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Abstract

Background: Understanding the complex biological mechanisms of cancer patient survival using genomic and
clinical data is vital, not only to develop new treatments for patients, but also to improve survival prediction. However,
highly nonlinear and high-dimension, low-sample size (HDLSS) data cause computational challenges to applying
conventional survival analysis.

Results: We propose a novel biologically interpretable pathway-based sparse deep neural network, named
Cox-PASNet, which integrates high-dimensional gene expression data and clinical data on a simple neural network
architecture for survival analysis. Cox-PASNet is biologically interpretable where nodes in the neural network
correspond to biological genes and pathways, while capturing the nonlinear and hierarchical effects of biological
pathways associated with cancer patient survival. We also propose a heuristic optimization solution to train
Cox-PASNet with HDLSS data. Cox-PASNet was intensively evaluated by comparing the predictive performance of
current state-of-the-art methods on glioblastoma multiforme (GBM) and ovarian serous cystadenocarcinoma (OV)
cancer. In the experiments, Cox-PASNet showed out-performance, compared to the benchmarking methods.
Moreover, the neural network architecture of Cox-PASNet was biologically interpreted, and several significant
prognostic factors of genes and biological pathways were identified.

Conclusions: Cox-PASNet models biological mechanisms in the neural network by incorporating biological pathway

databases and sparse coding. The neural network of Cox-PASNet can identify nonlinear and hierarchical associations
of genomic and clinical data to cancer patient survival. The open-source code of Cox-PASNet in PyTorch implemented

for training, evaluation, and model interpretation is available at: https://github.com/DataX-JieHao/Cox-PASNet.
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Background

Understanding the complex biological mechanisms of
cancer patient survival using genomic and clinical
data is vital, not only to develop new treatments
for patients, but also to improve survival prediction
[1]. As advanced molecular high-throughput sequencing
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platforms efficiently produce high-dimensional genomic
data (e.g., gene expression data and RNA-seq), molecular
profiles of human diseases (e.g., cancer) can be obtained
[2]. High-dimensional biological data have been increas-
ingly utilized for elucidating their underlying biological
mechanisms, as well as supporting clinical decision-
making.

Survival analysis is a group of methods used for estimat-
ing survival distribution from data, in which the outcome
is the survival time until the observation has an event
of interest. In survival analysis, it is important to handle
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right-censoring data, which are another type of missing
values. The most prevalent approach for analyzing time-
to-event data in clinical trials is the Cox Proportional
Hazards regression model (Cox-PH) [3, 4]. It is a semi-
parametric model, which has few assumptions, but is
effective to interpret the effects between risk factors.
For instance, both conventional and stratified Cox mod-
els were applied for analyzing more than 15,000 patients
who have breast cancer, so as to assess the association
between cancer treatments and survival time, as well as
cancer stage [5]. Furthermore, a Cox-PH model was per-
formed with about 400 breast cancer patients, and it was
discovered that chronic diseases affected cancer patient
survival [6].

However, the main obstacles in the conventional Cox-
PH model are (1) analyzing high-dimension, low-sample
size (HDLSS) data; and (2) handling the highly nonlinear
relationship between covariates. In bioinformatics, ana-
lyzing HDLSS data is essential and challenging, since most
biological data have limited samples (#) but an extremely
large number of features (p), i.e., p >> n. The high-
dimensional data often result in, either training infeasible
or overfitting of the training dataset [7]. As a conse-
quence, low-dimensional, large-enough sample size data,
such as clinical information, are used to apply the con-
ventional Cox-PH model directly for predicting patient
survival. Nevertheless, a dramatic rise in research for ana-
lyzing high-dimension genomic data has been observed,
so as to disclose the effects of the molecular biological
mechanism on patient survival. Feature selection meth-
ods, such as penalization algorithms, have generally been
considered to address the HDLSS issue in the Cox-PH
model. Penalty-based Cox-PH models, with LASSO (L;)
or elastic-net regularization, were frequently used for
high-dimensional genomic data [8—11]. Additionally, an
advanced feature selection approach was proposed to
guarantee the selection algorithm included almost all of
the significant covariates [12].

The effects of genomic data on patient survival are gen-
erally highly nonlinear for complex human diseases [13],
but the conventional Cox-PH model assumes the linear
contributions of covariates. The kernel trick can explic-
itly transform nonlinear covariate effects to become linear
for linear regression algorithms. A kernel-based Cox-
PH model was proposed to handle the nonlinear effects
of gene expression profiles on censored survival pheno-
types, such as overall survival time and relapse time [14].
Moreover, two survival support vector machine (SVM)
models, for both classification and regression problems,
were proposed to improve survival prediction with high-
dimensional genomic data [15]. It is still challenging to
seek the optimal kernel function, with the optimal pair
of hyper-parameters, since kernel-based models need to
specify the kernel function beforehand.
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Deep learning techniques have recently drawn attention
in bioinformatics because of their automatic capturing of
nonlinear relationships, from their input and a flexible
model design. Several deep learning models, which incor-
porate a standard Cox-PH model as an output layer, have
been proposed for predicting patient survival. DeepSurv
incorporates a standard Cox-PH regression, along with a
deep feed-forward neural network in order to improve
survival prediction, and eventually build a recommenda-
tion system for personalized treatment [16]. DeepSurv
has achieved competitive performance, compared to stan-
dard Cox-PH alone and random survival forests (RSFs).
However, the limitation of DeepSurv is that only very
low-dimension clinical data were examined, where the
number of variables was less than 20. Cox-nnet, an arti-
ficial neural network for a regularized Cox-PH regression
problem, was proposed in order to high-throughput RNA
sequencing data [17]. Overall, Cox-nnet outperformed
a regularized Cox-PH regression (alone), RSE, and Cox-
Boost. In Cox-nnet, the top-ranked hidden nodes, which
are the latent representations from gene expression data,
are associated to patient survival, and each hidden node
may implicitly represent a biological process. In a simi-
lar fashion, SurvivalNet adopted a Bayesian Optimization
technique, so as to automatically optimize the structure of
a deep neural network [18]. SurvivalNet produced slightly
better performance than Cox elastic net (Cox-EN) and
RSE. Intriguingly, a well-trained SurvivalNet can gener-
ate the risk score for each node by a risk backpropagation
analysis.

However, applying deep learning approaches to high-
dimensional genomic data for survival analysis is still
challenging due to: (1) an overfitting problem when train-
ing a deep learning model with HDLSS data; and (2) the
lack of explicit model interpretation. Deep neural net-
work models involve a large number of parameters. Thus,
deep learning typically requires a large number of sam-
ples. Particularly, when training a deep learning model
with HDLSS data, gradients tend to have high variance in
backpropagation, which consequently causes model over-
fitting. Both Cox-nnet and SurvivalNet introduced only
significant genomic data by feature selection approaches,
to avoid the overfitting problem, so the methods may fail
to handle high-dimensional data. In order to overcome
the HDLSS problem in deep learning, dimension reduc-
tion techniques were employed to reduce the dimension
of the input data, and the lower dimensional data were
introduced to a neural network [19]. Deep Feature Selec-
tion was developed to identify discriminative features in
a deep learning model [20]. Deep Neural Pursuit trained
a small-sized sub-network and computed gradients with
low variance for feature selection [21].

Although there are variant architectures in deep learn-
ing, most conventional deep neural networks consist



Hao et al. BMIC Medical Genomics 2019, 12(Suppl 10):189

of multiple fully-connected layers for analyzing struc-
ture data, which make them difficult to interpret. In
survival analysis, model interpretation (e.g., identifying
prognosis factors) is often more important than sim-
ply predicting patient survival with high accuracy. How-
ever, hidden nodes, computed by fully-connected layers,
are not able to represent explicit biological components.
Moreover, biological processes may involve only a small
number of biological components, rather than all input
features. Thus, the capability of explicit model interpreta-
tion in deep neural networks is highly desired in survival
analysis.

Additionally, the interpretation of hierarchical interac-
tions of biological pathways has barely been addressed.
Intuitively, the biological interpretation at a pathway level
enables obtaining rich biological findings. This is because
a pathway-based analysis usually shows remarkable power
in reproducibility with genomic studies. For example,
highly reproducible biomarkers have been identified in
diagnosing breast cancer by high-level representation of
pathway-based metabolic features [22].

Biological systems are often complex, and may include
hierarchical interactions between molecular pathways.
Different survival rates between patients may be caused
by those hierarchical relationships between pathways. In
particular, for antiviral signaling, the hierarchical rep-
resentation between receptor pathways and gene ontol-
ogy was explored [23]. Consequently, a deep learning
model can be biologically interpretable by incorporat-
ing the impacts of inhibition and propagation between
pathways.

The integration of multiple types of data (e.g., multi-
omics data or clinical data) in a deep learning model is
also challenging. A number of studies have reported that
leveraging multi-omics and clinical data improves predic-
tive performance in survival analysis [18, 24, 25]. A naive
approach to integrate multi-omics data is to combine all
types of data into a single matrix and perform a survival
analysis [18, 26]. The approach assumes that the hetero-
geneous data can be represented by an augmented matrix
form. However, the augmented matrix causes problems:
(1) it generates a much higher dimension of HDLSS data;
(2) it makes the sample size smaller due to missing val-
ues; and (3) it ignores data types having smaller numbers
of covariates. Note that multi-omics data on The Cancer
Genome Atlas (TCGA) present substantial missing val-
ues; e.g., 160 samples of mRNA-Seq are available, while
595 clinical samples are in the glioblastoma multiforme
(GBM) dataset in TCGA.

In this paper, we develop a novel pathway-based sparse
deep neural network, named Cox-PASNet, for survival
analysis by integrating high-dimensional genomic data
and clinical data. Our main contributions of Cox-PASNet
for survival analysis are:
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¢ to identify nonlinear and hierarchical relationships at
biological gene and pathway levels;

e to provide a solution for neural network model
interpretation, in which each node corresponds to a
biological components or process;

e to integrate multiple types of data in a deep learning
model; and

e to propose efficient optimization for training a neural
network model with HDLSS data to avoid overfitting.

This paper is an expanded version of a paper entitled
Cox-PASNet: Pathway-based Sparse Deep Neural Network
for Survival Analysis, presented at the IEEE Interna-
tional Conference on Bioinformatics & Biomedicine (IEEE
BIBM 2018), Madrid, Spain, Dec. 3-6 2018 [27].

Results

Datasets

In this study, we considered glioblastoma multiforme
(GBM) and ovarian serous cystadenocarcinoma (OV)
cancers to assess the performance of Cox-PASNet, the
proposed model. GBM is the most aggressive malignant
tumor that grows rapidly within brain, and the prognosis
performance remains poor [28]; OV cancer is a com-
mon type of cancer among women in the world, and it is
usually diagnosed at a late stage [29]. We collected gene
expression and clinical data for TCGA GBM and OV can-
cers from cBioPortal (www.cbioportal.org/datasets). The
patients who had neither survival time nor event status
were excluded.

We obtained biological pathways, seen as the prior
knowledge, from the Molecular Signatures Database
(MSigDB) [30], where we considered both KEGG and
Reactome databases for the pathway-based analysis. We
excluded small pathways (i.e., less than fifteen genes) and
large pathways (i.e., over 300 genes), since small pathways
are often redundant with other larger pathways, and large
pathways are related to general biological pathways, rather
than specific to a certain disease [31]. Moreover, we inves-
tigated the genes that were included in at least one of these
pathways.

Additionally, we integrated the clinical information
from both the GBM and OV cancer patients. Only age
was incorporated in the clinical layer of Cox-PASNet,
since age was a significantly strong prognostic factor
in GBM [24], and most other corresponding clinical
information had a large number of missing data. For
instance, the Karnofsky Performance Score (KPS) has
been known as another significant factor, in addition to
age. However, there is a strong correlation between KPS
and age, and many patients lack the KPS information.
Finally, we have 5,404 genes, 659 pathways, and clini-
cal age data from 523 GBM patients and 532 OV cancer
patients.
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Experimental design

The predictive performance of Cox-PASNet was evalu-
ated by comparing to current state-of-the-art methods,
such as Cox-EN [10], Cox-nnet [17], and SurvivalNet
[18]. For the measurement of predictive performance with
censored data, we considered C-index, which is a rank-
correlation method that counts concordant pairs between
the predicted score and observed survival time. The C-
index is from zero and one, where one means an ideal
prediction, and 0.5 indicates a random prediction.

We repeated the holdout evaluation 20 times for the
reproducibility of model performance, due to a small
number of samples, with the two targets of survival
months and censor status (i.e., living and deceased), and
computational costs. On each experiment, the dataset was
randomly selected: 20% for the test data, and the remain-
ing 80% data were split into training (80%) and validation
(20%), while ensuring the same censoring percentage on
each training, validation, and test data. For the training
data, we normalized the gene expressions and age to zero
mean and unit standard deviation. Then we used the cor-
responded mean and standard deviation values, calculated
from the training data, to normalize the validation and
test data, so that any information from the test data was
not used for training. We trained every model with the
training data, and the validation data were applied to find
the optimal pair of hyper-parameters. Once the model
was well-trained, the test data were used to evaluate the
predictive performance.

Model tuning

Cox-PASNet was developed based on a modern deep
learning model. For the activation function, we used the
Tanh function, which produced the highest C-index score
compared to other activation functions such as ReLU and
LeakyReLU. Additionally, Tanh is beneficial because it
provides a probabilistic interpretation to indicate a node’s
activation. Both dropout and L? regularization were con-
sidered. Dropout rates were settled on 0.7 and 0.5 in the
pathway layer and the first hidden layer, respectively, with
an empirical search. For the neural network optimizer,
Adaptive Moment Estimation (Adam) was performed
[32], where a grid search was applied in order to approxi-
mate the optimal learning rate (1) and L? penalty term (1).
On each experiment, the optimal hyper-parameters of 7
and X were chosen to minimize the cost function with the
validation data, and then the model was trained with the
optimal hyper-parameters. The implementation of Cox-
PASNet in the PyTorch framework is freely available at
https://github.com/DataX-JieHao/Cox-PASNet.

In order to a nearly fair comparison, we used the Glm-
net Vignette Python package [10] for the Cox-EN model.
The optimal hyper-parameters of « and A were found by
a grid search, as Cox-PASNet did. The candidates of «
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are in the range [0, 1] with a 0.01 stride, and the length
of A is 200. Then we trained the Cox-EN model with
the optimal hyper-parameters in the training data, and
evaluated the model performance with the associated test
data. Cox-nnet was trained by following the implemen-
tation codes provided by the authors’ GitHub. We used
the default tuning setting and applied a grid search for L2.
As for SurvivalNet, we optimized the hyper-parameters
by the Bayesian Optimization technique, BayesOpt, which
was highlighted to automatically optimize the SurvivalNet
[33]. We added two additional hyper-parameters, L! and
L? penalty terms, into the BayesOpt algorithm, besides
their default search. SurvivalNet was conducted based on
open source codes provided by the authors’ GitHub.

For integrating two different types of data, both gene
expression and clinical age data were augmented into a big
input matrix, which was introduced to benchmark mod-
els of Cox-EN, Cox-nnet, and SurvivalNet. Meanwhile, we
introduced gene expression and clinical age data into the
gene and clinical layer, separately.

Experimental results

The experimental results with GBM and OV cancer data
are shown in Fig. 1 and Tables 1 and 2. With GBM data,
our proposed Cox-PASNet obtained the best C-index of
0.6347 +0.0372, while Cox-nnet was ranked as the sec-
ond, with a C-index of 0.5903 £0.0372 (see Fig. 1a and
Table 1). Cox-nnet is an artificial neural network that has
one hidden layer only. SurvivalNet is a multilayer percep-
tron, which is an advanced model compared to Cox-nnet,
and the optimal architecture of SurvivalNet is ascertained
by the BayesOpt. Meanwhile, Cox-nnet illustrated that a
simpler neural network usually produces a better perfor-
mance compared to deeper networks [17]. Hence, Sur-
vivalNet produced an average C-index of 0.5521 +0.0295,
which was lower than Cox-nnet’s. Additionally, Cox-EN
turned out a C-index of 0.5151 +0.0336, which was nearly
same as a random guess. The poor performance of Cox-
EN may be caused by the highly nonlinearity of biological
data, which have 5,404 gene expressions but only 523
patients. A Wilcoxon test was run in order to confirm
if the outperformance of Cox-PASNet was statistically
significant compared to the other three benchmarks. In
Table 3, it clearly showed that Cox-PASNet was signif-
icantly better than Cox-EN, Cox-nnet, and SurvivalNet,
respectively.

Moreover, we evaluated Cox-PASNet with OV cancer
data. Cox-PASNet obtained the best C-index of 0.6343
£0.0439, as well; Cox-nnet retained the second rank with
a C-index of 0.6095 £0.0356; and Cox-EN was the last
place with a C-index of 0.5276 40.0482 (Fig. 1b and
Table 2). The statistical testing of Wilcoxon test showed
that Cox-PASNet also statistically outperformed others in
OV cancer in Table 4.
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Fig. 1 Experimental results with a GBM and b OV cancer in C-index.
Boxplots of C-index of a TCGA GBM dataset and b TCGA OV cancer
dataset using Cox-EN, SurvivalNet, Cox-nnet, and Cox-PASNet. On
each experiment, the dataset was randomly selected: 20% for the test
data, and the remaining 80% data were split into training (80%) and
validation (20%), while ensuring the same censoring percentage on
each training, validation, and test data. The experiments were
repeated over 20 times

It is noted that Cox-PASNet uses the same loss function,
which is a negative log partial likelihood, as Cox-EN, Cox-
nnet and SurvivalNet. Nevertheless, we leverage a deep
neural network architecture with a prior biological knowl-
edge of pathways in Cox-PASNet. The biologically moti-
vated neural network has a better predictive performance,
and reduces the noise signals from the complex biologi-
cal data. Additionally, Cox-PASNet has been trained with
small sub-networks, so as to prevent overfitting. Hence,
Cox-PASNet makes two contributions of the biological
motivated architecture and the new strategy in training,
to eventually improve the predictive performance.

Table 1 Comparison of C-index with GBM in over 20 experiments

Model C-index

Cox-EN 05151 £0.0336
Cox-nnet 0.5903 +0.0372
SurvivalNet 0.5521 +0.0295
Cox-PASNet 0.6347 £0.0372
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Table 2 Comparison of C-index with OV cancer in over 20
experiments

Model C-index

Cox-EN 0.5276 +0.0482
Cox-nnet 0.6095 +0.0356
SurvivalNet 0.5614 £0.0524
Cox-PASNet 0.6343 +0.0439

Bolded indicates the highest performance

Discussion

Model interpretation in GBM

For the biological model interpretation of Cox-PASNet,
we re-trained the model with the optimal pair of hyper-
parameters from 20 experiments using all available GBM
samples. The samples were categorized into two groups,
of high-risk and low-risk, by the median Prognostic Index
(PI), which is the output value of Cox-PASNet. The node
values of the two groups in the integrative layer (i.e., the
second hidden layer (H2) and the clinical layer) and the
pathway layer are illustrated in Figs. 2 and 3, respectively.
In Fig. 2a, the node values of 31 covariates (30 from the
genomic data, and age from the clinical data) were sorted
by the average absolute partial derivatives, with respect
to the integrative layer. Age (the first column in Fig. 2a)
is shown as the most important covariate in Cox-PASNet
with GBM data, in terms of the partial derivatives.

The top-ranked covariates show distinct distributions
between high-risk and low-risk groups. For instance, the
first three covariates in H2 (the 2nd, 3rd, and 4th columns
in Fig. 2a) were activated in the high-risk group, but inac-
tivated in the low-risk group. Moreover, we performed a
logrank test by grouping the node values of the covari-
ate into two groups individually, again by their medians.
The -logl0(p-values) computed by the logrank test are
depicted in the above panel, aligning with the covari-
ates in Fig. 2a. The red triangle markers show significant
covariates (-log10(p-value) >1.3), whereas the blue mark-
ers show insignificant ones. The logrank tests revealed
that the top-ranked covariates by the absolute weight
are associated to survival prediction. Figure 2b-c present
Kaplan-Meier curves for the top two covariates, where
survivals between the two groups are significantly differ-
ent. Thus, the top-ranked covariates can be considered as
prognostic factors.

Table 3 Statistical assessment with GBM

Wilcoxon rank-sum test

Cox-PASNet vs. Cox-EN 8.85e-05*
Cox-PASNet vs. Cox-nnet 4.49e-4*
Cox-PASNet vs. SurvivalNet 1.40e-4*

“shows the statistical significance with significance level = 0.05
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Table 4 Statistical assessment with OV cancer

Wilcoxon rank-sum test

Cox-PASNet vs. Cox-EN 1.03e-4*
Cox-PASNet vs. Cox-nnet 0.04*
Cox-PASNet vs. SurvivalNet 2.93e-4*

“shows the statistical significance with significance level = 0.05

In the same manner, the nodes in the pathway layer
are partially illustrated in Fig. 3. The heatmap in Fig. 3a
depicts the top 10 pathway node values of the high-risk
and low-risk groups, where the pathway nodes are sorted
by the average absolute partial derivatives, with respect
to the pathway layer. We also performed logrank tests
on each pathway node, and 304 out of 659 pathways
were statistically significant on the survival analysis. The
two top-ranked pathways were further investigated by a
Kaplan-Meier analysis, shown in Fig. 3b-c. The Kaplan-
Meier curves of the two top-ranked pathways imply the
capability of the pathway nodes as prognostic factors.

The statistically significant nodes in the integrative
layer, and the top ten ranked pathway nodes, are visualized
by t-SNE [34] in Fig. 4, respectively. The nonlinearity of
the nodes associated with PI is illustrated. The integrative
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layer represents the hierarchical and nonlinear combina-
tions of pathways. Thus, the more distinct associations
with survivals are shown in the integrative layer than the
pathway layer.

The ten top-ranked pathways, with related literature,
are listed in Table 5. The p-values in the table were com-
puted by a logrank test with the pathway node values
of the two groups of high and low risks. Among them,
five pathways were reported as significant in the biolog-
ical literature of GBM. The Jak-STAT signaling pathway,
which is usually called an oncopathway, is activated for
the tumor growth of many human cancers [35]. Inhibition
of the Jak-STAT signaling pathway can reduce malignant
tumors, using animal models of glioma. A neuroactive
ligand-receptor interaction was explored as one of the
most significant pathways in GBM [38]. PI3K cascade is
also a well-known pathway, which is highly involved in
proliferation, invasion, and migration in GBM [39].

The ten top-ranked genes, by partial derivatives with
respect to each gene, are listed with their p-values, and
related literature, in Table 6. PRL has been known to be
associated with the occurrence of neoplasms and cen-
tral nervous system neoplasms, and so an assessment
with PRL expression in primary central nervous system
tumors was investigated [42]. MAPK9 was identified as

-log10(p)
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Low Ris
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—— > median
< median
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0 128
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Fig. 2 Graphical visualization of the node values in the second hidden layer (H2) and clinical layer. a Heatmap of the 31 nodes (i.e,, thirty H2 nodes
and one clinical node). The horizontal dashed line in red distinguishes two risk groups, where the upper/lower partition belongs to high risk/low risk
patients. The top dot plot indicates the nodes’ significance. A logrank test was conducted for each node within two risk groups in the scale of
-log10(p-values), where red indicates statistical significance, and blue shows insignificance. The plot in the right panel displays the prognostic index
(P1) with each corresponding sample. b—c Kaplan-Meier plots of the top two nodes
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Fig. 3 Graphical visualization of the node values in the pathway layer. a Heatmap of the top ten pathway nodes. The horizontal dashed line in red
distinguishes two risk groups, where the upper/lower partition belongs to high risk/low risk patients. The top dot plot indicates the nodes’
significance. A logrank test was conducted for each node within two risk groups in the scale of -log10(p-values), where red indicates statistical
significance, and blue shows insignificance. The plot in the right panel displays the prognostic index (Pl) with each corresponding sample. b—c
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a novel potential therapeutic marker, along with RRM2
and XIAP, which are associated with the biological path-
ways involved in the carcinogenesis of GBM [43]. IL22
was reported to promote the malignant transforma-
tion of bone marrow-derived mesenchymal stem cells,
which exhibit potent tumoritropic migratory properties
in tumor treatment [44]. FGF5 contributes to the malig-
nant progression of human astrocytic brain tumors as an
oncogenic factor in GBM [45]. The activation of JUN,
along with HDAC3 and CEBPB, may form resistance

to the chemotherapy and radiation therapy of hypoxic
GBM; and the downregulation of the genes appeared
to inhibit temozolomide on hypoxic GBM cells [46]. A
low expression of DRD5 was presented as being associ-
ated with relatively superior clinical outcomes in glioblas-
toma patients with ONC201 [47]. HTR?7, involved in
neuroactive ligand-receptor interaction and the calcium
signaling pathway, was reported to contribute to the
development and progression of diffuse intrinsic pontine
glioma [48].
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Fig. 4 Visualization of the top-ranked nodes by Cox-PASNet. a t-SNE plots of the statistically significant nodes in the integrative layer (i.e. the second
hidden layer (H2) and clinical layer) and b t-SNE plots of the top ten pathway nodes
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Table 5 Ten top-ranked pathways in GBM by Cox-PASNet

Pathway name Size P-value Ref.
Jak-STAT signaling pathway 155 <0.0001 [35-37]
Neuroactive ligand-receptor interaction 272 <0.0001 [38]
MAP kinase activation in TLR cascade 50 0.0176 -

NF«B and MAP kinases activation mediated by TLR4 signaling repertoire 72 0.0729 -

G alpha (i) signalling events 195 <0.0001 -

PI3K cascade 71 0.0304 [39,40]
Tyrosine metabolism 42 0.5671 -
Neuronal system 279 <0.0001 [41]
Axon guidance 129 0.0012 [37]
Xenobiotics 16 0.6347 -

It is worth noting that only IL22 and FGF5 are statis-
tically significant (i.e., p-value <0.05) by logrank test on
each gene, which means that only these two genes can
be identified as significant prognostic factors by conven-
tional Cox-PH models. However, other genes such as PRL,
MAPKY9, JUN, DRD5, and HTR7 have been biologically
identified as significant prognostic factors, even though
significantly different distributions are not found in gene
expression (i.e., p-value >0.05). The average absolute par-
tial derivatives, with respect to each gene, measure the
contribution to patients’ survival through the pathway
and hidden layers in Cox-PASNet, when gene expression
varies on the gene. Therefore, the gene biomarker
identification by Cox-PASNet allows one to capture
significant genes nonlinearly associated to patients’
survival.

Cox-PASNet’s overall model interpretation and hier-
archical representations in gene and biological pathway
levels are illustrated in Fig. 5. A pathway node repre-
sents a latent quantity of the associated gene, and a
hidden node expresses the high-level representation of a
set of pathways. The following hidden layers describe the
hierarchical representation of the previous hidden nodes
with sparse connections, which help to identify impor-
tant pathways and their interactions to contribute to the
system. Then, the last hidden nodes are introduced to a
Cox-PH model with clinical data.

A pathway node value shows the active or inactive status
of the corresponding pathway, which may be associated
to different survivals (e.g., Jak-STAT signaling pathway).
The significance of the genes involved in the active path-
way can be ranked by the absolute weight values between
the gene layer and the pathway layer (e.g., AKT1). A set of
the active pathways is represented in an active node in the
following hidden layer, which improves the survival pre-
diction. For instance, the Kaplan-Meier plots of Node 19
and PI show a more similar estimation of survival than the
Jak-STAT signaling pathway;, in Fig. 5.

Limitations

Cox-PASNet captures pathway-based biological mecha-
nisms associated with cancer patients’ survival by embed-
ding pathway databases into the neural network model.
Most studies have post-processed pathway-based analysis
based on the significant genes identified by their mod-
els, whereas in Cox-PASNet, those genes without pathway
annotations were not considered in the analysis.

In this study, we considered only GBM and OV cancers
in TCGA to evaluate Cox-PASNet. It would be desirable,
as future work, to cross validate with genomic data sets
other than TCGA for further assessment.

Conclusion

Deep learning-based survival analysis has been high-
lighted due to its capability to identify nonlinear prognos-
tic factors and higher predictive performance. However,
training deep learning models with high-dimensional data
without overfitting and lack of model interpretability
in biology were yet-to-be problems. To tackle the chal-
lenges, we developed a pathway-based sparse deep neural

Table 6 Ten top-ranked genes in GBM by Cox-PASNet

Gene name P-value Ref.
PRL 0.1698 [42]
FGF22 04503 -

MAPK9 0.9580 [43]
IL22 0.0140 [44]
IFNAS5 0.5401 -

FGF5 <0.0001 [45]
AGTR1 0.1375 -

JUN 0.1798 [46]
DRD5 0.1288 [47]
HTR7 0.7751 (48]
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Fig. 5 Hierarchical and associational feature representation in Cox-PASNet. For instance, Jak-STAT signaling pathway shows active status, which is
associated to PI. The significance of the genes (i.e. AKT1 and AKT3) involved in the Jak-STAT signaling pathway can be ranked by the average
absolute partial derivatives with respect to the gene layer. A set of the active pathways are represented in an active Node 19 in the following hidden
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network, named Cox-PASNet, for survival analysis. Cox-
PASNet is a deep learning based model cooupled with a
Cox proportional-hazards model that can capture nonlin-
ear and hierarchical mechanisms of biological pathways
and identify significant prognostic factors associated to
patients’ survival. A new model optimization technique
with HDLSS data was introduced to obtain the optimal
sparse model without overfitting problem in the paper.
We assessed Cox-PASNet with GBM and ovarian cancer
datain TCGA. The experimental results showed that Cox-
PASNet outperformed the current cutting-edge survival
methods, such as Cox-nnet, SurvivalNet, and Cox-EN,
and its predictive performance was statistically assessed.

A negative log-partial likelihood with a single node in
the output layer is considered in Cox-PASNet, as most
deep learning based methods have also done. However,
Cox-PASNet constructs the neural network based on bio-
logical pathways with sparse coding. The genomic and
clinical data are introduced to the model separately for
model interpretation.

Cox-PASNet integrates clinical data, as well as genomic
data. When combining clinical and genomic data as a
large matrix for analysis, the effects of high-dimensional
genomic data may dominate the clinical data in the inte-
gration, due to the unbalanced size between the genomic
and clinical covariates. Cox-PASNet considers separate
layers for clinical data and genomic data, so that each
data set can be interpreted individually. Furthermore,
the incorporation of multi-omics data, such as DNA
mutation, copy number variation, DNA methylation, and
mRNA expression, is essential to describe complex human
diseases involving a sequence of complex interactions in

multiple biological processes. A solution for the inte-
gration of complex heterogeneous data would also be
desirable as future work.

Methods

The architecture of Cox-PASNet

Cox-PASNet consists of: (1) a gene layer, (2) a pathway
layer, (3) multiple hidden layers, (4) a clinical layer, and (5)
a Cox layer (see Fig. 6). Cox-PASNet requires two types of
ordered data, gene expression data and clinical data from
the same patients, where gene expression data are intro-
duced to the gene layer and clinical data are introduced to
the clinical layer. The pipeline layers of the two data types
are merged in the last hidden layer and produces a Prog-
nostic Index (PI), which is an input to Cox proportional
hazards regression. In this study, we included only age as
clinical data. Thus, the clinical layer is embedded in the
last hidden layer directly, without any additional hidden
layers. Higher-dimensional clinical data are desired to be
integrated with hidden layers in the clinical pipeline.

Gene layer

The gene layer is an input layer of Cox-PASNet, intro-
ducing zero-mean gene expression data (X) with # patient
samples of p gene expressions, i.e, X = {x1,..,X,} and
x; ~ N(0,1). For pathway-based analysis, only the genes
that belong to at least one pathway are considered in the
gene layer.

Pathway layer

The pathway layer represents biological pathways, where
each node explicitly indicates a specific biological
pathway. The pathway layer incorporates prior biological
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Fig. 6 The architecture of Cox-PASNet. The structure of Cox-PASNet is
constructed by a gene layer (an input layer), a pathway layer, multiple
hidden layers, a clinical layer (additional input layer), and a Cox layer
(an output layer)

knowledge, so that the neural network of Cox-PASNet
can be biologically interpretable. Pathway databases (e.g.,
KEGG and Reactome) contain a set of genes that are
involved in a pathway, and each pathway characterizes a
biological process. The knowledge of the given association
between genes and pathways, forms sparse connections
between the gene layer and the pathway layer in Cox-
PASNet, rather than fully-connecting the layers. The node
values in the pathway layer measure the corresponding
pathways as high-level representations for the survival
model.

To implement the sparse connections between the gene
and pathway layers, we consider a binary bi-adjacency
matrix. Given pathway databases containing pairs of p
genes and g pathways, the binary bi-adjacency matrix
(A € B?*P) is constructed, where an element a;; is one
if gene j belongs to pathway i; otherwise it is zero, i.e.,
A={ajll <i<q1<j<p)anda;={0,1}.

Hidden layers

The hidden layers depict the nonlinear and hierarchical
effects of pathways. Node values in the pathway layer
indicate the active/inactive status of a single pathway in
a biological system, whereas the hidden layers show the
interactive effects of multiple pathways. The deeper hid-
den layer expresses the higher-level representations of
biological pathways. The connections in the hidden layers
are sparsely established by sparse coding, so that model
interpretation can be possible.

Clinical layer

The clinical layer introduces clinical data to the model
separately from genomic data to capture clinical effects.
The independent pipeline for clinical data also prevents
the genomic data, of relatively higher-dimension, from
dominating the effect of the model. In Cox-PASNet, the
complex genomic effects of gene expression data are cap-
tured from the gene layer to the hidden layers, whereas the
clinical data are directly introduced into the output layer,
along with the highest-level representation of genomic
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data (i.e., node values on the last hidden layer). Therefore,
Cox-PASNet takes the effects of genomic data and clinical
data into account separately in the neural network model.
If richer clinical information is available, multiple hidden
layers in the clinical layers can be considered.

Cox layer

The Cox layer is the output layer that has only one node.
The node value produces a linear predictor, a.k.a. Prog-
nostic Index (PI), from both the genomic and clinical data,
which is introduced to a Cox-PH model. Note that the Cox
layer has no bias node according to the design of the Cox
model.

Furthermore, we introduce sparse coding, so that the
model can be biologically interpretable and mitigate the
overfitting problem. In a biological system, a few biologi-
cal components are involved in biological processes. The
sparse coding enables the model to include only signif-
icant components, for better biological model interpre-
tation. Sparse coding is applied to the connections from
the gene layer to the last hidden layer by mask matrices.
The sparse coding also makes the model much simpler,
having many fewer parameters, which relieves overfitting
problem.

Objective function

Cox-PASNet optimizes the parameters of the model, ® =
{8, W}, by minimizing the average negative log partial
likelihood with L? regularization, where 8 is the Cox pro-
portional hazards coefficients (weights between the last
hidden layer and the Cox layer) and W is a union of
the weight matrices on the layers before the Cox layer.
The objective function of the average negative log partial
likelihood is defined as follows:

1
(@) =—-—% (hf—log ) expmp)|+1(O]),
EicE JER(T;)

(1)

where h! is the layer that combines the second hidden
layer’s outputs and the clinical inputs from the clinical
layer; E is a set of uncensored samples; and g is the total
number of uncensored samples. R(T;) = {i|T; > t} is
a set of samples at risk of failure at time ¢; [|©®]|, is the
L>-norms of {W, B} together; and A is a regularization
hyper-parameter to control sensitivity (A > 0).

We optimize the model by partially training small
sub-networks with sparse coding. Training a small sub-
network guarantees feasible optimization, with a small set
of parameters in each epoch. The overall training flow of
Cox-PASNet is illustrated in Fig. 7.

Initially, we assume that layers are fully connected,
except between the gene layer and the pathway layer. The



Hao et al. BMIC Medical Genomics 2019, 12(Suppl 10):189

Page 11 0f 13

d

Gene layer Pathway Hidden Hidden Cox

layer layer layer

Fig. 7 Training of Cox-PASNet with high-dimensional, low-sample size data. a A small sub-network is randomly chosen by a dropout technique in
the hidden layers and trained. b Sparse coding optimizes the connections in the small network

b

Gene layer  Pathway  Hidden Hidden Cox
o, layer  layer layer layer

Algorithm 1 Training of Cox-PASNet

1: Initialize weights W, biases b“), and

2 WO w0 MO

3: repeat

4:  Select a small sub-network via dropout

5. Train the sub-network

6 Sparse coding with the optimal M) by Eq. (3)
7

8

Update weights
. until convergence

initial parameters of weights and biases are randomly ini-
tialized. For the connections between the gene layer and
pathway layer, sparse connections are forced by the bi-
adjacency matrix, which is a mask matrix that indicates
the gene memberships of pathways. A small sub-network
is randomly chosen by a dropout technique in the hid-
den layers, excluding the Cox layer (Fig. 7a). Then the
weights and the biases of the sub-network are optimized
by backpropagation. Once the training of the sub-network
is complete, sparse coding is applied to the sub-network
by trimming the connections within the small network
that do not contribute to minimizing the loss. Figure 7b
illustrates the sparse connections, and the nodes dropped
by sparse coding are marked with bold and dashed lines.
The algorithm of Cox-PASNet is briefly described in
Algorithm 1.

Sparse coding

Sparse coding is proposed to make the connections
between layers sparse for the model interpretation. Sparse
coding is implemented by a mask matrix on each layer in
the model. A binary mask matrix M determines the sparse
connections of the network, where an element indicates
whether the corresponding weight is zero or not. Then,
the outputs, h'®), in the ¢-th layer are computed by:

hEHD — 4 ((W(e> *MO® 4 b(é)) ) @)

where x denotes an element-wise multiplication opera-
tor; a(-) is a nonlinear activation function (e.g., sigmoid or
Tanh); and WO and b® are a weight matrix and bias vec-
tor, respectively (1 < £ < L — 2, and L is the number of
layers).

In particular, an element of the binary mask matrix M is
set to one if the absolute value of the corresponding weight
is greater than threshold s'“); otherwise it is zero. The
mask matrix between the gene layer and pathway layer
(M©) is given from pathway databases, whereas other
mask matrices (M©), £ # 0) are determined by:

MO = 1w >50), ¢ 0, 3)

where s is the optimal sparsity level; and the function
1 (x) returns one if x is true; otherwise it is zero. The
optimal 5 is heuristically estimated on each layer in the
sub-network to minimize the cost function. In this study,
we considered a finite set of sparsity levels in arange of s =
[0,100), and computed scores. Note that a sparsity level of
zero produces a fully-connected layer, whereas that of 100
makes disconnected layers. Then we approximated the
cost function with respect to sparsity levels by applying a
cubic-spline interpolation to the cost scores computed by
the finite set of s. Finally, the sparsity level that minimizes
the cost score was considered for the optimal sparsity
level. The optimal s is approximated on each layer, indi-
vidually, in the sub-network. The individual optimization
of the sparsity on each layer represents various levels of
biological associations on genes and pathways.
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