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Abstract

Background: Studies have shown that miRNAs are functionally associated with the development of many human
diseases, but the roles of miRNAs in diseases and their underlying molecular mechanisms have not been fully
understood. The research on miRNA-disease interaction has received more and more attention. Compared with the
complexity and high cost of biological experiments, computational methods can rapidly and efficiently predict the
potential miRNA-disease interaction and can be used as a beneficial supplement to experimental methods.

Results: In this paper, we proposed a novel computational model of kernel neighborhood similarity and multi-
network bidirectional propagation (KNMBP) for miRNA-disease interaction prediction, especially for new miRNAs
and new diseases. First, we integrated multiple data sources of diseases and miRNAs, respectively, to construct a
novel disease semantic similarity network and miRNA functional similarity network. Secondly, based on the
modified miRNA-disease interactions, we use the kernel neighborhood similarity algorithm to calculate the disease
kernel neighborhood similarity and the miRNA kernel neighborhood similarity. Finally, we utilize bidirectional
propagation algorithm to predict the miRNA-disease interaction scores based on the integrated disease similarity
network and miRNA similarity network. As a result, the AUC value of 5-fold cross validation for all interactions by
KNMBP is 0.93126 based on the commonly used dataset, and the AUC values for all interactions, for all miRNAs, for
all disease is 0.93795. 0.86363. 0.86937 based on another dataset extracted by ourselves, which are higher than
other state-of-the-art methods. In addition, our model has good parameter robustness. The case study further
demonstrated the predictive performance of the model for novel miRNA-disease interactions.

Conclusions: Our KNMBP algorithm efficiently integrates multiple omics data from miRNAs and diseases to stably
and efficiently predict potential miRNA-disease interactions. It is anticipated that KNMBP would be a useful tool in
biomedical research.
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Background

MicroRNAs (miRNAs) are a category of single-stranded
small-non-coding RNAs(~22nt) which play important
roles in gene regression via interference in post-
transcriptional regulation [1, 2]. In the past decades, micro-
RNAs were found in eukaryotes and viruses besides pro-
karyotes [3]. Previous research has shown that miRNAs
was related to several human diseases like cancer, Alzhei-
mer’s disease and Diabetes Mellitus etc. [4—6]. miR-375
was found to be significant in the growth and response to
metabolic stress of pancreatic islets [7].miR-21 negatively
regulated Pdcd4 which can suppress TPA-induced neoplas-
tic transformation [8]. miRNA-200 was detected in the me-
tastasis of gastric adenocarcinoma cells [9]. miR-146a is a
tumor suppressor inhibit NF-kB activity related to promo-
tion and suppression of tumor growth [10].

Wang et al. [11] constructed a Directed Acyclic Graph
(DAG) to describe a disease based on the MeSH descrip-
tors. Then they calculated the disease semantic similarity
by the DAG, and combined with the known miRNA-
diseases interaction to construct the miRNA functional
similarity, which was also used to preliminarily infer new
potential functions or related diseases of miRNAs. Xu et al.
[12] proposed a support vector machine (SVM) to predict
the interaction between miRNA and tumor, but since the
current database rarely provides a list of non—cancer miR-
NAs, therefore, the lack of negative samples leads to a su-
pervised learning model that is not well suited for large-
scale disease-miRNA interaction prediction.

The miRNA-disease interaction prediction problem can
be regarded as a classification problem that lacks negative
samples. According to this feature, a large number of
network-based semi-supervised methods have been pro-
posed, most of which are based on similar miRNAs (dis-
eases) are more likely to interact with the same disease
(miRNA). Chen et al. [13] adopted restart random walk
(RWRMDA) to predict the potential miRNA-disease inter-
action, which restarted the known miRNA-disease inter-
action network, using random walks on miRNA functional
similarity network to predict potential miRNA-disease
interaction. Since the restart operator of RWRMDA is
based on the known miRNA-disease interaction network,
this method does not apply to predictions of new diseases
that are not associated with any miRNA. The regularized
least squares algorithm (RLSMDA) was also proposed by
Chen et al. [14] in 2015 to predict miRNA-disease interac-
tions, which uses both the disease semantic similarity and
the miRNA functional similarity to calculate miRNA-
disease interaction scores, and the weighted linear combin-
ation of the two scores was used as the final result. The
method combined disease similarity network and miRNA
similarity network to predict simultaneously, which im-
proves the prediction accuracy and enhanced the predictive
power of the model to some extent. However, the model is
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highly dependent on parameters, and how to set appropri-
ate parameters is the defect of the model. Subsequently, in
2018, Chen et al. [15] released a Graph Regression model
to predict miRNA-disease interactions by using singular
value decomposition (SVD) to decompose the interaction
matrix, the disease similarity matrix and the miRNA simi-
larity matrix, then using partial least squares (PLS) to
perform graph regression in interaction space, miRNA
similarity space, and disease similarity space. SVD decom-
position and PLS regression can eliminate noise to a certain
extent, but it also causes information loss, which leads to
the reduction of model accuracy. Recently, Chen et al. pro-
posed two novel models: the hierarchical clustering recom-
mendation algorithm [16] (BNPMDA) and the low rank
matrix decomposition [17] (IMCMDA) algorithm to pre-
dict potential miRNA-disease interactions. Both models
have the advantage of fewer parameters, but the former
uses only known miRNA-disease interaction networks for
inference, so it cannot predict new miRNAs and new dis-
eases, and the latter leads to a reduction in prediction
accuracy due to matrix decomposition. The miRNA func-
tional similarity used in the above algorithms is based on
the method of Wang et al. [11], which depends on the
known miRNA-disease interactions, so these models can-
not predict new miRNAs.

Luo et al. [18] proposed a Kronecker regularized least
squares, which calculated miRNA functional similarity
based on miRNA-gene interaction network and gene
weight network, combined with disease semantic similarity
to predict potential miRNA-disease interactions. The model
enhances the predictive power of new miRNAs by integrat-
ing heterogeneous omics data of miRNAs, but the model is
highly dependent on the weight coefficients of different
similarity ~measurements, which greatly affects its
promotion and practical application ability. Xiao et al. [19]
constructed a graph regularized non-negative matrix
factorization method, which decomposes the modified
known miRNA-disease interaction network, and uses
miRNA functional similarity and disease semantic similarity
to construct regularization operators for prediction. The
model can predict new miRNAs and new diseases, but
more model parameters and stronger parameter dependen-
cies also reduce the performance of the model. Both of
these models use information outside the miRNA-disease
interaction dataset to construct miRNA functional
similarity, which enhances their ability to predict new miR-
NAs. However, they only use MeSH descriptors to describe
disease similarity, resulting in a sparsely diseased network,
which limits the predictive performance of the model.

Here, we propose a new framework, kernel neighborhood
similarity and multi-network bidirectional propagation
(KNMBP), which uses multiple omics data to infer un-
known miRNA-disease interactions. KNMBP uses disease-
gene interactions, disease-biological process interactions,
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and disease semantic information to construct a novel dis-
ease semantic similarity network, using miRNA-target in-
teractions and gene weight networks to construct a novel
miRNA functional similarity network. Different from previ-
ous methods, the miRNA functional similarity and disease
semantic similarity calculated in this paper does not utilize
the known miRNA-disease interaction, but excavates more
feature information of miRNA and disease from other latest
datasets, which greatly expands our ability to predict new
miRNA and disease. The accumulated research [15, 20]
shows that the known miRNA-disease interaction network
also contains important feature information of miRNA and
disease, and the reasonable use of this information can well
enhance the prediction ability of the model. In these con-
siderations, based on the modified miRNA-disease inter-
action, we use the kernel-based neighborhood similarity
algorithm to calculate the disease kernel neighborhood
similarity and miRNA kernel neighborhood similarity.
Finally, based on the integrated miRNA (disease) similarity
network, we constructed a bidirectional propagation model
to predict potential miRNA-disease interaction scores. The
experimental results show that KNMBP not only has a
good ability to predict new interactions, new miRNAs and
new diseases, but also has the advantage of parameter
robustness.

Page 3 of 14

Methods

Methods overview

To predict unknown miRNA-disease interactions, we
propose a new KNMBP model with five parts, as shown
in Fig. 1. First, we calculate miRNA functional similarity
and disease semantic similarity by using multiple histo-
logical data other than miRNA-disease interaction infor-
mation (as shown in step 1 of Fig. 1). Second, based on
the modified known miRNA-disease interaction net-
work, we use the kernel-based neighborhood similarity
model (KSNS) to calculate the disease kernel neighbor-
hood similarity and miRNA kernel neighborhood simi-
larity (as shown in step 2 and step 3 of Fig. 1). Finally,
based on the integrated miRNA (disease) similar
network calculated by Diffusion Component Analysis
(clusDCA), we released a bidirectional propagation algo-
rithm to predict unknown miRNA-disease interaction
scores (as shown in step 4 and step 5 in Fig. 1).

Dataset collection
In order to fairly compare the performance of the
model, we used two benchmark datasets to conduct
experiments.

For benchmark dataset I, we utilized the dataset of
miRNA-disease interaction prediction established by
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Fig. 1 The flow diagram of KNMBP model. In Step 1 and Step 2, the red box indicates disease, the grass green triangle indicates the gene, the
circle indicates the miRNA, the pentagon indicates the biological process corresponding to the disease, Sf,, and SS, represent improved miRNA
functional similarity and disease semantic similarity, respectively, WKNNP represents a weighted k-neighborhood profile algorithm used to
preprocess the interaction matrix. In Step 3, S/, and Sl represent disease kernel neighborhood similarity and miRNA kernel neighborhood
similarity, respectively. In Step 4, clusDCA represents the network fusion algorithm based on diffusion component analysis
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Chen et al. [16, 17]. The dataset I consists of three
parts: First, 5430 interactions between 383 diseases
and 495 miRNAs were extracted from HMDD v2.0
[21]. Second, based on the Medical Subject Headings
(MeSH) descriptors in the U.S. National Library of
Medicine, two semantic similarity matrices of diseases
were established by wang et al. [11] and Xuan et al.
[22], respectively. Third, the functional similarity
matrix of miRNA was established by Lu et al. [23].
All these data can be downloaded from https://github.
com/IMCMDAsourcecode/IMCMDA. However, Data-
set I is based on the old version (HMDD v2.0), and it
also has the disadvantage that the disease semantic
similarity is very sparse and the miRNA functional
similarity depends on the known miRNA-disease
interaction. Therefore, we extracted information about
miRNAs and diseases from several latest databases
and built benchmark dataset II. We describe the
establishment of dataset II from three aspects.

First, extract information about the disease. The
Comparative Toxicogenomics Database (CTD) is an
important database of disease research that provides a
wealth of interactive information between disease and
chemistry, genetic products, phenotypes and the envir-
onment [24]. Disease items in CTD are described by
MeSH ID, which is a hierarchical vocabulary that pro-
vides a strict classification system for studying the rela-
tionships among various diseases, and the relationships
between any diseases can be illustrated by a directed
acyclic graph (DAG). For example, the MeSH ID of the
disease “Deletion Syndrome (Partial)” was “MesH:
(C538288” in CTD, whose parent diseases are “Chromo-
some Deletion” and “Chromosome Disorders”, and the
corresponding MesH ID were “MesH:D002872” and
“MesH: D025063”, respectively. In order to get a detailed
description of the disease, we download 12,988 diseases,
including the names of diseases, multiple ID representa-
tions of the diseases, and information about their parent
nodes. Furthermore, we downloaded gene-disease inter-
actions, including 25,114,553 interactions between 46,
045 genes and 7163 diseases. At the same time, disease-
GO biological process interactions, including 1,727,119
interactions between 13,126 GOs and 7116 diseases were
also downloaded.

Second, extract information about the miRNA. In
order to accurately describe the relationship between
miRNAs, we extracted as complete as possible
miRNA interaction information from multiple latest
databases. We obtained the miRNA-gene interaction
information from experimentally verified databases,
including TarBase (version 8.0) [25], miRTarBase

(version 7.0) [26], miRNAMAP (version 2.0) [27],
miRecord (version 4) [28]. DIANA-TarBase v8 is a
reference database for indexing experimentally
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supported microRNA targets, has more than a decade
of support in the field of non-coding RNA [25]. We
downloaded 927,119 miRNA-gene interactions from
the database, after the removal of non-human gene
and converted the gene ID into Entrez Gene identi-
fiers, a total of 423,392 interactions between 18,345
genes and 1084 miRNAs are retained. Meanwhile, we
performed ID transformation of the genes in the miR-
TarBase database, deleted the null miRNAs and target
genes, and finally obtained 381,088 interactions
between 2599 miRNAs and 15,064 genes. Similarly,
we extracted 83,071 interactions between 1135 target
genes and 471 miRNAs from miRNAMAP, and ob-
tained 1269 interactions between 767 target genes
and 203 miRNAs from the miRecord. Based on miR-
Base [29], all of the above miRNAs were transformed
into the v22 version using the R package ‘miRBase-
Converter’, and the null and duplicate miRNAs were
deleted. After integration, a total of 588,134 interac-
tions between 2814 miRNAs and 18,468 genes were
obtained. In addition, Lee et al. [30] integrated 21
omics data from multiple organisms by modifying
bayes and used logarithmic likelihood scores to meas-
ure the probability of interaction between two genes
with true functional links. To build similarity net-
works of genes, we downloaded the human weighted
gene network data from the HumanNet database,
which contained the log likelihood score of 476,399
interactions among 16,243 genes.

Third, extract interactive information of miRNA
and disease. The human microRNA Disease Database
(HMDD) collects large amounts of human miRNA-
disease interactions from genetics, epigenetics, circu-
lating miRNA and miRNA target interactions, and
provides detailed annotation of miRNA-disease inter-
actions [21]. In June 28, 2018, HMDD (version 3.0)
[31] was also released, which provides 200.2% of
human miRNA-disease interactions and has more evi-
dence to classify. We extracted the disease informa-
tion with MeSH ID or OMIM ID from HMDD v3.0,
removed duplicate miRNA-disease interactions, and
obtained 14,457 interactions between 1045 miRNAs
and 627 diseases. To ensure all the miRNA similarity
and all the disease similarity can be calculated, we
delete the diseases and miRNAs not in the above two
datasets, and finally got 10,561 interactions between
574 miRNAs and 579 diseases. The details of the two
benchmark datasets are shown in Additional file 1.

Construction of disease semantic similarity network

In fact, most methods use MeSH descriptors to
construct a directed acyclic graph of the disease,
which contains common information between differ-
ent diseases is used to describe the disease similarity,
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which leads to a sparsely similar network [16, 17]. In
order to construct a more reasonable disease semantic
similarity, we make full use of the various omics data
to calculate the similarity of the disease. Protein-
encoding genes can affect the pathogenesis of the
disease to some extent [32], so disease-gene interac-
tions also imply some features of the disease. Simi-
larly, the gene ontology biological process of the
disease is also the reflection of some characteristics of
the disease. In this paper, we combine the disease-
gene interactions (D-G) and disease-GO biological
process interactions datasets (D-GO), and the MeSH
descriptors of the disease, using the MultiSourcDSim
model proposed by Lei et al. [33] to calculate the
disease semantic similarity.

Based on the MeSH descriptor, a directed acyclic
graph (DAG) can be used to describe the semantic
relationship between diseases. Any disease d in the
DAG can be expressed as DAG(d) = (d, S(d), F(d),
A(d)), where S(d) and F(d), representing the set of
direct child nodes and direct parent nodes of disease
d, respectively, and A(d) represents the set constituted
by all ancestor nodes of disease d.

First, combining the disease interaction dataset (D-G
or D-GO) and DAG, the frequency FT,(d) of any disease
d in the DAG can be calculated:

Te(d) = fo(d)+ ) FTc(d) (1)
)

deS(d

where f.(d) represents the frequency of d in the inter-
action dataset c, it can be seen that the occurrence
frequency of d in DAG is equal to the sum of the
occurrence frequency of all its direct child nodes and
the frequency of itself in the interaction dataset.
Then, normalize the frequency of disease occurrence
as follow:

PTe(d) = PI;CT(Cr((j?t)

(2)

Where, PT,(root) represents the occurrence frequency
of the root node in DAG. According to Egs. 1 and 2, it
can be known that 0 < PT,(¢) < 1. Based on the more in-
formation shared, the higher the similarity. The disease
similarity can be obtained:

_ MAX 2 x log(PT.(d))
Seldid2) = yecom(dy, dy) ( log(PT(dy) + log(PTc(dz))>

(3)

Where, COM(d,, d5) is the set of the minimum com-
mon ancestor of the disease d; and d,, and it is easy to
see that 0<S.(d;, d») < 1. According to D-G and D-GO,
we can obtain two disease similarity networks {S.,c=1,
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2}. After that, the clusDCA [34] was used to integrate
the disease similar networks, and the integrated semantic
similar network SS,; was finally obtained.

Construction of miRNA functional similarity network
In order to overcome the dependence of miRNA functional
similarity on known miRNA-disease interaction network,
the algorithm can predict miRNAs not associated with any
disease. We calculate the miRNA functional similarity by
means of Luo [18] and Xiao’s [19] methods. Specifically, we
used miRNA target gene interaction network and gene
similarity network to calculate miRNA similarity.

First, we normalized and symmetrized the log-
likelihood score data between genes downloaded from
HumanNet:

LLS(i, ) .
MAX, s’ LLS(i, j)=0
S¥(gi-g;) =\ LLS(j, Q) . .
MAX,s’ LLS(i, j) = Oand LLS(j,i)=0
0, Otherwise

(4)

Where $%(g;, g) represents the similarity between gene g;
and gene g, LLS(i,j) represents the log-likelihood score
between gene g; and gene g, MAX;;s represents the
maximum log-likelihood score. At this point, we can define
the similarity between any gene g; and any gene set G:

§*(e-G) = gg{Sg (¢8)) } (5)

Where, $%(g;, G) represents the similarity between g;
and G. Then, we can get the functional similarity be-
tween miRNA m2; and miRNA m;:

ZgEGng(g: Gl) + ZgEG/»Sg (g7 G})
IGil + |G/

SFW,(WZI',le) =

(6)

Where, SF,,,(m;, m;) represents the functional similarity be-
tween my; and m;, G; represent the gene set associated with
m;, and |G;| represent the number of genes in the set G;.

Kernel-based neighborhood similarity

Reasonable use of known miRNA-disease interaction in-
formation can greatly improve the performance of the
model [17, 18]. In this paper, based on the known
miRNA-disease interactions, we used the kernel-based
neighborhood similarity (KSNS) [35] to calculate miRNA
(disease) kernel neighborhood similarity. KSNS not only
comprehensively utilizes the distance similarity and
structural similarity of samples, but also fully excavates
the nonlinear structural similarity information between
samples, achieving a good prediction effect in IncRNA-
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protein interaction prediction. In addition, to overcome
the sparse problem of the interaction matrix, a weighted
k-neighborhood profile (WKNNP) algorithm was pro-
posed by Xiao et al. [19] to preprocess the interaction
matrix, achieved good results. Based on the above two
points, we first use WKNNP to preprocess the known
interaction matrix, and then uses KSNS to calculate the
kernel neighborhood similarity of miRNA (disease).

Let the matrix X of the NM rows and ND columns
represent the miRNA-disease interaction matrix, then X
can be expressed as: X = [MI M}, --- ML,/| = [Dy, D,
-+, Dnp|, where M; is the ith row vector of X, could be
regarded as the interaction profile feature of miRNA m1;
D; is the jth column vector of X, could be regarded as
the interaction profile feature of disease dj.

According to the WKNNP algorithm, we make use of
K-nearest neighbor feature of m; to enrich the inter-
action profile M;, then the modified interaction profile

M of m; is as follows:

- 1 K
M; = Qn Zk:l

le = ijeN(m!)SFm(mi, Wll')
regularization weight, and N(m;) represents the K near-
est set of m; (For sake of simplicity, let K=15 in the
paper). w* is the weight coefficient of the kth neighbor,
and decay factor a € [0, 1] (For sake of simplicity, let a =
0.8 in the paper), It is easy to see that the more closer

miRNAs have higher weight coefficients. At this point,

T
the modified interaction profile matrix can X, = [M;,

MZT , ~--,1\A/[1{[M] be obtained through Eq. 7. Similarly, we

can get the disease modified interaction profile matrix
Xg= [f)l,ﬁz, ~~'715ND]. Finally, the modified interaction
profile matrix X is shown as follows:

wh M (7)

Where denotes

X = max{X,% (X + Xd)} (8)

Now, based on the X, we make use of KSNS to calculate
miRNA (disease) kernel neighborhood similarity. First, we
construct the K-neighboring discriminant matrix of miRNA
based on the miRNA functional similarity:

L,
Cij= 0.

Where N(m;) represents the set of NK nearest miRNAs
of m; NK=|PNxN|, PN denotes neighbors proportion
parameter, N is the total number of samples, -] means
round down. Then weight matrix W of miRNA is as follow:

j€N (m;)
jEN(m;)ori = j
9)
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1 H
minz [DX)W-D(X)|% +/i2‘ [WO(1-C)lIF + 52 Iw1%
st.Wle=eW=20 diag(W)=0
(10)

Where, ®(-) denotes kernel function, [|llz represents-
Frobenius norm, © is an element-by-element multiplica-
tion, 4, is non-neighborhood control parameters, y, is
similarity regularization parameters, e=(1,1,...... DT
The first item of constraint requires the sum of re-
construction weights of each sample to be 1, the second
requires that all elements in W are non-negative, and
the third term indicates that the self-similarity of
miRNA is 0. Using the Lagrange multiplier method and
the Karush-Kuhn-Tucker (KKT) condition, the iterative
formula of W is as follows:

(k(X,X) +my WOCL’;‘

W, = W 11
! [k(va)W+/’£1W+ﬂ2W]zj ’ (1)

Where k(X, X) represents the kernel matrix of X. In
this paper, we select Gaussian kernel function, which is
represented as:

k(xi,xj) = <(D(xi)vq)(xi)>
= exp(~ x| /y) (12)

Where k(x;, x;) is the kernel of any two samples of x;

Sl

Xj. Y = “gr  represents the regularized bandwidth par-
ameter. After that, we conducted multiple normalization
operations on the weight matrix W to obtain the miRNA
kernel neighborhood similarity matrix SI,, and the
normalization formula is as follows:
SI,, = D*W'D (13)
Where, the diagonal matrix D = diag (d;, do, ..., dnar),
d;=>"Nw, ;. Similarly, we can get the disease kernel
neighborhood similarity SI;. Then the clusDCA [34] was
used to integrate the miRNA functional similarity SF,,
(disease semantic similarity matrix SS;) and kernel
neighborhood similarity SI,,, (kernel neighborhood simi-
larity SI,;) to obtain the final miRNA similarity matrix
S,»= (disease similarity matrix S,).

Bidirectional propagation algorithm

Based on miRNA similarity, disease similarity and
known miRNA-disease interaction information, we pro-
posed a bidirectional propagation algorithm to predict
the miRNA-disease interaction score.

Let (F)aar« np be the miRNA-disease interaction score
matrix, then F can be decomposed as F = [FM!,FMI,
-« EM},,] = [FDy,FDy, ---,FDxp], Where, FMiT repre-
sents the predicted interaction score of miRNA m; with
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all diseases, and FD; denotes the predicted interaction
score of disease d;. Based on the hypothesis that higher
similarity miRNAs are more likely to be interacted with
the same disease, we can get:

2

1
Zs, s EMi - —— (14)
j d /d/

—tr (FT (1—Dm’%-5m .Dm*%) F)

Where s} = (S,);; denotes the similarity of m, and
my. d' = ZIJ\WII Sis and the diagonal matrix D,, = diag

(dl',dy, -+, dy,,). Similarly for diseases, we can get:

2

(15)

Zsuv [ \/-

=t (FT (I—Dd‘i -SD-D,[E) F)

Where sjv = (Sa),, denotes the similarity of d, and
d,. d* =30 s? sy x> and the diagonal matrix Dy = diag
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(d?,dd, -, d%p). By this stage, the bidirectional propaga-

tion algorithm can be obtained as follows:

argmin A 2
{IIF—YII% + R er(FTL, F) + Edtr(FLdFT)}
Ly =I-Dy Sy -Dyp2
L; = I—Dd_% -Sp- Dd_%
(16)
Where |F-Y||% represents the overall prediction

error, which is required to be as small as possible, 1.,
and A4 are the Laplacian regularization parameters of
miRNA and disease, respectively. The derivative of

Eq. 16 for F is as follows:

9Q(F)

7 = 2(FY) + ALy F + 1aFLg

(17)
In order to speed up the optimization of the gradient
algorithm, we use AdaGrad algorithm [34] to adaptively
choose the gradient step size. The details of the
optimization algorithm to the proposed bidirectional
propagation model are described in Algorithm 1.

Algorithm 1: Bidirectional propagation algorithm

lnput: Y, Sms Sdallma /’ld,Y

Output: F

1 Initialize F randomly, and let ¢;s =0, i=1.2,..,

2 Calculate D,, = diag(d{®,dy", -

2 1Suka

1
=1-Dy 2 Sy

3 Calculate the regular matrix: L.,

4 fort=1, ... max_iter do
5 GH%:Z(F—Y)+ Ao LinF + AgFLy
Fori=1,2,....m
Fors=1,2,...,n

//g%s are the (i, s) element in G

6 @5 Qs T8l

Yis

7 Fi,s:Fi,s_y%s

ydnm), dit = Z] 1505 Da = diag(d{,dg, -,

m;j=12,..,n;

dl[\ilD)’ dﬁl =

1 _1 L
"D 2 5Lg=1-Dy2:S;-Dy 2
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Results

Comparison with other methods

Experimental settings

To evaluate the performance of the KNMBP algorithm
fairly, we performed the 5-fold cross-validation (CV) on
Dataset 1 and Dataset II, and compared with the
following methods: IMCMDA [17], BNPMDA [16] and
RLSMDA [14], KRLSM [18], RWRMDA [13]. Specific-
ally, for each method, we performed CV four times, each
time using a different seed, and the mean value of the
AUC values under different seeds was taken as the final
AUC value of the method. The miRNA-disease inter-
action matrix Y € R¥"*™P had NM rows for miRNAs
and ND columns for diseases. We carried out three
types of CV as follows [36]:

(1) CV,:CV on all miRNA-disease pairs. In order to
ensure that the known interactions could be evenly
distributed, we randomly divided the known and
unknown interactions into five equal parts, one of
which was selected as the test set in turn, and the
association contained in it was deleted as the
training set.

(2) CV,,: CV on miRNAs (row vectors in Y), all
miRNAs were randomly divided into five equal
parts, one of which was selected as the test set in
turn, and its association was deleted as the
training set.

(3) CV4:CV on diseases (column vectors in Y), all
diseases were randomly divided into five equal
parts, one of which was selected as the test set in
turn, and its association was deleted as the
training set.

In each crossover experiment, Under CV,, 80% of Y
elements are used as the training set, and the remaining
20% are test set; Under CV,,,, 80% of rows in Y are used
as the training set, and the remaining 20% are test set;
Under CV, 80% of columns in Y are used as the train-
ing set, and the remaining 20% are test set. In Dataset I,
since the disease semantic similarity matrix is sparse,
and the miRNA functional similarity relies on known
miRNA-disease interactions, most of the methods only
perform CV, experiment. Therefore, we only perform
CV, on Dataset I, and perform the above three CV on
Dataset II.

In this paper, we use the grid method to find the opti-
mal combination of parameters. For KNMBP, the pa-
rameters are as follows: neighbors proportion parameter
PN was selected from {10%, 30%, 50%, 70%, 90%}; non-
neighborhood control parameters g; and similarity
regularization parameters y, were selected from { 2°, 2%,
22, 2%, 2* }; For Laplace regularization parameters A,
and 1, we set A, = Aq and choose the two parameters
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from {272,274 2% 271, 272}, For RWRMDA, {0,0.1, -,
0.9} for restart probability r and {1,2,3, -+, 6} for walk
times; For KRLSM, with the authors’ recommendations,
we set 0=1, the weight parameters were selected from
{0,0.1, -+, 1};For RLSMDA, weight parameters w=0.5 ,
the regularization parameters 7, = #,; and were selected
from {0,0.1, -+, 1}; For IMCMDA, the subspace dimen-
sion r was selected from {50, 100, ---, 500}.

Cross validation

For each CV, we calculated the prediction interaction
scores of the test set by the above six methods, and nor-
malized all the prediction interaction scores as follows:

— . PS(i,j)- minPS
PS _ 2o\bL))= minre
(&) maxPS—minPS

Where PS(i,j) represents the predicted interaction
score of miRNA ; and disease dj, minPS represents the
minimum value of PS, and maxPS represents the max-
imum value of PS. Then, the [0,1] interval is equally di-
vided into 1000, and each of the points is sequentially
selected as a threshold, and calculate the True Positive
Rate (TPR, sensitivity) and False Positive Rate (FPR, 1-
specificity) under each specific threshold. After that, we
calculate the mean value of the TPR and the FPR for
each threshold under CV, draw the corresponding TPR
and FPR curve. Figure 2 shows the optimal AUC and
corresponding ROC curves for each model under CV.
The optimal parameters of KNMBP and the correspond-
ing AUC values are shown in Additional file 2.

In the above experiment, CV, tested the predictive
performance of the model for new interactions, and
CV,, and CV, tested the predictive performance for
new miRNAs and new diseases, respectively. It can be
seen that our method (KNMBP) achieves the best
prediction results in Fig. 2. Specifically, based on
Dataset I, the AUC value of KNMBP for CV, can
reach 0.93126, which is 9.67, 5.69, 11.57, 3.41, and
10.31% higher than RWRMDA, RLSMDA, BNPMDA,
KRLSM, and IMCMDA, respectively. Based on Data-
set II, the AUC value of KNMBP for CVa can reach
0.93795, which is 7.97, 3.58, 13.68, 5.31 and 16.49%
higher than the other five methods respectively. Since
BNPMDA based on binary recommendation algorithm
needs to utilize known miRNA-disease interactions to
achieve resource allocation, it cannot predict new
miRNA and new diseases [16]. RWRMDA, which re-
starts the random walk on MiRNA similarity network,
is also not suitable for prediction of new diseases
[13]. Therefore, RLSMDA, KRLSM and IMCMDA
were selected as comparison algorithms under CV/,,
and the AUC value of KNMBP could reach 0.86363,
which was 7.66, 25.577 and 12.93% higher than the
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of AUC based on 5-fold cross validation. a perform CV, on Dataset |; b perform CV, on Dataset II; ¢ perform CVy4 on Dataset II; d perform CV,, on
Dataset Il

other three methods (RLSMDA, KRLSM, IMCMDA).
For CV,, the AUC of KNMBP can reach 0.86937,
which is 0.62, 0.67, 11.09, 531 and 12.68% higher
than the other four methods (RWRMDA, RLSMDA,
KRLSM, IMCMDA), respectively.

Parametric sensitivity analysis

In machine learning, with the change of experimental
scenarios, the optimal parameter combination may be
very different, and the parameter selection may have a
huge impact on the performance of the model, so the
sensitivity analysis of parameters is often very important.
In this section, we focus on the influence of four
parameters, namely, neighbor proportion parameter PN,
Laplace regularization parameter A=A, = 14, non-
neighborhood control parameter y; and similarity
regularization parameter p,, on the prediction perform-
ance of the model. Let F.,_ (PN=iA=j,p1=5,py=1)
represent the AUC value of the KNMBP algorithm when
cv=c¢, ce{l,2, 3,4} is performed and the parameters are
set to PN=1i, A=j, 1 =S, yp = t. In order to facilitate the
visualization of the results, for each type of CV we

combined the above four parameters in pairs to analyze
the influence of the paired parameters on the predicted
results of the model.

First, we consider the influence of neighbor pro-
portion parameter PN and Laplace regularization
parameter A on the predictive performance of the
model. When PN =i, A =j, and the other two param-
eters change arbitrarily, we calculate the maximum
AUC value of KNMBP (maxAUCi/ ), the average
AUC value (meanAUC; }-) and the minimum AUC value

(minAUC] ;‘)’ as shown below:

maxAUC]; = max{Fo—o(PN = i,A = j, py, i) |, €V, p1,€}

meanAUC{ ; = mean{ Fo—o(PN = i,A = j, pty, pto) |11, €V, pr €V}

minAUC]; = min{Fe,—(PN =i, = j,py, ) |14, €V, €V}
(18)
Where p,;€V and p,eV represent arbitrary

values of the parameters u; and pu, within their
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range (41 , pa€ { 20,21 22 23 2% 1), When cv=1,
it means we perform CV, on Dataset I; cv =2 means we
perform CV, on Dataset II; cv = 3 means we perform CV,
on Dataset II; cv =4 means we perform CV,, on Dataset
II. In particular, under a certain CV, for every set of values
of PN and A, we first calculate the AUC values when
and y, are arbitrarily changed within their range, then cal-
culate the maximum, average and minimum values of this
group of AUC values according to (20), and the results are
shown in Fig. 3.

It can be seen from Fig. 3 that with the change of
neighbor proportional parameter PN and Laplace
regularization parameter A, the AUC value of the
model has a trend fluctuation, but the overall fluctu-
ation range is small. Specifically, as shown in (a) of
Fig. 3, the minAUC is 0.92322 when PN =0.1 and
A =4, and the maxAUC is 0.93126 when PN =0.1 and
A =1/4, with an overall relative change of 0.87%. Simi-
larly, in (b), (c), and (d) of Fig. 3, the relative ranges
of overall AUC changes with respect to the model
caused by PN or A are 0.56, 0.61, and 0.29%, respect-
ively. The result shows that KNMBP has strong sta-
bility related to neighbor proportional parameter PN
and Laplace regularization parameter A.

Page 10 of 14

Now we consider the non-neighborhood control
parameter p; and similarity regularization parameter
Uo. Similarly, When pu;=s, pp,=t the other two
parameters change arbitrarily, we calculate the
maximum AUC value of KNMBP (maxAUC,), the

average AUC value (meanAUC,) and the minimum
AUC value (minAUC{,), as shown below:

maxAUC{, = max{Fo—.(PN, A, 4, = s, 4, = t)|PNeV, \eV}

meanAUC{, = mean{ F,—(PN, A, 4; = s, 4, = t)|PNeV, 1€V}

minAUC{, = min{ Fo—(PN, A, p; = 5,4, = t)|PNeV, AeV}
(19)

Where PNeV and A eV represent arbitrary values of
the parameters PN and A within their range (PN € {10%,
30%, 50%, 70%, 90%} , Ae { 27%, 27", 2°, 27", 272 }). Then
the effect of these two parameters on the prediction per-
formance of the model is shown in Additional file 3. As
can be seen from (a), (b), (c) and (d) in Additional file 3,
when the parameters y; and u, change in a certain
range, the maxAUC value, meanAUC value and min-
AUC value of the model are almost flat, indicating that
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these two parameters have little influence on the predic-
tion performance of the model. According to Fig. 3 and
Additional file 3, when the parameters of the model
change within a certain range, KNMBP can always
achieve better prediction performance, indicating that
our algorithm has strong parameters robustness.

Case study

To further demonstrate the predictive performance of
KNMBP algorithm for novel miRNA-disease interac-
tions, experiments were performed on the older version
of HMDD (v2.0, June 20, 2013), and the prediction re-
sults were validated with the newer version of HMDD
(v3.0, June 28, 2018). We downloaded the miRNA-
disease interactions from HMDD v2.0 and extracted the
disease data with MeSH ID or OMIM ID according to
the details of the disease provided by HMDD v3.0. After
processing, we obtained 2157 interactions of 166 dis-
eases and 299 miRNAs, and constructed semantic simi-
larity scores of these diseases and functional similarity
scores of these miRNAs according to (2.2.1) and (2.2.2).
The KNMBP was used for prediction, and the candidate
miRNAs of 166 diseases ranked according to their pre-
dicted scores were provided in Additional file 4. Figure 4
shows the confirmed ratio of candidate miRNAs for 11
diseases under different thresholds. For example, the top
10 predicted scores of candidate miRNAs for Bladder
Neoplasms are all confirmed in HMDD v3.0. Twenty-
seven of the top 30 predicted scores were confirmed in
HMDD v3.0. As can be seen from Fig. 4, most of the top
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candidate miRNAs for these diseases can be confirmed
in the latest version.

In addition, in order to further test the validity of the
predicted results, we divided the candidate miRNAs for
each disease into two groups according to the predicted
scores, called Top group and Bottom group respectively
[19], with 20 candidate miRNAs in each group, and then
used fisher’s exact test to evaluate the statistical differ-
ences between the two groups. Figure 5 shows the
proportion of confirmed candidate miRNAs in the Top
group and Bottom group of four diseases and the signifi-
cance level p by fisher’s exact test. For example, 18 of
the candidate miRNAs in Colon Neoplasms’s Top group
were confirmed (proportion of 0.9), and 2 of the Bottom
group were confirmed (proportion of 0.1), with a p value
of 5.2959 x 107", This suggests that the candidate miRNAs
of Colon Neoplasms in the Top group are more likely to be
confirmed than that in the Bottom group. Meanwhile, the p
values were 14509 x 107", 3.5997 x 10™* , 2.4436 x 10™*
for Bladder Neoplasms, Glioma, Ovarian Neoplasms,
respectively. The test results verified that the number of
confirmed miRNAs in the Top group were significantly
higher than that in the Bottom group, which further
demonstrated the high efficiency of KNMBP algorithm in
predicting new miRNA-disease interactions.

As shown in Additional file 5, the top 10 candidate
miRNAs for these four diseases and their confirmation
in HMDD v3.0 [31], miRCancer [37] and dbDEMC 2.0
[38]. Specifically, for Gladden Neoplasms and Colon
Neoplasms, their top 10 candidate miRNAs were all con-
firmed in HMDD v3.0; For Glioma, 8 were confirmed in
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HMDD v3.0 and one was confirmed in miRCancer; For
Ovarian Neoplasm, 9 were confirmed in HMDD v3.0
and one was confirmed in dbDEMC 2.0. Finally, all the
interactions in Dataset II extracted from the current
latest database were used as the training set, and the
candidate miRNAs of 579 diseases predicted by KNMBP
algorithm were sorted according to scores, as shown in
Additional file 6.

Discussion

The KNMBP proposed in this paper not only has high
performance in predicting unknown miRNA-disease
interactions, but also can efficiently predict the new
miRNA (disease), which not associated with any disease
(miRNA). In order to fairly evaluate the performance of
the model, we compare the performance of it and several
state-of-the-art models to the common Dataset (Dataset
I) and the Dataset (Dataset II) extracted by ourselves for
5-fold cross validation (CV). In Dataset I, the AUC value
of KNPMBP could reach 0.93126 when we perform CV
on interactions. In Dataset II, the AUC value of KNMBP
could reach 0.93795, 0.86937 and 0.86363 when we per-
form CV on interactions, on miRNAs and on diseases,
respectively. The predicted results of our method were
all better than other methods. In order to evaluate the
predictive performance of KNMBP for new miRNA-
disease interactions, we extracted the data from the old
version database and tested the predicted results with
the new version. Statistical results of 11 diseases con-
firmed that most of the top candidate miRNAs could be
confirmed in the new version dataset. We divided the

candidate miRNAs of the four common tumors into the
Top group and the Bottom group according to the pre-
dicted scores. The fisher’s exact test results further con-
firmed that the number of confirmed miRNAs in the
Top group were significantly higher than that in the
Bottom group. In addition, the results of parameter
sensitivity analysis show that KNMBP algorithm has the
advantage of parameter robustness when the parameters
are taken in a wide range.

The reason why the KNMBP algorithm has higher per-
formance is mainly due to the following aspects. First,
we constructed more reasonable disease semantic simi-
larity network and miRNA functional similarity network.
Specifically, instead of using Directed Acyclic Graph
(DAG) alone to describe the disease similarity, we com-
prehensively used the gene-disease interactions, disease-
GO biological process interactions and the MeSH
descriptor to calculate the disease similarity, and more
fully mined the similarity information between diseases
to obtain more dense and accurate disease similarity
network. In addition, previous methods for constructing
miRNA functional similarity network mostly rely on the
known miRNA-disease interaction, therefore they
cannot predict new miRNAs. In this paper, the miRNA
functional similarity is calculated by integrating miRNA-
target gene interaction network and gene weight net-
work, avoiding dependence on known miRNA-disease
interactions and ensuring the prediction of new miR-
NAs. Secondly, in order to overcome the sparseness of
the miRNA-disease interaction network and fully exploit
the miRNA (disease) feature information, we utilized the
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weighted K neighborhood profiles to make a weighted
correction on the sparse interaction network, taking ad-
vantage of neighborhood information to reduce the
interaction network sparsity. Meanwhile, we used KSNS
to calculate the miRNA (disease) kernel neighborhood
similarity. Different from Gaussian function similarity
and linear neighborhood similarity [20], KSNS not only
makes full use of non-neighborhood information, but
also fully excavates the nonlinear structural similarity
between samples, consider both the distance similarity
and the structural similarity of samples. Thirdly, we used
diffusion component analysis to integrate the heteroge-
neous omics data of disease similarity and miRNA simi-
larity respectively. The fused miRNA (disease) similarity
network can not only effectively utilize the feature
information among the known interactions, but also
reflect the new similarity information obtained from
other omics data. Fourthly, the bidirectional propaga-
tion algorithm simultaneously spreads the known
miRNA-disease interactions from the similarity net-
work of both disease and miRNA respectively, making
full use of the global network information of miRNA
and disease.

Although KNMBP efficiently predicted the unknown
miRNA-disease interactions, there are some limitations.
First, we tried to build the disease semantic similarity
networks and miRNA functional similarity networks by
making use of other latest data resources, however, there
may be noises and errors in these similarity networks.
Secondly, our evaluation is based on the known miRNA-
disease interaction which may be not complete.
Although the known miRNA-disease interactions have
been greatly improved over the previous years, the pro-
portion of these interaction in the total miRNA disease
pair is still very low, which leads to some errors in the
evaluation of our prediction results.

Conclusion

Studies on the potential miRNA-disease interactions
can help people understand the pathogenesis of
diseases and design reasonable treatment schemes. In
this paper, we proposed a new computational model
(KNMBP) to predict the potential miRNA-disease
interactions. Compared with other state-of-the-art
methods, KNMBP not only has higher prediction
accuracy on unknown miRNA-disease interaction, but
also can effectively find potential interaction of new
disease (or miRNA) without any known related miRNA
(or disease). Furthermore, the proposed model is not
sensitive to parameter. These indicate that our algo-
rithm can integrate multiple omics data of miRNAs and
diseases, and have a wide application prospect in
miRNA and disease research.
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