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Abstract

Background: Recent high throughput technologies have been applied for collecting heterogeneous biomedical
omics datasets. Computational analysis of the multi-omics datasets could potentially reveal deep insights for a given
disease. Most existing clustering methods by multi-omics data assume strong consistency among different sources of
datasets, and thus may lose efficacy when the consistency is relatively weak. Furthermore, they could not identify the
conflicting parts for each view, which might be important in applications such as cancer subtype identification.

Methods: In this work, we propose an integrative subspace clustering method (ISC) by common and specific
decomposition to identify clustering structures with multi-omics datasets. The main idea of our ISC method is that the
original representations for the samples in each view could be reconstructed by the concatenation of a common part
and a view-specific part in orthogonal subspaces. The problem can be formulated as a matrix decomposition problem
and solved efficiently by our proposed algorithm.

Results: The experiments on simulation and text datasets show that our method outperforms other state-of-art
methods. Our method is further evaluated by identifying cancer types using a colorectal dataset. We finally apply our
method to cancer subtype identification for five cancers using TCGA datasets, and the survival analysis shows that the
subtypes we found are significantly better than other compared methods.

Conclusion: We conclude that our ISC model could not only discover the weak common information across views
but also identify the view-specific information.
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Background
With the advancements of biological technologies, there
are many kinds of data available such as genomic DNA
copy number arrays, DNA methylation, exome sequenc-
ing, messenger RNA arrays, microRNA sequencing and
reverse-phase protein arrays and so on. By analyzing the
multiple data generated by cancer patients, it is now pos-
sible to classify cancer patients to different subgroups, and
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thus improve the diagnostic and treatment. For example,
Breast cancer is one of the most common cancers world-
wide, and it is clinically categorized into four basic thera-
peutic subgroups: (1). Luminal A with oestrogen receptor
(ER) positive group; (2). Luminal B with oestrogen recep-
tor (ER) positive group; (3) HER2 amplified group; (4)
triple-negative breast cancers (TNBCs, also called basal-
like, lacking expression of ER, progesterone receptor (PR)
and HER2). The ER positive (including Luminal A and
B) is the most common and diverse, and several genomic
tests can be used to predict outcomes for ER+ patients
receiving endocrine therapy. The treatment for the HER2
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amplified subtype has a great success due to the effec-
tive therapeutic targeting of HER2. The basal-like breast
cancers, often with BRCA1 mutations or of African ances-
try have only option of chemotherapy. Therefore, subtype
identification for breast cancers surely can assist the treat-
ment for the patients.

Most molecular studies of subtype identification for
breast cancer integrate genomic, epigenomic, and tran-
scriptomic profiling including mRNA expression profil-
ing, miRNA expression, DNA methylation and DNA copy
number analysis, and so on. It is assumed in these stud-
ies that integrative clustering of multi-omics data can
capture clearer structure that can not be discovered by
only exploring a single omic data. In fact, in many other
applications, a single object often can be represented by
multiple features or views. For example, an image can
be represented by its pixels and its captions, an Inter-
net webpage can be represented by its text contents and
the hyperlinks to other webpages, and a scientific pub-
lication can be represented by its text contents and its
citations. In all these applications, multi-view clustering
takes information from all views into account such that
better clustering structures could be discovered.

The difficulty in multi-view learning mainly lies in that
the similarity measurement, geometric distribution, clus-
tering structure, and noisy levels and so on are often
diverse for different views. Samples represented in dif-
ferent views may have their own clustering structures, or
subspaces they lie in. The differences hamper the cluster-
ing significantly. It is challenging to efficiently reconcile
the conflicting information among views.

Most of existing multi-view clustering approaches fol-
low three directions. The first class of methods [1–7]
attempt to determine new representations by minimizing
the differences or maximizing the correlations between
different views. The second class of approaches propagate
information from different views to construct graphs or
similarities in a slightly different way, including multi-view
EM [8], multi-view spectral clustering [9, 10], multi-view
clustering with unsupervised feature selection [11, 12],
nonnegative Matrix Factorization [13], pattern fusion
[14], similarity network fusion (SNF) [4]. For example, the
similarity network fusion (SNF) [4] fuses multiple net-
works to one network by iteratively updating a sequence
of nonnegative status matrices. The third class of meth-
ods aim to learn an optimal linear combination of multiple
kernels or similarities [15–20]. For example, the opti-
mized kernel k-means [16] is proposed to obtain opti-
mal linear combination of multiple kernels and cluster
assignment matrix simultaneously by minimizing a trace
clustering loss.

However, almost all the existing methods assume strong
consistency among different views or omics, and thus
they capture the clustering structure by using the hidden

shared information. This may face problem in the case
when the different views share relatively weak common
clustering structure. For instance, different views may
have different levels of noisy information. Furthermore,
different views may have conflicting clustering structures,
or one single view may have different clustering structures
with all the others. All of these may make it difficult to
identify the shared information among views. A biolog-
ical example is that, the analysis on different omics for
glioblastoma multiforme (GBM), an aggressive adult brain
tumor, obtains different results. One work [21] based on
expression and copy-number-variant data, identifies two
subtypes, which is inconsistent with the results obtained
in [22], which identifies four subtypes primarily only by
expression data. Therefore, when the consistent informa-
tion is weaker than the conflicting information, which is
highly likely in subtype identification, it is challenging to
discover the hidden clustering structures. A natural idea
to overcome this challenge is to decompose the informa-
tion in each view to a shared part across all views and a
view-specific part. A kernel based method [23] is devel-
oped following this idea, which attempts to construct a
consensus kernel using multi-omics data. However, for
applications, it focuses more on the common part, but
ignores the view-specific clustering structure. Further-
more, the semi-definite programming for the optimiza-
tion problem is computational complex.

In this work, we propose a novel integrative subspace
clustering method by assuming that the common struc-
ture information is weak across views. The main idea is
to find a specific subspace for each view, so that the new
representation for each sample in each view in this sub-
space is a concatenation of two vectors, say, a common
representation among all views, and a specific representa-
tion for this view. This could make sure that the common
parts and the specific parts lie in two orthogonal sub-
spaces for each view. Furthermore, the representations of
the common part are expected to be independent with
those of each specific part, where the dependence is mea-
sured by Hilbert Schmidt Independence Criterion (HSIC).
Our main contributions in this work are summarized as
follows.

1. We propose a novel subspace learning model to
discover the common and specific representations for
each sample, especially for the case when the
common information might be relatively weaker than
the specific information. We propose an algorithm to
solve the corresponding optimization problem
efficiently.

2. We test our method on simulation datasets, text
multi-view datasets, cancer type identification, and it
works the best for most cases. Especially, our model
works even the common information across views is
very weak.
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3. We apply the proposed clustering method on subtype
identification, by assuming that the subtype
information may also come from the view-specific
part of a single omics data. We apply our approach to
identify subtypes for five cancers using TCGA
datasets. The survival analysis on the clustering
results shows that our method works the best for
most cases.

Methods
In this section, we will present the proposed integrative
subspace clustering method by multi-view matrix decom-
position. We first give a problem statement, and then
propose a subspace learning method by mult-view matrix
decomposition. We then introduce the Hilbert Schmidt
Independence Criterion, and finally propose our integra-
tive subspace clustering model ISC and the corresponding
optimization algorithm.

Problem statement
Suppose we are given n samples with V views, X =
[ X1, · · · , XV ], where Xv ∈ Rpv×n, v = 1, · · · , V . Denote
Xv =[ xv

1, · · · , xv
n], where xv

i ∈ Rpv . The aim is to cluster
the n samples with a given cluster number based on the
integrative information from the v views. In cancer sub-
type identification, the views can be different data sources,
omics or platforms.

Subspace learning for common and specific decomposition
We consider the samples Xv ∈ Rpv×n from view v are
approximately lying in a d-dimensional subspace �v ⊂
Rpv (d < pv), which is spanned by the columns of an
orthonormal matrix Pv ∈ Rpv×d , PT

v Pv = Id. This means
that

xv
i ≈ Pvzv

i ,

where zv
i ∈ Rd is the new representation of xv

i in this sub-
space. We assume that the samples Xv from view v have
both common and specific clustering structures, which
means that zv

i can be further represented as

zv
i =

(
ci
sv
i

)

where ci ∈ Rd0 is the common representation of xi across
all views, and sv

i ∈ Rdv is the specific representation of xi
in the v-th view. Note that d = d0 + dv. In other words, xv

i
can be approximately represented as

xv
i ≈ Pvzv

i =Pv

(
ci
sv
i

)
=

(
P(c)

v P(s)
v

) (
ci
sv
i

)
= P(c)

v ci+P(s)
v sv

i ,

where Pv =
(

P(c)
v P(s)

v
)

, (P(c)
v )T P(c)

v = Id0 and(
P(s)

v
)T

P(s)
v = Idv . This means that the d-dimensional

subspace �v spanned by Pv is further decomposed to two

orthogonal subspaces �
(c)
v and �

(s)
v , spanned by orthonor-

mal matrices P(c)
v and P(s)

v , respectively. In other words,
�v = �

(c)
v ⊕�

(s)
v , where �

(c)
v and �

(s)
v are orthogonal sub-

spaces to each other. We can rewrite the above equations
in a matrix form as follows,

Xv = PvZv + Ev

=
(

P(c)
v P(s)

v
) (

C
Sv

)
+ Ev

= P(c)
v C + P(s)

v Sv + Ev

= Pv

(
C
Sv

)
+ Ev, v = 1, · · · , V

(1)

where Zv = [
zv

1, · · · , zv
n
]
, C = [c1, · · · , cn], Sv =[

sv
1, · · · , sv

n
]
, and Ev is the error matrix for view v.

We demonstrate the decomposition idea in Fig. 1. We
attempt to find two orthogonal subspaces �

(c)
v and �

(s)
v

for each view v, such that Xv could be decomposed to the
common part C and the specific part Sv in the subspace
�v = �

(c)
v ⊕�

(s)
v . Hopefully, the common clustering struc-

ture is hidden in C, and the specific clustering structure
for view v is hidden in Sv.

Hilbert-Schmidt Independence criterion (HSIC)
To better decompose each view to a common and a
view-specific part, such that each view-specific cluster-
ing structure in Sv is independent to the common part
C across all views, a measurement for independence is
required. We measure the independence by using the
Hilbert-Schmidt Independence Criterion (HSIC) which
is a measure of statistical independence [24]. Intuitively,
HSIC can be considered as a squared correlation coeffi-
cient between two random variables c and s computed in
feature spaces F and G.

Let c and s be two random variables from the domains
C and S , respectively. Let F and G be feature spaces on
C and S with associated kernels kc : C × C → R and
ks : S × S → R, respectively. Denote the joint probabil-
ity distribution of c and s by p(c,s), and (c, s) and (c′, s′) are
drawn according to p(c,s). Then the Hilbert Schmidt Inde-
pendence Criterion can be computed in terms of kernel
functions via:

HSIC(p(c,s),F ,G) = Ec,c′,s,s′ [ kc(c, c′)ks(s, s′)]
+ Ec,c′ [ kc(c, c′)] Es,s′ [ ks(s, s′)]
− 2Ec,s[ Ec′ [ kc(c, c′)] Es′ [ ks(s, s′)] ] ,

where E is the expectation operator.
The empirical estimator of HSIC for a finite sample of

points C and S from c and s with p(c,s) was given in [24] to
be

HSIC((C, S),F ,G) ∝ tr(KcHKsH), (2)
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Fig. 1 Demonstration of the main idea for the common and specific decomposition in our ISC model. a shows the plots for X1 and X2 respectively. b
shows how the original Xv is decomposed to two parts C and Sv in two subspaces. c shows the plots for the reconstructed Zv , respectively. Note that
the two axes of Zv represent two subspaces. We can see that in the two subspaces, the samples are clustered in different ways

where tr is the trace operator of a matrix, H is the center-
ing matrix H = In − eeT

n (e is a proper dimensional column
vector with all ones), and Kc and Ks ∈ Rn×n are kernel
matrices. The smaller the HSIC value, the more likely C
and S are independent from each other.

Integrative subspace clustering (ISC) model
Based on the above considerations, we propose our inte-
grative subspace clustering model as follows,

min P1,··· ,PV
C,S1,··· ,SV

∑V
v=1

∣∣∣∣∣
∣∣∣∣∣Xv − Pv

(
C
Sv

)∣∣∣∣∣
∣∣∣∣∣
2

F
+ β

∑V
v=1 tr

(
CT CHST

v SvH
)

s.t. PT
v Pv = I,

(3)

where ST
v Sv and CT C are the linear kernels of Sv and C,

respectively, and β is a parameter. Note that the first term
is the decomposition term that tries to find the orthog-
onal subspaces where the corresponding common and
view-specific representations lie in, and the second inde-
pendence term is to minimize the dependence between
the common part and the view-specific part. We use the
linear kernel of C and Sv to simplify the computation.
After C and Svs for all views are obtained, k-means clus-
tering is applied to cluster the samples represented by C
and Sv, respectively. The clustering results by using the
common part C and the specific part Sv are called ISC-C,
ISC-S1,ISC-S2, · · · , respectively.

Based on the resulting C and Sis, we define a consensus
score(C-score) which is similar to [23] as below:

C-scorei = tr
(
HXT

i XiHCT C
)

tr
(
HXT

i XiH
(
CT C + ST

i Si
)) . (4)

C-score is used to measure the weight of the consensus
part in the i-th view. Note that the C-score ranges from
0 to 1, and a higher C-score implies stronger consistent
information in the corresponding view.

Optimization algorithm
We propose an alternative updating approach to solve the
optimization problem (3).

Step 1. We first fix Pv and C in (3), and solve for optimal
S1, · · · , Sv one by one. The v-th optimization subproblem
can be written as:

min
Sv

∣∣∣∣∣
∣∣∣∣∣Xv − Pv

(
C
Sv

)∣∣∣∣∣
∣∣∣∣∣
2

F
+ βtr(CT CHST

v SvH). (5)

Since Pv can be represented as Pv = (P(c)
v P(s)

v ), the
subproblem (5) to solve for Sv can be simplified to:

min
Sv

tr
(

−2XT
v P(s)

v Sv + 2ST
v

(
P(s)

v
)T

P(c)
v C + ST

v

(
P(s)

v
)T

P(s)
v Sv

)

+βtr
(
CT CHST

v SvH
)

(6)

By setting the derivatives of the objective function f (Sv) in
(6) with respect to Sv to be zero, we obtain

∂f (Sv)

∂Sv
= 0 ⇒

(
P(s)

v

)T
P(s)

v Sv + βSvHCT CH

=
(

P(s)
v

)T
Xv −

(
P(s)

v

)T
P(c)

v C.
(7)
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The matrix equation for Sv in (7) is a standard Sylvester
equation and can be solved efficiently using method
in [25].

Step 2. We then fix C, S1, · · · , SV , and solve the opti-
mization problem (3) for optimal P1, · · · , PV one by one.
The corresponding v-th optimization subproblem can be
written as:

min
Pv

||Xv − PvZv||2F s.t. PT
v Pv = I, (8)

where Zv =
(

C
Sv

)
. The optimization problem (8) is a

least square problem on grassman manifold, and solved by
algorithm 2 in [26].

Step 3. We fix P1, · · · , PV and S1, · · · , SV , then solve
the optimization problem (3) for C. The corresponding
subproblem can be written as:

min
C

∑V
v tr

(
−2XT

v P(c)
v C + 2ST

v

(
P(s)

v
)T

P(c)
v C + CT

(
P(c)

v
)T

P(c)
v C

)

+βtr
(
ST

v SvHCT CH
)

.

(9)

Similarly, we set the derivatives of objective function of
the subproblem (9) with respect to C, and obtain
( V∑

v=1

(
P(c)

v

)T
P(c)

v

)
C + βC

( V∑
v=1

HST
v SvH

)

=
V∑

v=1

(
P(c)

v

)T
Xv −

(
P(c)

v

)T
P(s)

v Sv.

(10)

The matrix equation for C in (10) is also a standard
Sylvester equation and the same algorithm for solving (7)
can be used.

The overall algorithm for solving (3) is shown in the
algorithm box ISC. For each iteration, we need to solve
three subproblems in our ISC algorithm to alternatively
update Sv, Pv and C. Since the objective function of ISC
model in (3) has a lower bound of zero. and the objec-
tive values of our method is decreasing at each step to
solve the three subproblems. Therefore the convergence
of objective values in our algorithm can be assured. We
also experimentally show the convergence of objective val-
ues by using four text datasets in Fig. 2, which further
confirms the convergence analysis above.

Results
Comparative methods
We compare our ISC model with the following compara-
tive methods.

• Spectral clustering for single views(SV1, SV2).

Algorithm 1 Algorithm ISC
Input:
Xv ∈ Rpv×n, v = 1, · · · , V ;
Output: Pv,Sv,C,v = 1, · · · , V ;
1. Initialize Pv ∈ Rpv×(d0+dv) by a identical matrix
2. Initialize C ∈ Rd0×n randomly
3. while (Pv,Sv,C) not converged
4. for v=1:V
5. Fix the others and update Sv by solving the Eq. (7)
6. Fix the others and update Pv by solving the Eq. (8)
7. end
8. Fix the others and update C by solving the Eq. (10)
9. end

• Co-regularized spectral clustering (Coreg) [3]. The
coreg method extends the single view spectral
clustering method by adding a co-regularization term
which forces the low embeddings from multiple
views to be close.

• Similarity network fusion (SNF) [4]. The SNF method
integrates the sample similarity network constructed
by each data type into a single similarity network by a
nonlinear combination approach. This converged
network can be used to cluster multi-view datasets.

• Enhanced consensus multi-view clustering
model(ECMC) [23]. The ECMC method attempts to
find the consensus kernels of multiple views by
dividing the kernel of each view into a consensus
kernel and a disagreement kernel. The method can
achieve a relatively good clustering effects even the
correlation between views is weak.

Measurements of clustering performance
We use the following three measurements to evaluate
the clustering results when the ground truth clustering is
given.

• Normalized mutual information (NMI). The
normalized mutual information (NMI) of a clustering
result C = {Ck} is defined as

NMI(C, C∗) = 2MI(C, C∗)
H(C) + H(C∗)

with

MI(C, C∗) =
∑

Ck∈C,C∗
� ∈C∗

p
(
Ck , C∗

�

) · log2
p

(
Ck , C∗

�

)
p(Ck)p

(
C∗

�

) ,

where C∗ = {C∗
l } is the ground truth clustering,

p(Ck) := |Ck|/n, p
(

Ci, C∗
j

)
is the joint probability of

the two classes Ci and C∗
j , and

H(C) = − ∑
Ci∈C p(Ci) log2(p(Ci)).

• Average clustering accuracy (ACC). with the
clustering labels {lj} of C in a suitable clustering
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Fig. 2 Convergence of the objective values of our algorithm on four datasets of BBC2V, BBC3V, BBCSport2V and BBCSport3V

ordering which matches the ground truth labels
{

l∗j
}

of C∗, the average clustering correction (ACC) is
defined as

ACC(C, C∗) = 1
n

n∑
j=1

δ
(

lj, l∗j
)

,

where the function δ(lj, l∗j ) = 1 if lj = l∗j , or

δ
(

lj, l∗j
)

= 0 otherwise.
• Adjusted rand index (ARI). For a computed cluster Ci

and a ground truth cluster C∗
j , let ni. = |Ci|,

n.j = |C∗
j |, and nij = |Ci ∩ C∗

j |. The adjusted rand
index is defined as

ARI = RI − E(RI)
max(RI) − E(RI)

,

where RI = ∑
i,j C2

nij ,

max(RI) = 1
2

(∑
i C2

ni. + ∑
j C2

n.j

)
, and

E(RI) = (∑
i C2

ni.

) (∑
j C2

n.j

)
/C2

n, where C represents
combination number operator. The range of ARI is
from -1 to 1. A larger value of ARI means that the

clustering result is more consistent with the ground
truth clustering.

• Silhouette score (S-score) [27]. When the ground
truth clustering is unkonwn, the above criterions
could not be computed, and thus Silhouette score
defined as follows can be used

S-score = 1
n

∑
i

bi − ai
max{ai, bi} ,

where ai is the average Euclidean distance from
sample i to the other samples within the same cluster
of sample i and bi is the minimum of the average
Euclidean distance from sample i to all samples in
any one of the other clusters different from the
cluster of sample i. The range of silhouette score is
from -1 to 1. The larger the silhouette score is, the
better the clustering structure is.

Simulation experiments
In this section, we use synthetic datasets to evaluate
our ISC model. The synthetic datasets are generated in
the following way. We first sample 200 two-dimensional
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Table 1 Consensus scores and Silhouette scores for the simulation datasets

Views/Methods t = 0.1 t = 0.9 t = 1 t = 2 t = 5 t = 6 t = 10 t = 15 t = 20 t = 30

C-score V1 0.9998 0.3974 0.2971 0.0244 1.45e-03 9.66e-04 3.50e-04 1.63e-04 9.48e-05 4.38e-05

V2 0.9999 0.4034 0.3033 0.0233 5.26e-04 2.61e-04 4.94e-05 1.90e-05 1.08e-05 5.13e-06

S-score ISC-C 0.890 0.936 0.920 0.895 0.937 0.937 0.889 0.939 0.889 0.888

ISC-S1 0.639 0.660 0.671 0.718 0.753 0.754 0.759 0.761 0.762 0.764

ISC-S2 0.819 0.749 0.761 0.832 0.853 0.854 0.857 0.858 0.858 0.858

The highest silhouette scores are marked in bold

points evenly from a mixed Gaussian distribution with
μ1 =[ −4, 6] , μ2 =[ 3, −10] and a common covariance
matrix � =[ 10 0; 0 6], and thus could obtain a matrix
Y ∈ R2×200. By adding white noises to Y, we can get
two data matrices Y1 ∈ R2×200 and Y2 ∈ R2×200, which
can be considered as the common part for two views. We
then construct two specific matrices T1 and T2 by ran-
domly permuting the columns of Y1 and Y2, respectively.
Finally, we randomly construct two matrices Pv ∈ R8×4

and construct the two-view matrices Xv = Pv[ Yv; tTv] ∈

R8×200, (v = 1, 2), where t is a parameter which could
control the degree of inconsistency of different views.
Note that the ground truth clustering labels for both com-
mon part, and the two specific parts are both known
and denoted by y, y1, y2. We construct 10 corresponding
datasets by taking t = {0.1, 0.9, 1, 2, 5, 6, 10, 15, 20, 30}. We
report the consensus scores for two views on simulation
datasets in Table 1. From the table, we can see that simula-
tion datasets with small t have high consensus scores and
those with large t have low consensus scores.

Table 2 The average NMIs, ACCs and ARIs obtained by the our ISC method and other comparison partners in simulation datasets

Methods t = 0.1 t = 0.9 t = 1 t = 2 t = 5 t = 6 t = 10 t = 15 t = 20 t = 30

NMI SV1 0.368 0.012 0.003 0.005 0.019 0.020 0.024 0.023 0.023 0.023

SV2 1.000 0.009 0.006 0.001 0.004 0.005 0.006 0.006 0.006 0.006

Coreg 0.701 0.072 0.039 0.005 0.007 0.006 0.010 0.012 0.010 0.012

SNF 1.000 1.000 1.000 0.960 0.592 0.161 0.000 0.000 0.000 0.000

ECMC 1.000 0.203 0.051 0.006 0.016 0.020 0.019 0.024 0.023 0.023

ISC-C 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ISC-S1 0.004 0.301 0.390 0.673 0.806 0.806 0.759 0.759 0.736 0.736

ISC-S2 0.005 0.756 0.816 0.862 0.889 0.889 0.889 0.889 0.889 0.889

ACC SV1 0.840 0.563 0.530 0.540 0.580 0.582 0.590 0.590 0.590 0.590

SV2 1.000 0.555 0.545 0.515 0.535 0.540 0.545 0.545 0.545 0.545

Coreg 0.945 0.655 0.615 0.540 0.550 0.545 0.558 0.565 0.560 0.565

SNF 1.000 1.000 1.000 0.995 0.900 0.730 0.505 0.505 0.505 0.505

ECMC 1.000 0.663 0.599 0.535 0.575 0.582 0.579 0.588 0.586 0.587

ISC-C 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ISC-S1 0.537 0.810 0.850 0.940 0.970 0.970 0.960 0.960 0.955 0.955

ISC-S2 0.540 0.955 0.970 0.980 0.985 0.985 0.985 0.985 0.985 0.985

ARI

SV1 0.460 0.011 -0.001 0.001 0.021 0.022 0.028 0.028 0.028 0.028

SV2 1.000 0.007 0.003 -0.004 -0.000 0.001 0.003 0.003 0.003 0.003

Coreg 0.791 0.092 0.048 0.001 0.005 0.003 0.009 0.012 0.009 0.012

SNF 1.000 1.000 1.000 0.980 0.638 0.208 -0.004 -0.004 -0.004 -0.004

ECMC 1.000 0.229 0.063 0.003 0.018 0.022 0.021 0.028 0.027 0.027

ISC-C 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ISC-S1 0.001 0.381 0.487 0.773 0.883 0.883 0.846 0.846 0.827 0.827

ISC-S2 0.001 0.827 0.883 0.921 0.941 0.941 0.941 0.941 0.941 0.941

The highest NMIs, ACCs and ARIs are marked in bold
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We first compare the three clustering results obtained
by our method and show their performance when t
changes. We apply our ISC model to compute the corre-
sponding common part C and the specific parts S1 and
S2. k-means clustering is then applied on C, S1 and S2,
and three corresponding clustering results ISC-C, ISC-S1
and ISC-S2 are obtained, respectively. Since the k-means
method may be sensitive to the initials, we run the k-
means method 100 times and report the average of the
results. We choose the parameter β from {0, 1e − 6, 1e −
5, · · · , 1e + 5, 1e + 6}. We report the average Silhouette
scores for the three clustering results in Table 1. As we can
see, the clustering result of ISC-C achieves a higher silhou-
ette score than the clustering results of ISC-S1 and ISC-S2
for any t, which indicates that the common part may have
better clustering structure in the simulation datasets. We
also compute the NMI, ACC and ARI by comparing the

three clustering results with the ground truth labels y, y1
and y2, respectively. The average values are reported in
Table 2. We have two observations from the results. First,
ISC-C peforms perfect when t changes, and the results
by ISC-S1 and ISC-S2 are getting better when t increases.
This means that the our ISC-C could always capture the
common structure even the consisitency is very weak,
and our ISC-S1 and ISC-S2 could capture the specific
structures better when the consistency gets weak. Second,
ISC-C achieves higher NMI, ACC and ARI values than
ISC-S1 and ISC-S2, which is consistent with the results
obtained by silhouette scores. This implies that Silhouette
scores may be used to select the best clustering result.

We then compare our clustering result by ISC-C with
the comparison methods by computing NMI, ACC, and
ARI of each methods, which all assume strong consis-
tency across views except ECMC. The average values of

Fig. 3 Performance comparison between ISC-C and other methods on simulation datasets with a t=0.1 and b t=10
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all the methods are reported in Table 2. When t is rela-
tively small, almost all the methods could perform well.
When the degree of inconsistency increases as t increases,
our method ISC-C outperforms other methods. That is
because, when the consistency signal is very weak, existing
methods could not capture the common clustering struc-
ture any more, but our ISC-C could discover the common
clustering structure very well. We also plot the clustering
results for all multi-view methods with t=0.1 and t=10 in
Fig. 3. In the figure, since the common result of the SNF
method is in the form of the kernel, we present all the data
in the form of a kernel. Specifically, as for the simulation
datasets, the linear kernel of Xv, Yv and Tv are denoted as
Kv, Kc

v and Ks
v , respectively. In addition, when using a lin-

ear kernel, equations Kv = Kc
v + Ks

v hold for v = 1, 2. We
can see that in Fig. 3a, t is small and consensus score is big,
and all methods could discover the latent common clus-
tering structure with high accuracy. However, in Fig. 3b,
when t is big and the consensus score is low, all base-
line methods fail to discover the best clustering structure,
but our ISC-C method could still capture the common
structure across views. This further shows the power
of our method even when the common information is
very weak.

Experiments on multi-view text datasets
In this section, we evaluate our ISC method on multi-view
text datasets. Since only the ground truth labels for com-
mon part is known, we compare the ISC-C results with
other methods.

• BBC and BBCSport datasets. BBC datasets consist of
2,225 documents provided by the BBC News website,
which are stories about the five thematic areas of
business, entertainment, politics, sports and
technology from 2004 to 2005. The BBCSport
datasets consist of 737 documents from the BBC
Sports website, which correspond to sports news
articles in the five subject areas of sports, cricket,
football, rugby and tennis from 2004 to 2005. Each
article is divided into up to four parts, each part has at
least 200 characters, and then the pieces are randomly
assigned to each view, which can generate the dataset
of BBC2/3/4views and BBCSport2/3/4views. Here we
only select BBC2/3views, BBCSport2/3views datasets
for clustering.

• Cora dataset. The Cora dataset consists of machine
learning papers that are one of seven categories:
case-based, genetic algorithms, neural networks,

Table 3 The average NMIs, ACCs, ARIs and standard errors obtained by the ISC and other comparison partners on text datasets

Methods BBC2V BBC3V BBCSport2V BBCSport3V Cora

NMI SV1 0.004±0.000 0.007±0.000 0.067±0.005 0.032±0.000 0.124±0.001

SV2 0.006±0.000 0.007±0.000 0.037±0.001 0.064±0.000 0.010±0.000

SV3 —— 0.007±0.000 —— 0.093±0.001 ——

Coreg 0.007±0.004 0.062±0.031 0.139±0.004 0.146±0.027 0.102±0.008

SNF 0.307±0.002 0.147±0.001 0.303±0.001 0.119±0.004 0.273±0.001

ECMC —— —— —— 0.373±0.002 ——

ISC-C 0.397±0.000 0.328±0.006 0.486±0.001 0.324± 0.005 0.305±0.001

ACC SV1 0.241±0.000 0.260±0.000 0.376±0.002 0.345±0.000 0.313±0.002

SV2 0.242±0.000 0.249±0.000 0.369±0.000 0.386±0.000 0.251±0.000

SV3 —— 0.260±0.000 —— 0.436±0.000 ——

Coreg 0.248±0.009 0.297±0.021 0.443±0.002 0.462±0.022 0.344±0.010

SNF 0.307±0.003 0.357±0.002 0.491±0.002 0.390±0.003 0.430±0.005

ECMC —— —— —— 0.612±0.003 ——

ISC-C 0.479±0.004 0.443±0.003 0.583±0.001 0.532±0.005 0.508±0.000

ARI

SV1 0.000±0.000 0.021±0.002 0.085±0.002 0.000±0.000 -0.000±0.002

SV2 0.000±0.000 0.006±0.000 -0.011±0.003 0.000±0.000 0.039±0.000

SV3 —— —— —— 0.000±0.000 0.078±0.000

Coreg 0.002±0.003 0.125±0.013 0.059±0.005 0.015±0.013 0.060±0.030

SNF 0.105±0.001 0.110±0.001 0.090±0.005 0.027±0.002 0.370±0.002

ECMC —— —— —— 0.370±0.002 ——

ISC-C 0.269±0.005 0.356±0.004 0.194±0.001 0.172±0.005 0.197±0.005

The highest NMI, ACCs and ARIs are marked in bold
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probabilistic methods, reinforcement learning, rule
learning, and theory. There are 2,708 papers in the
entire corpus. The dataset consists of two views. One
view is represented by a 0/1 value word vector,
indicating the absence/presence of the corresponding
word in the dictionary. The other view is the citation
relationship between each publication and other
publications.

By using the ISC model, we could obtain the common
part C. We then apply k-means clustering on C. We com-
pare the results of ISC-C with other methods, and the
results are shown in Table 3. We can see from the table
that, our ISC model works the best for most cases.

Identifying cancer types by colorectal cancer dataset
Tumors may not be diagnosed pathologically, and thus
it’s meaningful to determine whether the patient’s spe-
cific symptoms are colon cancer or colorectal cancer.
We further evaluate our method by identifying colon
cancer and colorectal cancer on a colorectal cancer

dataset [28]. which consists exome sequences, DNA copy
number, promoter methylation and messenger RNA, and
microRNA expression for 276 patients. We select three
types of expression data including DNA methylation,
mRNA expression and miRNA expression. Specifically,
DNA methylation profiles are obtained by the Illumina
Infinium HumanMethylation27 arrays, mRNA expression
profiles are generated by Agilent microarray, and miRNA
quantification via Illumina sequencing. After screening,
we obtain 85 cancer patients with colon cancer and col-
orectal cancer.

We apply our ISC model to identify the cancer types
(colon cancer or colorectal caner) for these patients with
two or three views, and obtain the corresponding com-
mon part C and three specific parts S1, S2 and S3. Since
we assume that the cancer type or subtype structures may
be specifically shown in a single omics, we check the clus-
tering results for both the common and specific parts
and see whether they capture the clustering information
for cancer types. Note that the ground truth for cancer
types is known, thus we could also calculate NMI, ACC

Table 4 The average NMIs, ACCs and ARIs and standard errors obtained by the ISC and other comparison partners on colorectal
cancer datasets

Methods
DNA methylation+ DNA methylation+ miRNA expression+ DNA methylation+miRNA

miRNA expression mRNA expression mRNA expression expression+mRNA expression

NMI SNF 0.247±0.001 0.247±0.004 0.330 ±0.003 0.276±0.000

Coreg 0.023±0.000 0.186±0.000 0.186±0.000 0.234±0.008

ECMC 0.164±0.000 0.164±0.000 0.091±0.004 0.138±0.006

ISC-C 0.372±0.006 0.149±0.001 0.137±0.015 0.012±0.004

ISC-S1 0.118±0.005 0.338±0.004 —— 0.288±0.002

ISC-S2 0.019±0.002 —— 0.046±0.007 0.009±0.005

ISC-S3 —— 0.175±0.002 0.263±0.003 0.178±0.001

ACC SNF 0.835±0.004 0.800±0.006 0.847±0.003 0.835±0.005

Coreg 0.812 ±0.000 0.812±0.000 0.812±0.000 0.812±0.000

ECMC 0.741±0.000 0.741±0.000 0.642±0.005 0.706±0.004

ISC-C 0.871±0.003 0.602±0.002 0.689±0.000 0.567±0.004

ISC-S1 0.698±0.004 0.859±0.004 —— 0.843±0.006

ISC-S2 0.583±0.009 —— 0.685±0.008 0.566±0.002

ISC-S3 —— 0.779±0.007 0.828±0.001 0.757±0.003

ARI SNF 0.391±0.003 0.310±0.005 0.442±0.004 0.402±0.004

Coreg 0.031±0.003 0.250±0.000 0.250±0.000 0.336±0.013

ECMC 0.209±0.000 0.209±0.000 0.080±0.005 0.160±0.006

ISC-C 0.506±0.001 -0.007±0.009 0.113±0.003 0.000±0.017

ISC-S1 0.139 ±0.000 0.469±0.006 —— 0.422±0.005

ISC-S2 0.015 ±0.002 —— 0.098±0.008 0.011 ±0.009

ISC-S3 —— 0.238±0.005 0.384±0.006 0.237±0.006

The highest NMIs, ACCs and ARIs are marked in bold
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Table 5 Consensus scores of three views for the five TCGA
cancer datasets

Cancer types mRNA expression miRNA expression DNA expression

GBM 0.007 0.089 0.102

BIC 0.083 0.028 0.529

KRCCC 0.015 0.022 0.474

LSCC 0.033 0.002 0.402

COAD 0.041 0.005 0.511

and ARI by using the common part ISC-C, the specific
parts ISC-S1, ISC-S2, ISC-S3. The results are reported
in Table 4. Our method performs better than the base-
line methods for most of the cases. Overall, our method
ISC-C with common part with DNA methylation and
miRNA expression data performs the best among all the
obtained clustering results. While for miRNA and mRNA
expression, SNF works the best, our ISC method with the
specific part of DNA methylation (ISC-S1) works the best
among all methods on the view combinations with DNA
methylation. It may imply that DNA methylation plays an
important role in the identification of the cancer type.
This confirms our hypothesis that information about the
type of cancer may be hidden in a particular omics.

Applications on cancer subtype identification
using TCGA datasets
We finally apply our ISC model on The Cancer Genome
Atlas (TCGA) Research Network[29] to identify subtypes
for five cancers. TCGA is currently the largest database of
cancer genetic information, and has included 33 types of
cancer including 10 rare cancer types. In addition, in the
database, each cancer data contains gene expression data,
miRNA expression data, copy number variation, DNA
methylation, SNP, etc., and has sufficient clinical data.

Data sets
The datasets for five cancers using TCGA datasets are
collected by Wang et al. [4]. The datasets contain five
cancer types: polymorphism Glioblastoma (GBM), renal
clear cell carcinoma (KRCCC), breast invasive carcinoma
(BIC), colon adenocarcinoma (COAD) and lung squa-
mous cell carcinoma (LSCC). There are three types of
cancer expression data: DNA methylation, mRNA expres-
sion, and miRNA expression, as well as clinical infor-
mation, including survival data for patients. Since we
don’t have the ground truth labels for the subtypes of
these datasets, survival analysis is mainly used to evaluate
our model.

For each of the five datasets, we apply the ISC model
to compute the common part and specific parts, and then
apply k-means to obtain clustering results. The procedure
for obtaining the cancer subtype of the dataset is the same
as that of Colorectal cancer dataset. The numbers of sub-
types are chosen as 3, 3, 4, 3 and 4 for GBM, KRCCC,
BIC, COAD, and LACC[4], respectively. We also report
consensus scores for the three views of the five cancers
in Table 5. As we can see, the consensus scores for the
first two views are both very low. This implies that the
consistency information across views are relatively weaker
compared to the inconsistency, and thus the traditional
multi-view methods may not work.

Survival analysis
We apply the log-rank test to measure whether different
subtypes obtained by clustering are meaningful, since the
survival time in months are given for each sample in the
TCGA datasets . The log-rank test is a commonly used
non-parametric test method for comparison of survival
processes in survival analysis and can be used to compare
whether two or more sets of survival curves are identical.
In general, the smaller the p-value obtained from it, the

Table 6 Cox p-values of survival analysis obtained by different clustering methods for the five cancers in TCGA datasets

Methods GBM BIC KRCCC LSCC COAD

mRNA expression 5.67e-01 9.30e-02 9.54e-01 6.00e-03 1.93e-01

DNA Methylation 1.55e-01 5.77e-04 8.11e-01 1.30e-02 1.10e-02

miRNA expression 1.88e-01 9.80e-01 8.34e-01 1.17e-01 7.14e-01

Coreg 2.00e-03 4.81e-05 1.63e-04 5.00e-03 7.00e-03

SNF 8.00e-03 3.46e-05 8.00e-03 1.66e-04 2.00e-03

ECMC 1.70e-02 7.26e-06 1.00e-02 6.95e-04 3.87e-04

ISC-C 3.66e-08 2.62e-04 1.04e-04 9.19e-12 2.11e-02

ISC-S1 4.00e-03 1.44e-03 2.56e-04 8.07e-06 7.68e-03

ISC-S2 8.05e-05 6.12e-05 2.55e-04 2.67e-13 7.12e-04

ISC-S3 3.00e-03 3.28e-06 1.92e-04 2.45e-04 3.20e-02

The lowest p-values are marked in bold
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Table 7 Silhouette scores by different clustering methods for the
five cancers in TCGA datasets

Methods GBM BIC KRCCC LSCC COAD

ISC-C 0.524 0.508 0.717 0.570 0.454

ISC-S1 0.679 0.585 0.598 0.540 0.570

ISC-S2 0.536 0.580 0.711 0.783 0.579

ISC-S3 0.530 0.651 0.660 0.675 0.556

The highest silhouette scores are marked in bold

more different the survival curves of the two or more
groups.

The log-rank p-values for all the methods are reported
in Table 6. we can see from the table that, for four can-
cers including GBM, BIC, KRCCC, and LSCC, our ISC
method could obtain the most significant p-values. For
COAD, our method with ISC-S2 could obtain the simi-
larly good p-value with the ECMC method. Furthermore,
the subtypes for GBM and KRCCC found by the common

part across three views obtain the most significant p-
values, the BIC subtypes found by miRNA expression are
the most significant, and the subtypes for LSCC found by
DNA methylation are the most significant. We also report
the silhouette scores for the clustering results of ISC-
C, ISC-S1, ISC-S2, and ISC-S3 in Table 7. By comparing
Tables 6 and 7, for four of five datasets except GBM,
the best clustering results with the best cox p-values
among our four clustering results are corresponding to the
highest silhouette scores. This implies that the our selec-
tion sheme for the clustering results is effective in this
application.

We also plot the Kaplan-Meier survival curves by the
ISC clustering results with the most significant p-values
for all the five cancer types. Figure 4 shows the curves for
GBM, BIC, COAD, and LSCC, and Fig. 5 shows the curve
for KRCCC. From the figures, we could see the signifi-
cantly different survival profiles over the subtypes. For the
cancer KRCCC, we also plot the Kaplan-Meier survival
curves obtained by baseline methods Coreg, ECMC and

Fig. 4 Kaplan-Meier survival curves for the four cancer types (p-values are reported in Table 6)
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Fig. 5 Kaplan-Meier survival curves for KRCCC by four methods: Coreg, ECMC, SNF and ISC (p-values are reported in Table 6)

SNF in Fig. 5. We can see the survival curves by our ISC
method are more significantly different than that obtained
by the other compared methods.

Subtype visualization
We further analyze the obtained breast cancer subtypes
by our model ISC with S3, since S3 by miRNA expression
generates the most significantly different survival profiles
across different subtypes. Fig. 6 shows the visualization

of four breast cancer subtypes identified by the specific
part of miRNA (S3). It can be seen that with the cluster-
ing results, the samples in the other two views - mRNA
expression and DNA methylation- are not separated, and
some subtypes are even very similar. However, the char-
acteristics of miRNA expression for the four subtypes
seem significantly different. This implies that the resulting
best subtype identified by ISC-S3 is specifically shown by
miRNA expression, but not shown in other views.
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Fig. 6 Visualization of the three data types in four subtypes for Breast cancer

Drug treatment analysis on cancer subtypes
We finally validate the obtained subtypes by compar-
ing the survival profiles from different treatment groups
in each subtype. We choose two drug treatments of
Cytoxan and Adriamycin for breast cancer, and drug
treatment temozolomide for GBM. For each subtype, we
check whether the survival profiles are significantly dif-
ferent between the treatment patients and the untreated
patients. The Cox p-values for all the three treatments
in all subtypes are reported in Table 8. Interestingly, we
can see that for breast cancer, the patients in Subtype 2 is
sensitive to the two drug treatments of Cytoxan and Adri-
amycin. The Kaplan-Meier survival curves of these two

Table 8 Survival analysis of three treatments on four BIC
subtypes and three GBM subtypes

Treatment All Subtype1 Subtype2 Subtype3 Subtype4

Cytoxan(BIC) 3.3e-02 6.1e-01 4.5e-02 4.83e-01 5.01e-01

Adriamycin(BIC) 1.3e-02 2.77e-01 3.2e-02 8.21e-01 2.66e-01

Temozolomide(GBM ) 3.6e-02 2.0e-02 9.18e-01 3.88e-01 ——

The treatment can significantly improve treatment outcomes in the subtype of
p-value in boldface

treatments in Subtype 2 are shown in Fig. 7. In Subtype 1
of GBM, the patients with treatment temozolomide have
significantly different survival profiles with the untreated
patients in this subtype. the Kaplan-Meier survival curves
of glio cancers in Subtype 1 is shown in Fig. 8. These
further validate that the Subtypes we cound is biological
meaningful.

Discussion on breast subtypes
We further discuss the subtypes we found for breast
cancer. Breast cancer is a heterogeneous and polygenic
disease, which is one of the most common malignancies
in women. Based on histological and genomic features,
breast cancer can be roughly separated into four sub-
types (luminal A, luminal B, HER2-amplified, and basal-
like) [30].

To date, researchers have reported many genes related
to subtypes of breast cancer. We firstly collect genes
associated with these subtypes, respectively, and then
check the matching between our resulting four subtypes
and these four known subytpes. BUB1, CDCA4, CHEK1,
FOXM1 and HDAC2 probably are the key genes in basal-
like subtype. Because alterations in these genes is a kind
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Fig. 7 Survival analysis of the treatment with Cytoxan and Adriamycin in Breast cancer Subtype 2 with p-values 4.45e-02 and 3.23e-02, respectively

of deletion event in the basal cancers, which is related
with basal-like cancer enriched subgroup, harbours chro-
mosome 5q deletions, and several signaling molecules,
transcription factors and cell division genes [31]. Besides,
basal-like subtype may also correlate with the gene EGFR,
which is supported with the fact that alterations of EGFR,
p53 and pTeN are cooperative and likely to play an impor-
tant role in basal-like breast cancer pathogenesis[32]. For
luminal B subtype, PPP2R2A is an associated gene due
to the dysregulation of specific PPP2R2A functions in

Fig. 8 Survival analysis of the Temozolomide treatment in GBM
subtype 1 with p-value 2e-2

luminal B breast cancers [31]. The genes ZNF703 and
DHRS2 are likely to correlate with luminal B since [33]
suggests ZNF703 is a luminal B specific driver and Tumors
with elevated ZNF703 levels were characterized by alter-
ations in a lipid metabolism and detoxification pathway
that include DHRS2 as a key signaling component. For
HER2 subtype, [34] confirms that agents targeting GAB2
or GAB2-dependent pathways may be useful for treating
breast tumors that overexpress HER2, and thus we include
GAB2 as a correlated gene for HER2 type breast cancer.
Besides, Trastuzumab blocks the HER2-HER3(ERBB3)
interaction and is used to treat breast cancers with
HER2 overexpression, although some of these cancers
develop trastuzumab resistance. By using small interfering
RNA (siRNA) to identify genes involved in trastuzumab
resistance, [35] identified several kinases and phos-
phatases that were upregulated in trastuzumab-resistant
cancers, including PPM1H. This suggests that PPM1H
and ERBB3 may have some link with HER2 type breast
cancer.

For each computed subtype by our ISC algorithm, we
first calculate t-test p-values for each of these correlated

Table 9 Group p-values for three breast cancer subtypes
including basal-like, luminal B and HER2

Group p-values Subtype1 Subtype2 Subtype3 Subtype4

Basal-like 1.69e-01 3.83e-08 1.50e-02 4.79e-07

Luminal B 2.44e-01 3.91e-02 1.17e-02 3.03e-02

HER2 1.09e-01 3.34e-01 5.69e-03 4.17e-07

The subtype with p-value in boldface may correspond to a true breast cancer
subtype
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genes to show whether the gene expression levels are sig-
nificantly changed between the subtype and the other
subtypes. We then apply the Fisher’s combined proba-
bility test [36] to compute the group p-values for these
genes, which could test whether the group of the selected
genes are significantly different between the subtype the
and other subtypes. We report the group p-values for
each resulting subtype in Table 9. The results show that,
our computed Subtype 2 is highly likely corresponding to
the basal-like breast cancer subtype, with group p-value
being 3.83e-08. Our computed Subtype 4 may also contain
the basal-like breast cancer subtype, with group p-value
being 4.79e-07. Our Subtype 4 probably corresponds to
the HER2 breast cancer subtype, with group p-value being
4.17e-07, and our Subtype 3 is likely to correspond to the
luminal B breast cancer subtype.

Conclusion
Our goal in this work is to discover common and spe-
cific information simultaneously from multi-views when
the consistency across views is relatively weak, and the
specific signal is strong. We propose integrative subspace
clustering method (ISC) by common and specific decom-
position to find two orthogonal subspaces for each view.
To better distinguish the common and view-specific part,
we also hope the common part and view-specific part
are as independent as possible by using the measurement
HSIC. Our simulation experiments, real-world bench-
mark experiments, cancer type identification by colorectal
data, subtype identification for five cancers by TCGA
datasets all show that the ISC model outperforms other
state-of-art multi-view clustering algorithms. In particu-
lar, we find some interesting subtypes in breast cancer
and GBM cancer, and the survival analysis shows that the
subtypes are biologically meaningful.
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