely deconvo-
luted into the 9 types of immune cells that could be ana-
lyzed by our method. Nonetheless, this limitation is also
one of the bottlenecks that each cell composition decon-
volution method may encounter, since benchmarking
with the gene expression profiles derived from real com-
plex tissues is most critical to demonstrate the accuracy
of such methods, and it is difficult to acquire a decent
dataset of gene expression profiles with confirmed frac-
tions of as many cell types as possible. After all, our
method has been designed to focus on only the 9 types
of immune cells that might be associated with cancer
immunity and patients’ prognosis. This design has also
limited the benchmarking, making us unable to conduct
a completely fair comparison of the performance of our
method with the available methods.

One topic that is beyond the current scope of this
study is the cell composition deconvolution of the RNA-
seq data derived from bulk tissues. Our method has been
developed by recruiting microarray-derived transcrip-
tomic profiling data of 9 types of immune cells to build
the RefGES. Consequently, to use our method to analyze
bulk-tissue RNA-seq data, non-trivial data normalization
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approaches must be tried in order to transform read
counts to fit the distribution characteristics of the refer-
ence microarray data [3, 29]. By contrast, an alternative
approach to performing cell composition deconvolution
of RNA-seq data of bulk tissues is to build the reference
gene expression signatures by using the RNA-seq data
derived from the cell types of interest for different
research aims.

Recently several studies have utilized cell-type specific
gene expression profiles derived from single-cell RNA-
sequencing (scRNA-seq) technologies for cell compos-
ition deconvolution [30, 31]. MuSiC is one of such
methods ad hoc designed to take advantage of scRNA-
seq data as the reference for cell-type deconvolution
[30]. The underlying rationale of the development of
such methods is that scRNA-seq is likely to provide cell
type-specific gene expression profiles, facilitating the
build of a robust gene-expression reference for different
cell types. Interestingly, MuSiC uses a tree-guided ap-
proach that allows an iteratively zoom-in deconvolution,
which may remedy the multicollinearity problem when
certain cell types of interest have very similar gene
expression profiles. Therefore, MuSiC outperforms other
cell composition deconvolution methods in analyzing
the gene expression data derived from bulk renal tissues
[30]. However, there are concerns with respect to apply-
ing these methods to analyze bulk RNA-seq data derived
from complex tissues other than kidney. For example,
for deconvoluting the expression profiles derived from
one type of tissue, MuSiC requires that the reference
scRNA-seq data is derived from the same tissue type, or
from a population with a similar abundance distribution
of the cells involved in this tissue type [30]. This require-
ment might not be very practical since in complex
tissues such as tumors the types of infiltrating cells as
well as their relative abundance might be varied from
one sample to the others. In addition, apart from the
major cell types in renal tissues, only three types of
immune cells have been treated in the benchmarks of
MusSiC. Hence, it is unclear whether MuSiC might be
applicable to deconvolute more than 3 types of immune
cells from the RNA-seq data of complex tissues. Never-
theless, deconvoluting cell composition from bulk-tissue
RNA-seq data is definitely one of the central topics
worthy of further exploration, since RNA-seq has been
widely adopted to explore the transcriptomic features in
different disease states, including cancers. To date, thou-
sands of RNA-seq datasets derived from bulk samples of
tumors in more than 30 types of cancers have been pro-
vided by public resources such as The Cancer Genome
Atlas (TCGA) project [32], and improving cell compos-
ition deconvolution methodologies in order to analyze
bulk-tissue RNA-seq data is an important direction for
future development.
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Conclusions

The deconvolution method created in this study is able to
take bulk expression profiles to predict the fractions of 9
types of immune cells. The benchmark of our methods
showed that the performance of our method might be
superior to that of other methods being developed for the
same purpose. The source code of our method could be
downloaded from https://github.com/holiday01/deconvo-
lution-to-estimate-immune-cell-subsets.
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