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Abstract

Background: Cancer as a kind of genomic alteration disease each year deprives many people’s life. The biggest
challenge to overcome cancer is to identify driver genes that promote the cancer development from a huge
amount of passenger mutations that have no effect on the selective growth advantage of cancer. In order to solve
those problems, some researchers have started to focus on identification of driver genes by integrating networks
with other biological information. However, more efforts should be needed to improve the prediction performance.

Methods: Considering the facts that driver genes have impact on expression of their downstream genes, they likely
interact with each other to form functional modules and those modules should tend to be expressed similarly in
the same tissue. We proposed a novel model named by DyTidriver to identify driver genes through involving the

interaction network (e.g. human FIN).

similarly in the same tissue.

Variation frequency

gene dysregulated expression, tissue-specific expression and variation frequency into the human functional

Results: This method was applied on 974 breast, 316 prostate and 230 lung cancer patients. The consequence
shows our method outperformed other five existing methods in terms of Fscore, Precision and Recall values. The
enrichment and cociter analysis illustrate DyTidriver can not only identifies the driver genes enriched in some
significant pathways but also has the capability to figure out some unknown driver genes.

Conclusion: The final results imply that driver genes are those that impact more dysregulated genes and express

Keywords: Driver genes, Dysregulated expression, Tissue-specific expression, Human functional interaction network,

Background

Cancer as a kind of genomic alteration disease each year
deprives many people’s life [1-3]. It is acknowledged
that cancer arise is due to the accumulation of muta-
tions in a subgroup of genes which conferring growth
advantage, allowing uncontrolled proliferation and
avoiding apoptosis [4, 5]. With the development of next-
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generation sequencing technology, several large-scale
cancer projects have generated a large amount of cancer
genomic data, such as The Cancer Genome Atlas
(TCGA) [6], International Cancer Genome Consortium
(ICGC) [7], which enable the detection of thousands of
mutations. However, not all mutations contribute to the
cancer initiation and progression. The mutations that
are important to the cancer development and provide
selective growth advantage are called driver mutations,
the opposite is termed as the passenger mutations [8, 9].
Some researches show that the number of passenger
mutations far beyond the number of driver mutations
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[9]. For example, from 11 cancer types, there are only 2
to 6 mutations have been regarded as the driver muta-
tions among 200 somatic mutations which including
missense, nonsense, silent, non-coding, splice-site, non-
stop mutations, frameshift insertions and deletions
(indels) and inframe indels [9-12]. Besides, those im-
portant alterations are not uniformly distributed across
the genome and target to some specific genes associated
with important cellular functions such as cell survival,
cell fate etc. [4, 13—-15]. For example, the well-known
tumor suppressor TP53 participate in defense mecha-
nisms against cancer and their inactivation by alteration
can increase the selective growth advantage of the cell
[16]. The alterations of ERBB2 [17] and KRAS [18] can
lead to the acquisition of new properties that provide
some selective growth advantage or spread to remote or-
gans. Hence, the biggest challenge to overcome cancer is
how to precisely discriminate those driver genes which
harboring driver mutations and have the capability to
promote cancer development from those irrelevant pas-
senger genes [11]. This act is essential to understand the
tumor biology and designing precision therapies [4, 19].

Traditional methods to identify cancer driver genes
are based on the assumption that driver mutations con-
fer a selective advantage to tumor growth and they occur
more frequently than expected by random chance [20].
This kind of methods such as Mutsig [21] and MuSic
[22] successfully pinpoints part of recurrence genes.
However, in fact, only a small number of genes are al-
tered in a high percentage of patient. Much larger num-
ber of genes are altered infrequently [11]. Besides, due to
the heterogeneity of cancer, it is so hard to properly esti-
mate the background mutation rate that many errors
may be introduced [23].

A promising angle to identify cancer driver genes is
based on network since it is acknowledged that cancer
genes are more closely related with each other within a
group to perform a certain function [24]. HotNet [25]
and HotNet2 [26] apply a propagation process that dif-
fuse the score of mutation frequency through the whole
gene-gene interaction network and extract significantly
mutated subnetworks to identify driver genes. NBS [27]
detects driver genes by taking the strategies similar to
HotNet. However, NBS detects mutated subnetworks of
each patient and uses a consensus clustering framework
to merge subnetworks across all patients. Unlike previ-
ous methods that use global network information, MUEF-
FINN [28] prioritizes the cancer driver genes by
measuring the impact from all neighbors of mutated
genes in the functional network. Although these
network-based methods mentioned above proposed a
new focus on the interacting relationship of cancer
driver genes, most of them identified cancer driver genes
only consider the patient-gene mutation profiles and
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topology of networks. Besides, they are too much rely on
the known network which may create some false positive
data [23].

To overcome these limitations, some researchers focus
on combining the cancer gene’s functional interactive re-
lationship and other biological properties to improve the
precision of detecting cancer driver genes. For example,
DriverNet [29] identifies cancer driver genes by estimat-
ing their effect on mRNA expression. Inspired by the ra-
tionale that cancer driver genes may be determined by
their impact on expressions of downstream genes, Dri-
verNet firstly identifies the downstream genes (called
outlying genes) with significantly differential expressions
and then constructs a bi-graph where one side is mu-
tated genes and the other side is outlying genes. It se-
lects the driver genes that connect to the most nodes in
the outlying gene side. Shi et al. [30] further improve
DriverNet method by introducing diffusion process on
the bi-graph. DawnRank [31] ranks potential cancer
driver genes based on both their own expression differ-
ence and their impact on the overall differential expres-
sion of the downstream genes in the molecular
interaction network. LNDriver [24] is also designed on
the basis of bi-graph, while it incorporates the DNA
length to filter mutated gene at the first step.

Above mentioned bi-graph-based methods to some
degree improve the accuracy of identifying cancer driver
genes by adding biology profiles to the gene itself. How-
ever, the reliability of network still needs to do further
improvement since most of known networks are built
based on either or mix of large scale of computational
and experimental data. This may directly impact the effi-
ciency and precision of detecting novel driver genes [23].
Hence, the fundamental problem is to establish one
model that can improve the reliability of network so as
to improve the power of prediction. To achieve this,
some researchers consider to incorporate specific bio-
logical profiles to assign a weight for each interaction
such as the impact of differential expression information
[32]. However, seldom of them considered the facts that
the majority of cancer genes interact with each other to
form functional modules and those modules should tend
to be expressed similarly in the same tissue. Ganegoda
et.al [33] use the tissue-specific data to predict the new
disease-gene associations by measuring the gene expres-
sion in disease related tissues and achieved higher per-
formance. Besides, previous studies found genetic
disorders tend to manifest only in a single or a few tis-
sues for a given disease [34]. Motivated by these, we
want to refine the gene functional interaction network
by considering expression similarity between each pair
of mutated genes in the cancer’s related one or two tis-
sues. Moreover, from the previous research, it is known
that cancer driver genes are more likely to be frequently
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mutated across a cohort of patients and also dysregulate
downstream genes’ expression.

Based on the facts mentioned above, we proposed a
model called DyTidriver to predict cancer driver genes
by integrating dysregulated expression profiles, tissue-
specific expression profiles, modularity of mutated genes
and variation frequency into the gene functional inter-
action network. In DyTidriver, considering the fact that
cancer driver genes are likely dysregulate downstream
genes’ expression, mutated genes were firstly filtered ac-
cording to their impact on the expression of down-
stream genes. After that, mutated genes’ interactive
network was weighted by considering gene-gene co-
expression in specific tissues of each query disease and
the relationship between mutated genes. Because the
majority of cancer driver genes interact with each other
to form functional modules and those modules tend to
be expressed similarly in the same tissue. Finally, with
respect to the facts that driver genes are more likely to
be frequently mutated across a cohort of patients and
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interact with each other to form functional modules, the
mutated genes were ranked by summing up the
weighted graph and multiplying itself variation fre-
quency. We explored our method to detect cancer driver
genes of lung cancer, breast cancer and prostate cancer.
The result shows that our method significantly outper-
forms other five existing methods [28—31] in terms of
Fscore, Precision and Recall. Besides, the cociter analysis
illustrates our method can not only identify some well-
known cancer driver genes but also detects the unknown
cancer driver genes with high co-occurrence ratio in
some publications. Furthermore, the identified cancer
driver genes also enrich in some significant pathways
and biological functions.

Methods

Our method consists of four steps (see Fig. 1). At first,
we filtered the mutated genes for each patient according
to whether or not it influenced the expression of down-
stream genes. Only the mutated genes that dysregualte
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Fig. 1 The workflow of Dytidriver. We divided our whole process of cancer driver gene identification into four steps and marked with ‘a’/ b
‘d’. In the step ‘a’, we filtered the mutated genes for each patient according to whether or not it influenced the expression of downstream genes.
Only the mutated genes which connect at least one outlying genes would be included in our study. Then, the filtered mutated genes for all
patients were mapped to the human functional interaction network to construct the Mut-Mut matrix. The ‘b’ step is to generate the tissue-
specific PCC matrix. For each cancer, we chose the top one or two tissues with the higher association score in disease-tissue matrix as the cancer
related tissues such as the tissue 1 and tissue 2 for disease D1. For each tissue, we calculated its gene-gene pearson correlation values across the
whole patients and then generated the gene-gene PCC matrix by keeping the absolute PCC values more than 0.3 while left setting to 0. If there
are more than one tissue related to a cancer, the final tissue-specific PCC matrix is constructed by averaging the values in the gene-gene PCC
matrix of each tissue. In the ‘c’ step, we constructed the ECC mutated matrix by utilizing the ECC equation. In the final 'd’ step, we assigned each
mutated gene in the network a score by summing up all the ECC values of its connecting edges and then multiply to its corresponding variation
frequency. According to the scores, the mutated genes were ranked in a descending order and those ranked at the top list the were considered
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downstream genes’ expression will be included in our
study. Then, the remaining mutated genes for all pa-
tients were mapped to the human functional interaction
network (human FIN) to construct the Mut-Mut matrix.
Thirdly, the tissue-specific pearson correlation coeffi-
cient (PCC) matrix was constructed by calculating the
co-expression values of mutated genes derived from
downloaded tissue expression information after search-
ing the disease-tissue matrix. Finally, we calculated the
edge clustering coefficient (ECC) values for the interac-
tions in the network which established at the last step
and assigned each mutated gene in the network a score
by firstly summing up ECC values of its connected edges
and then multiplying the addictive result to its corre-
sponding variation frequency. According to the scores,
the mutated genes were ranked in a descending order
and those ranked at the top of the list were considered
as potential cancer driver genes.

Experimental data

The datasets in this study derived from three places. The
first part includes the somatic mutation data and their
corresponding transcriptional expression data for each
patient. Both of these datasets were downloaded from
the TCGA website by utilizing the TCGA2STAT R
packages. For our analysis, we focused on the somatic
mutation and gene transcriptional expression data for
230 lung cancer patients, 974 breast cancer patients and
331 prostate cancer patients. The downloaded TCGA
datasets include both tumor and normal patients: 58 of
230 lung, 110 of 974 breast and 52 of 331 prostate are
normal patients.

The second part of dataset is the tissue-specific ex-
pression profiles. In order to find the most related tis-
sues for each cancer type, we searched the tissue-disease
matrix which can be downloaded from the reference
[34]. Each entry in the matrix represents the covariance
of a disease with a tissue through the way of counting
the number of publications co-appearing the disease and
tissue, relative to the number of publications mentioning
the disease or tissue alone. It is acknowledged that gen-
etic disorders tend to manifest only in a single or few tis-
sues for a given disease [34]. Hence, we chose one or
two of the most relevant tissues for each cancer type.
Fortunately, the directly related tissue can be found for
most of cancer type e.g. the lung tissue for lung cancer,
prostate tissue for prostate cancer. However, we cannot
find the breast tissue in the disease-tissue matrix. In-
stead, we chose the top two relevant tissues (e.g. pros-
tate, ovary) with higher association score for breast
cancer. In order to obtain the tissue-specific expression
profiles, we used the Gene Expression Omnibus (GEO)
database. Because GEO database is currently the largest
and most famous expression data platform which stores

Page 4 of 12

relatively complete expression data. According to the
identified most related tissues for each cancer type, we
downloaded the gene expression details of each tissue
sample from the GEO website by querying dataset
GSE7307. The database lists the transcriptional profile
of both normal and disease human tissues representing
over 90 distinct tissue types by using the Affymetrix hu-
man U133 plus 2.0 array. At here, we used the R pack-
age called GEOquery to download the corresponding
tissue expression information from the platform
GPL570. The downloaded data is the expression profile
matrix with genes and patients as the columns and rows
respectively.

The last part of the dataset comes from the currently
release version (2016) of human functional interaction
network (human FIN) in which involving 12,275 genes
and 46,0434 edges [35]. This network is constructed by
extending curated pathways with non-curated sources of
information, including protein-protein interactions, gene
co-expression, protein domain interaction, Gene Ontol-
ogy (GO) annotations and text-mined protein interac-
tions, which cover close to 50% of the human proteome.
The benchmarking of driver genes was downloaded from
the NCG 4.0 which included 537 known cancer genes
from the Cancer Gene Census [36] and 1463 candidate
cancer genes that were derived from the manual cur-
ation of 77 whole genome or whole exome cancer-
resequencing screenings [37] .

Filtering mutated genes and constructing Mut-Mut matrix
The somatic mutation data were downloaded from
TCGA website where records the information of mu-
tated gene across patients. The genes that were mutated
in at least one patient were kept and regarded as the
mutated genes. Previous researches have pointed out
that driver genes are more likely to regulate the expres-
sion of downstream genes [29-31]. Those gene whose
expression were impacted significantly are called outly-
ing genes. In order to acquire the outlying genes, we
downloaded the transcriptional expression information
from the TCGA website and calculated their z-scores.
More specifically, for each gene and each patient, a gene
was regarded as the outlying gene for the patient if its z-
score > 2.0 or its z-score < — 2.0. The setting of threshold
as * 2.0 was referred to the DriverNet [29]. Then, we
kept the mutated genes which have at least one connec-
tion with outlying genes in the human FIN while filtered
out those having no connections with outlying genes. Fi-
nally, the remaining mutated genes were mapped to the
human FIN to generated the binary Mut-Mut matrix in
which the rows and columns are the remaining mutated
genes and the element is 1 if there is a connection be-
tween the two mutated genes in the human FIN, 0
otherwise.



Song et al. BVIC Medical Genomics 2019, 12(Suppl 7):168

Assigning weight to Mut-Mut matrix by PCC values

Since the majority of disease genes forming a common
functional module tend to be expressed similarly in the
same tissue and there exist too much false positive con-
nections in the gene networks, in this work, we use
tissue-specific expression profile to assign weights for
the interactions of genes in order to improve the reliabil-
ity of genes interactive network. For each cancer type, at
first, we chose the most related tissue according to its
association score in the disease-tissue matrix [34]. If
there is at least one tissue related with a cancer in the
disease-tissue matrix, its corresponding tissue expression
information across a cohort of patients can be down-
loaded from the GEO website. After that, we calculated
the gene-gene PCC values of downloaded tissue expres-
sion matrix across the whole patients and then gener-
ated the PCC matrix by keeping their absolute PCC
values more than 0.3 while left setting to 0. The thresh-
old setting was according to previous research [34]. At
last, the average score of PCC matrix of each tissue was
regarded as the final tissue-specific PCC matrix of the
cancer type. We assigned a weight to values in the Mut-
Mut matrix based on the tissue-specific PCC matrix.
Specifically, if a mutated gene i connects to a mutated
gene j in the Mut-Mut matrix (e.g. W(ij) = 1), the PCC
value of genes i and j was assigned to the corresponding
entry of the Mut-Mut matrix otherwise the value was set
to 0. Consequently, a weighted mutated PCC matrix de-
noted by W is constructed.

Calculating the mutated gene score

Previous studies have found that cancer is the fact that
genes act together in various signaling pathway and pro-
tein complexes [25]. Hence, in order to highlight the
modularity of cancer driver genes, we calculated the
ECC values for each pair of mutated genes in the mu-
tated PCC matrix. The ECC value was normally used to
measure the degree of closeness between two nodes in a
network, which has been widely applied in detecting net-
work modules [38—40]. We calculated the ECC values
for each pair of mutated genes in the weighted mutated
PCC matrix (denoted by Matrix W in Eq. 1). The higher
ECC value means two genes are more likely to act to-
gether in a common module. The definition of ECC is as
Eq. 1. After calculating the ECC score for each pair of
mutated genes in the weighted mutated PCC matrix, we
assigned each mutated gene a score (Mi) by summing
up all ECC values of its connecting edges (see Eq. 2). It
is known that cancer driver genes are more likely to be
those frequently mutated in many patients. Hence, the
final ranking score of each mutated gene was calculated
by multiplying its variation frequency to its additive
score (see Eq. 3). After that, all mutated genes were
ranked in a descending order according to their ranking
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scores and the genes with the higher rank are more
likely to be the cancer driver genes.

ECC(i,j) = min(d.d)) (1)

M; = ZH:ECC(L‘, j) (2)
JEN;

EFi=ViM; (3)

Where W denotes weighted mutated PCC matrix. k
denotes the common neighbors between mutated gene i
and gene j in the matrix W. Wy is the weight between
mutated gene i and gene k. d; and d; are the degrees of
nodes i and j, respectively. Min (d;d;) represents the
maximal possible number of triangles that might include
the edge(i,j). N; is the set of all neighbors of mutated
gene i. V; denotes variation frequency of gene i which is
measured by mutated times of gene i out of total patient
counts.

Statistic evaluation metrics

In order to evaluate the performance of our method, top
N of ranked genes were selected as potential cancer
driver genes. The accuracy of prediction depends on
how well the predicted cancer driver genes match the
real ones, which was measured by three widely used stat-
istic metrics, Precision, Recall and Fscore.

Precision — TP
recision = TP 1 EP
P
Recall = ———
= IP L EN
Precision-Recall
Fscore =

"Precision + Recall

where TP (true positive) is the number of predicted
driver genes matched by known driver genes in bench-
marking dataset. TN (true negative) is the number of
not predicted driver genes that are not matched by
known ones. FP (False Positive) is the number of pre-
dicted driver genes that are not matched by known
driver genes. FN (false negative) is the number of known
driver genes that are not matched by predicted ones.

Enrichment analysis

Another evaluation metric is pathway and GO enrichment
analysis in order to evaluate whether or not the predicted
cancer driver genes share common biological functions. It
is widely known that cancer is a disease of pathways and
the somatic mutations target the cancer genes in a group
of regulatory and signaling networks [25]. Besides, those
cancer-related driver mutations recurrently occur in the
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functional regions of protein (such as kinase domains and
binding domains) to interrupt the major biological func-
tions [41]. In this study, we leveraged the DAVID database
to do the KEGG pathway enrichment analysis and GO en-
richment analysis [42].

Results
In order to testify the effectiveness of our method, we
applied our method and other four models:

DriverNet [29], DawnRank [31] and Diffusion algo-
rithm [30], Muffinn [28] on the breast cancer, prostate
cancer and lung cancer to identify their driver genes.
Among them, the DriverNet, DawnRank and Shi’s Diffu-
sion algorithm utilize the gene dysregulated expression
information to identify outlying genes and construct the
bipartite graph. These methods ranked mutated genes
according to their connections with the outlying genes.
The Muffinn method leverages both the variation fre-
quency of mutated genes and the impact of their neigh-
bors to design the ranking scores. It was further
classified into two models: Muf_max and Muf_sum, ac-
cording to considering the impact of either the most fre-
quently mutated neighbor or all direct neighbors [28].
Unlike the DriverNet, DawnRank and Shi’s diffusion
method that use gene dysregulated expression to con-
struct bipartite graph, our study only employs the dys-
regulated expression profile to filter the mutated genes.
Moreover, similar to the Muffinn method, we also con-
sider the variation frequency of mutated genes and the
impact of their direct neighbors. However, compared
with other methods, our method not only integrates the
features of dysregulated expression information, vari-
ation frequency and human FIN but also considers the
modularity of mutated genes and their co-expression in
the same tissue.

Running DawnRank demands expression data with
normal and tumor samples. From the three cancer data-
sets, we can only download 110, 58, 52 tumor samples
that have normal gene expression profiles for breast,
lung and prostate respectively. Besides, we set the free
parameter of DawnRank as three which was recom-
mended by DawnRank authors [31].

Comparing performance

All the mutated genes were ranked in a descending
order based on the scores assigned by each comparing
method. After that, K of genes ranked in the top list
were selected as candidate driver genes. According to
the benchmark dataset, the Fscore, Recall, Precision
values can be calculated to evaluate the performance of
each method. With different values of K ranging from 1
to 200, the Fscore curve, Recall curve and Precision
curve is drawn. The results are shown in the Fig. 2. In
general, our results are superior to all of other four
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methods on the lung, prostate and breast cancer data-
sets. Compared with the other five methods, our model
identifies the largest number of known drivers from
NCG 4.0. For lung cancer, the Dytidriver and the other
methods are tangled together when predicting small
number of potential driver genes and then Dytidriver is
significantly better than the other methods when the
number of predicted driver genes increases from top 40
to 200. For prostate and breast cancer, our model dem-
onstrated the best performance from beginning to the
end. Similar to Muffinn, considering the variation fre-
quency and the functional impact of direct neighbors,
our method additionally takes advantage of the tissue-
specific co-expression property and the modularity prop-
erty which improve the precision of detecting driver
genes to a higher level. Besides, the performance of
Muf _max is worse than that of Muf sum, which means
it is inappropriate to judge a driver only based on the
impact of single gene. DawnRank performed poorly
among all comparing methods. The reason might be that
only a limited number of cancer patients both have nor-
mal and tumor expression data for DawnRank.

Enrichment analysis

We select the top 200 of cancer driver genes to do GO
and pathway enrichment analysis. For lung cancer, in
the biological process, the genes detected by our method
enrich in the signal transduction, intracellular signaling
cascade, transcription, metabolic process, regulation of
cell death and apoptosis etc. In the cellular component,
our results focus on the plasma membrane, organelle,
cytoskeleton, lumen and cell fraction etc. In the molecu-
lar function, our results enrich in ion binding, nucleotide
binding, ATP binding, transcription regulator activity
etc. From the pathway aspect, our identified cancer
driver genes enrich in some important cancer pathway,
such as calcium signaling pathway, PI3K-Akt signaling
pathway, mTOR signaling pathway.

With respect to the breast cancer, in biological
process, our results enrich in the intracellular signaling
cascade, signal transduction, regulation of transcription,
metabolic process, regulation of cell death, phosphoryl-
ation, transcription, phosphorylation and cell prolifera-
tion. In the cellular component, our results enrich in the
plasma membrane, organelle, lumen and cell fraction. In
the molecular function, our results mainly enrich in the
nucleotide binding, ATP binding, DNA binding, tran-
scription regulator activity and kinase activity. In path-
way analysis, our results enrich in Calcium signaling
pathway, MAPK signaling pathway, PI3K signaling path-
way, p53 signaling pathway etc.

In terms of prostate cancer, our results enrich in the regu-
lation of transcription, signal transduction, adhesion mole-
cules, regulation of GTPase activity etc. in biological process.
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Fig. 2 A comparison of the Precision, Recall, and Fscore for top ranking genes in the six methods. The X-axis represents the number of top-
ranking genes. The Y-axis represents the score of the given metric

For cellular component, our results enrich in nucleus, plasma
membrane, cytosol, intracellular, protein complex etc. For
molecular function, our results focus on protein binding,
ATP binding, DNA binding, protein kinase activity and so
on. From pathway aspect, our results enrich in the Calcium
signaling pathway, PI3K signaling pathway, CAMP signaling
pathway, mTOR signaling pathway.

Cociter analysis
Because the benchmark cancer driver genes are incom-
plete, to further prove the prediction capability of our

method in distinguishing potentially cancer driver genes,
we adopted the literature mining method to figure out
the co-citation times of the predicted driver genes with
the keywords ‘cancer type’(i.e. breast, prostate or lung),
‘driver’ and ‘cancer’ in the cociter website [25]. The lar-
ger the number of times the gene co-appeared with the
keywords, the stronger associations between them. In
this study, Tables 1, 2 and 3 show the cociter analysis of
top 30 of genes identified by our method for each cancer
type. In order to illustrate the capability of our method
to prioritize significant well-known cancer driver genes,
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Table 1 Cociter analysis of top 30 lung cancer driver genes identified by our method

Genes Cancer Lung Driver Is_driver DyTidriver Diffusion DriverNet DawnRank Muf_max Muf_sum
TP53 6772 999 110 1 1 20 1 1 5 6
ZNF536 4 0 1 1 2 5015 NA 2689 849 79
EGFR 4748 2849 166 1 3 1 3 4 7 26
TSHZ3 4 1 1 0 4 2748 1295 2463 1268 188
PRUNE2 12 1 1 0 5 5211 NA 2623 2018 332
RYR2 4 3 2 0 6 757 20 558 128 25
SPTA1 3 2 1 0 7 221 6 15 12 36
ATP10D 1 0 0 0 8 1836 NA 2825 2667 873
ANKIB1 2 1 0 0 9 1607 NA 2572 4107 2080
ZNF521 2 0 1 1 10 5025 NA 3058 1906 302
NES 192 31 5 0 M 1483 NA 1461 3094 1138
PIK3CA 1199 183 54 1 12 2 5 112 430 81
TLR4 417 591 9 1 13 71 45 3 672 138
NF1 165 16 1 1 14 34 56 21 389 139
FAT4 45 7 2 0 15 3106 839 1961 970 119
ASHTL 4 1 1 0 16 1506 NA 2289 2549 761
PRKCB 41 " 1 1 17 5 12 NA 442 92
SLCT2A1 2 2 1 0 18 1647 NA 3038 4006 1750
CTNNB1 2517 340 44 1 19 6 21 NA 51 27
PLCB1 9 7 1 0 20 25 22 27 745 91
APOB 27 4 2 0 21 17 7 8 664 42
MET 1045 348 40 0 22 21 37 7 427 186
GRIN2B 13 3 2 0 23 18 39 120 397 135
UBC 134 17 2 0 24 3 4 NA 137 1
SASH1 13 3 1 0 25 1537 NA 1325 5100 3080
HGF 393 174 7 0 26 47 84 40 398 1192
BRAF 2175 270 126 1 27 70 75 155 392 150
UBA6 1 1 1 0 28 5263 NA NA 2957 980
PTPRZ1 12 1 1 0 29 3366 NA 2402 894 289
TAF1L 2 1 1 0 30 557 57 547 10 130

The second to the fourth column show the co-appeared times of top 30 identified genes with ‘driver’, ‘lung’ and ‘cancer’ (from the left to the right). Is_Driver
indicates whether the given gene is a driver gene or not in the benchmark dataset. The left columns represent the ranking positions of identified genes in

Dytidriver, Diffusion, DriverNet, DawnRank, Muf_max, Muf_sum respectively

we also listed genes ranking position in other five
methods.

For lung cancer, Table 1 shows some well-studied can-
cer driver genes were ranked in the top 30 by our
methods, but were put in the latter positions by other
methods. For example, Phosphatidylinositol 3-kinases
(PI3Ks) are well known regulators of cellular growth and
proliferation. It was ranked 12th by our method while
ranked 112th by Dawnrank, 430th by Muf_max, 81th by
Muf_sum. Toll-like receptor-4 (TLR4) in human tumors
often correlates with chemoresistance and metastasis
[43] which was ranked 13th by our method, ranked 71th
by Diffusion algorithm while ranked 672th by Muf_max

and 138th by Muf sum. The oncogenic BRAF(V600E)
mutation results in an active structural conformation
characterized by greatly elevated ERK activity [44]. It
was identified as the known cancer driver genes but
ranked 70th, 75th, 155th, 392th and 150th by Diffusion,
DriverNet and DawnRank, Muf max and Muf sum re-
spectively. Our method can not only prioritize the sig-
nificant cancer driver genes but also identify some
potential cancer driver genes which were neglected by
the NCG 4.0 such as the NES, MET and HGF. Especially
for the MET, some researchers found that high MET
gene copy number leads to shorter survival in patients
with non-small cell lung cancer. MET co-existed with
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Table 2 Cociter analysis of top 30 prostate cancer driver genes identified by our method

Genes Cancer Prostate Driver is driver DyTidriver Diffusion DriverNet DawnRank Muf max Muf sum
TP53 6772 298 110 1 1 1 1 1 38 4
CTNNB1 2517 170 44 1 2 2 2 21 40 9
ASH1L 4 0 1 0 3 1703 NA NA 653 78
SPOP 43 24 4 1 4 1721 3 169 8 3
ATM 1377 61 5 0 5 13 1 12 36 14
PTEN 3047 642 64 1 6 700 94 NA 39 37
TTN 10 0 2 0 7 1724 22 14 2 2
FOXA1 182 69 10 0 8 17 5 3 37 10
KMT2D 25 2 2 0 9 855 54 NA NA NA
PIK3CA 1199 34 54 1 10 7 10 NA 282 36
DYNCTH1 9 1 2 0 1" 66 19 51 219 72
CDH12 4 0 0 0 12 151 NA 755 349 296
BRAF 2175 33 126 1 13 326 63 36 348 34
AKT1 2152 317 23 1 14 20 23 NA 52 33
FAT3 1 1 1 0 15 19 26 75 NA NA
LRP4 7 0 2 0 16 1440 NA NA 1426 541
GRIN2B 13 0 2 0 17 74 33 NA 220 90
KMT2C 23 2 4 0 18 613 27 NA NA NA
NCOR1 109 27 3 1 19 59 77 58 41 60
HSPA8 9% 9 1 0 20 10 8 NA 438 67
OBSCN 7 0 0 0 21 1714 168 408 1 24
GRIN2A 5 0 1 0 22 285 92 85 374 73
PCDHA12 1 0 0 0 23 1453 271 197 324 65
MED12 19 4 4 0 24 376 162 157 317 84
STAT3 1824 147 27 0 25 16 15 5 58 8
PCDH18 2 1 1 0 26 1656 93 66 262 39
CDH23 5 0 1 0 27 457 97 NA 295 63
SPTA1 3 0 1 0 28 1719 16 9 221 15
UFL1 7 0 1 0 29 NA NA NA 1238 1265
SP1 393 38 3 1 30 8 9 NA 86 5

The second to the fourth column show the co-appeared times of top 30 identified genes with ‘driver’,'prostate’ and ‘cancer’ (from the left to the right). Is_driver
indicates whether the given gene is a driver or not in benchmark dataset. The left columns represent the ranking positions of identified genes in Dytidriver,

Diffusion, DriverNet, DawnRank, Muf_max, Muf_sum respectively

key words, ‘cancer’, ‘lung’ and ‘driver’ for 1045, 348 and
40 times.

For the prostate cancer as shown in Table 2, our
method also identified some high-ranking significant
driver genes, including TP53, CTNNB1, PTEN, PIK3CA
and so on. What we want to mention is the famous
tumor suppressor PTEN which is frequently inactivated
in human prostate cancer [45]. It was ranked 6th by our
method but strangely put in the 700th by Diffusion algo-
rithm, 94th by DriverNet and even neglected by Dawn-
Rank. Furthermore, the results show DawnRank missed
more than one significant cancer driver genes including
PTEN, PIK3CA and AKT1. BRAF which involves in

prostate related RAS/RAF/ERK signaling pathway [28]
was ranked 13th by our methods while 326th by Diffu-
sion algorithm, 63th by DriverNet, 36th by DawnRank,
348th by Muf_max and 34th by Muf_sum. Besides, some
high associated genes ignored by NCG 4.0 are also
ranked in the top list of our method. The ATM (ataxia
telangiectasia mutated) kinase plays an essential role in
maintaining genome integrity by coordinating cell cycle
arrest, apoptosis, and DNA damage repair [46]. It was
missed by the NCG 4.0 but co-appeared with ‘cancer’ for
1377 times, with ‘prostate’ for 61 times and with ‘driver’
for 5 times. Forkhead box protein A1 (FOXA1) modulates
the transactivation of steroid hormone receptors and thus



Song et al. BMC Medical Genomics 2019, 12(Suppl 7):168

Page 10 of 12

Table 3 Co-citer analysis of top 30 breast cancer driver genes identified by our method

Genes Cancer Breast Driver is driver DyTidriver Diffusion DriverNet DawnRank Muf max Muf sum
TP53 6772 1356 110 1 1 233 1 2 7 2
PIK3CA 1199 334 54 1 2 156 2 1 2 3
MAP 3 K1 135 62 2 1 3 128 18 4 899 28
GATA3 154 122 8 1 4 85 13 6 888 17
CDH1 1410 358 19 1 5 42 4 10 1 6
ERBB2 5335 4332 78 1 6 72 64 90 8 73
UBC 134 30 2 0 7 240 3 122 22 1
NCOR1 109 45 3 1 8 139 12 48 6 68
ASHTL 4 0 1 0 9 1097 NA 1986 1846 729
PIK3R1 131 21 7 1 10 160 10 26 13 45
EP300 269 86 4 1 " 68 5 178 367 4
DYNCTH1 9 2 2 0 12 63 8 17 1017 107
HUWE1 29 4 3 0 13 251 28 45 9 112
PTEN 3047 672 64 1 14 185 98 193 3 79
MAP 3K13 2 0 1 1 15 6189 NA 3303 2654 2045
NF1 165 24 1 1 16 141 41 19 4 144
TTN 10 1 2 0 17 2581 6 5 717 5
TPP2 4 0 2 0 18 1041 NA 2674 3172 2926
UFL1 7 1 1 0 19 802 NA NA 3493 3129
BRCA1 4652 4017 22 1 20 25 " NA 361 27
BACH2 8 1 2 0 21 810 1182 2366 2298 1079
JAK2 382 92 19 1 22 118 32 NA 73 119
ERBB3 354 178 4 1 23 73 29 8 10 207
ERBB4 350 220 4 1 24 74 56 276 18 410
MAP 2 K4 70 10 2 1 25 127 34 23 898 86
CTCF 63 21 3 1 26 55 20 211 1027 29
PRKCB 41 9 1 1 27 174 59 31 80 151
SASH1 13 8 1 0 28 1011 NA NA 3706 4179
TAF1 10 3 1 1 29 225 86 33 359 19
SPTA1 3 0 1 0 30 212 17 25 1018 109

The second to the fourth column show the co-appeared times of top 30 identified genes with ‘driver’, ‘breast’ and ‘cancer’ (from the left to the right). is_driver
indicates whether the given gene is a driver or not in the benchmark dataset. The left columns represent the ranking positions of identified genes in Dytidriver,

Diffusion, DriverNet, DawnRank, Muf_max, Muf_sum respectively

may influences tumor growth and hormone responsive-
ness in prostate cancer [47]. It was ranked 8th by our
method while neglected by NCG 4.0. In addition, the tran-
scription factors SP1 also has been missed by NCG 4.0.
For breast cancer in Table 3, our method successfully
achieved a high precision in identifying the top 10 cancer
driver genes with 8 out of 10 accuracy rates. The well-
studied breast cancer driver genes including TP53,
PIK3CA, MAP 3 K1, CDH1, ERBB2 and PTEN were also
put in the top list of our method. Among those known
breast cancer driver genes, the top three cancer driver
genes (TP53, PIK3CA, MAP 3K1) identified by our
methods were ranked 233th, 156th and 128th respectively

by Diffusion algorithm. The HER2 (official name is
ERBB2) gene encodes a membrane receptor in the epider-
mal growth factor receptor family amplified and over
expressed in adenocarcinoma [48]. It was regarded as the
important cancer driver gene by many researchers and
ranked 6th by our method while 72th, 64th, 90th, 73th by
Diffusion algorithm, DriverNet, DawnRank and Muf_sum
respectively. The breast cancer suppressor gene PTEN
was ranked 14th by our method while 185th, 98th, 93th
and 79th by Diffusion, DriverNet, DawnRank and Muf_
sum receptively. Besides, the BRCA1 and JAK2 that co-
cited with ‘cancer’ and ‘breast’ for many times were also
missed by the DawnRank.
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Discussion

The core step to overcome cancer is to identify the cancer
driver genes which can promote cancer evolvement and de-
velopment. However, it is a hard task since cancer is hetero-
geneous and there are too much irrelevant passenger genes.
Recently, many methods try to shorten the distance to the
truth. However, these methods still have some limitations.
For example, they ignored many driver genes with low vari-
ation frequency and highly depend on the error-prone net-
work. Inspired by the fact that cancer genes forming
functional modules tend to be expressed similarly in the
same tissue, we considered to improve the reliability of the
gene functional interaction network by incorporating the ex-
pression similarity between mutated gene pairs in the can-
cers’ related tissues. In order to obtain the tissue-specific
expression profiles, we used the GEO database. Because
GEO database is currently the largest and most famous ex-
pression data platform which stores relatively complete ex-
pression data. The GEO dataset which we used in this work
was consisted of a total of 677 patients, including cancer and
normal patients, covered over 90 distinct tissue types and
was created by the same organization using the same experi-
mental technology. Although our model is superior to the
other methods, it still has some limitations. For example, the
datasets used in this work come from different projects:
TCGA and GEO. Although, we just use the GEO dataset to
calculate the co-expression values of mutated genes in a spe-
cific tissue. The likelihood is that there exists ambiguous
since the heterogeneous within different patients. Therefore,
in order to release this concern, in the future, we consider to
unify the dataset as far as possible.

Conclusion

In this work, we proposed a new method to identify cancer
driver genes by integrating the gene dysregulated expres-
sion, tissue-specific expression and variation frequency into
the functional interaction network. Compared to other
network-based methods, our method not only considered
that driver genes have impact on the expression of down-
stream genes, but also took advantage of the modularity
property of driver genes, their co-expression in specific tis-
sues and itself variation frequency. We compared our re-
sults with other four similar methods and did cociter
analysis and enrichment analysis. From the results, we can
easily draw the conclusion that our method has the capabil-
ity to identify the cancer driver genes with high precision
and meanwhile detect some potential unknown cancer
driver genes. Besides, the enrichment analysis also illus-
trates that the top ranking cancer driver genes in our list
enrich in some significant cancer-related pathways and im-
plement important functions [48].
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