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Abstract

up the whole interpretation process.

genomic analytics in clinical research and practices.

Background: An important task in the interpretation of sequencing data is to highlight pathogenic genes (or
detrimental variants) in the field of Mendelian diseases. It is still challenging despite the recent rapid development
of genomics and bioinformatics. A typical interpretation workflow includes annotation, filtration, manual inspection
and literature review. Those steps are time-consuming and error-prone in the absence of systematic support.
Therefore, we developed GTX Digest.VCF, an online DNA sequencing interpretation system, which prioritizes genes
and variants for novel disease-gene relation discovery and integrates text mining results to provide literature
evidence for the discovery. Its phenotype-driven ranking and biological data mining approach significantly speed

Results: The GTX.Digest.VCF system is freely available as a web portal at http://vcf.gtxlab.com for academic
research. Evaluation on the DDD project dataset demonstrates an accuracy of 77% (235 out of 305 cases) for top-50
genes and an accuracy of 41.6% (127 out of 305 cases) for top-5 genes.

Conclusions: GTX Digest.VCF provides an intelligent web portal for genomics data interpretation via the integration
of bioinformatics tools, distributed parallel computing, biomedical text mining. It can facilitate the application of
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Background

To interpret a VCF file and determine the disease-cause
gene, traditional interpretation tools are required at first.
Recently, some gene prioritization and literature evidence
search tools are also provided to save manually search time.
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Traditional interpretation

Emerging genome and exome sequencing technologies
and platforms are producing massive amounts of sequen-
cing data globally. The software pipeline for a typical
workflow from raw sequencing data (FASTQ format) to a
variant call format (VCEF) file is relatively mature [1]. For
instance, BWA + GATK is frequently recommended and
employed [2]. However, it remains a challenging task to
interpret sequencing data in terms of highlighting the
disease-causing gene from thousands of mutated genes in
one’s VCF file. The traditional interpretation is: firstly,
VCF file using software such as ANNOVAR (3], snpEff
[4], VEP [5], and VAT [6]; secondly, keeping the variants
in coding region and splicing site and removing synonym-
ous variants; thirdly, choosing the variants with high
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pathogenicity scored by predicting software, such as SIFT
[7], PolyPhen2 [8], CADD [9], DANN [10] etc., and with
low allele frequencies in population genomes from 1000
genome project [11], U10K project [12], EXAC Project
[13], NHLBI GO Exome Sequencing Project [14], etc.
Some filtration operations are required on the above an-
notation results to reduce the number of candidate gene
mutations.

Disease gene prioritization

After an initial step of filtration, there are usually a large
number of mutated genes remain (from hundreds to thou-
sands) left for manual curation. To accelerate this tedious
process, several phenotype-based gene ranking tools were
developed. Accepting patients’ standardized phenotype
descriptive terms (HPO, Human Phenotype Ontology)
[15] as input, these software rank mutated genes accord-
ing to their pathogenicity. Thus, users can review genes
following this prioritization. There are many advanced
gene ranking software according to literature. Such Exo-
miser [16], AMELIE [17], Phenomizer [18], Phevor [19]
and others [20-23].

Most of previous gene ranking methods use gene-
phenotype relationships curated from OMIM [24] and
OrphaNet [25] to prioritize a list of candidate genes ac-
cording to the given clinical phenotypes. Phenomizer [18]
and Phevor [19] are the typical methods of this kind.
These methods require continuous comprehensive man-
ual curation to improve the gene-phenotype database.

Exomiser [16] comprises a phenotype-driven prioritization
procedure for disease-gene discovery in the field of Mendel-
ian diseases. Genes in a VCF file are ranked according to
clinical relevance assessed via one of three phenotype-driven
algorithms (PHIVE, PhenIX or hiPHIVE) or by a random-
walk algorithm that evaluates the vicinity of the genes to
members of disease-gene family according to the protein-
protein interactome. Users can integrate Exomiser with
other interpretation functions easily.

AMELIE [17] against the above methods by using data
mining techniques to ranks the candidate genes. It parses
hundreds of thousands of abstract and full-text articles to
find an underlying diagnosis to explain a patient’s pheno-
types given the patient’s candidate gene list. AMELIE uses
published paper to get the gene-phenotype relationship
automatically, no manually generated database is required.
Yet, it does not considerate the pathogenicity of mutations.

Literature evidence inspection

Even the software can prioritize candidate genes, only
about 50% of real pathogenic genes can be ranked in
TOP 20 in practical application. Users still need a lot of
time to decide which one is the real pathogenic gene or
mutation. Generally, a manual review relies heavily on a
comprehensive inspection of relevant literature, which
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involves a lot of search and reading work. In a typical
setting, it might involve dozens of articles in order to
obtain information about a single SNP on multiple dis-
eases, which makes the processing time consuming and
tedious.

To reduce the time of search and reading academic
papers, some search engines, such as LitVar [26] and
other methods [27, 28], are implemented using text min-
ing techniques to extract the relationship between gene
(variant) and disease from tens of millions of literature
deposited in PubMed Central (PMC).

Thus, to interpret a VCF file, the user needs to run
several tools in order to obtain disease-causing genes
and literature evidence. Some tools are hard to use,
some of them can’t provide expected results. So, it is still
a laborious work for gene interpretation.

Implementation

In this paper, we developed a system that provides an in-
telligent portal for genomics data analyses. We named it
GTX.Digest.VCE. It is an online NGS data interpretation
system based on intelligent gene prioritization and large-
scale text mining. For gene prioritization, a multilayer
neural network is adopted to analyze the pathogenicity
of genes and mutations. The neural network gives a
disease-causing score (GTX.score) for each mutation to
rank the genes and mutations in a VCF file. For large-
scale text mining, a parallel text mining approach is ap-
plied on all MEDLINE abstracts and PMC open-access
full-texts in advance to find the relationships between
genes/mutations and diseases, the mined results are
stored as a database in GTX.Digest.VCF for fast queries.

GTX.Digest.VCF provides both prioritized candidate
genes (mutations) and mined literature evidence. The
system website takes variant calling data (in VCF format
generated via GATK) and phenotypes as input. Users
can use the system to set filtration conditions related to
genotypes and phenotypes. GTX.Digest.VCF then ranks
genes and variants using a trained neural network
model. The system output is a ranked list of genes and
mutations with text mining annotations, presented on
an interactive web page. For each given gene/mutation,
GTX.Digest.VCF also shows the related mined results in
the form of pie charts and evidence sentences. The re-
sults of the system can also be exported as a formatted
report.

The GTX.Digest.VCF system is publicly available as a
free web portal. The system is hosted on AWS and it
utilizes several parallel computing methods to ensure
the scalability of the system. To note, NGS data analyses
are computational intensive. There is a server node
which provides web services to show the interpreting re-
sults, while all data analyses process are running in a dis-
tributed way on computing nodes. For each interpreting
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task, we applied a new AWS EC2 with 8 CPU cores as a
computing node to process the data analyses in a parallel
way automatically. Depending on the size of the input
VCE file, it normally takes half an hour for the data ana-
lysis before you can view the results.

One can use GTX.Digest.VCF without pre-registration.
For users who have the requirement for data privacy and
data management, registering a free private account is
highly recommended. The GTX.Digest.VCF server has
been up since 2017-12-30. During system tests, we have
analyzed over 100 cases. About 20 clinical doctors and an-
alysts have evaluated the system.

With the help of GTX.Digest.VCEF, bioinformaticians
and clinical doctors can easily analyze variant data of a
patient, interpret the results with literature evidence and
produce a test report that can be understood by the pa-
tient. In this way, the time costs of genomics tests and
results interpretation can be greatly reduced and the
reports will be more reliable. We will continuously im-
prove the system and aim to maintain the system for at
least ten years.

System design and architecture

The software architecture of GTX.Digest.VCF is illus-
trated in Fig. 1. The system support two analytic types:
single VCF files analysis for a singleton case and three
GVCEF files analysis for a trio (family) case.

After the input of VCF files and HPO terms, GTX.Di-
gest.VCEF first runs ANNOVAR to get the traditional inter-
pretation results. Then some of the traditional interpretation
results are arranged as the mutation features, and input to
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the trained neural network to calculate GTX.score for the
mutation. GTX.score is used to generate the final gene and
mutation ranking results. In annotation step, the database of
Clinvar [29], OMIM [24] (more database including HGMD
and PharmGKB will be added in the future), and mutation-
disease knowledge base generated by text mining are
integrated together for gene annotation. Eventually, the
visualized results are shown on the result web page,
where gene panel and dynamic filtering functions can
be operated through web interaction. Manual marks for
specific mutations are supported to generate the final
report.

In GTX.Digest.VCF, running ANNOVAR and retrieving
text mining database requires a large amount of computa-
tional resources. To improve the scalability, GTX.Di-
gest.VCF runs these parts in a distributed parallel way. To
analyze each VCF file, GTX.Digest.VCF will apply an AWS
EC2 instance automatically to execute these parts. After
finishing the tasks, the results will be returned to the server
node for further process, and the EC2 instance will be ter-
minated automatically.

The EC2 instance of the server node is r4.xlarge config-
ured with 4 computing cores, 30.5GB memory and 80GB
hard disk. The computing node instance is r5d.2xlarge
configured with 8 computing cores, 64GB memory and
300GB SSD. Ubuntu operating system is installed on both
kinds of nodes.

System usage
GTX.Digest.VCF requires genotype inputs in VCF file
format and phenotype inputs in the form of HPO terms.
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Fig. 1 The architecture of GTX.DigestVCF system
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After uploading a VCF file, a VCF card is generated
(Fig. 2 shows the managing web page of VCF cards).
The reference genome (hgl9/hg38) will be captured
automatically from the VCF file (if failed, manual input
is required) and displayed on the right corner of the
card. Personal information filled in by users is shown in
the middle of the card. The “Gender” must be filled in
by users. Other personal information like name, age,
nationality, ethnic, accession number, and the remark is
optional.

Next, four buttons including “HPO”, “single/family”,
“splicing site” and “Group frequency” provide parameter
settings for running NGS interpretation. Clicking “Run”
button will start the analyzing procedure, a progress bar
at the bottom of the card shows the running progress.
Clicking the “Details” button, the system will turn to the
result page of the current VCF file.

The following parameters are essential for data ana-
lyses. (i) “HPO”: This option is used for inputting pheno-
types corresponding to the VCF file. Users can input the
name or the accession number of the phenotype. Pre-
dictive typing is supported when inputting the pheno-
type information. (ii) “Group frequency”: This option
provides a selection from a set the genome of popula-
tions according to the patient’s background. By default,
the most popular three genomes of populations in prac-
tical applications are selected. (iii) “Splicing site”: This
parameter is the number of intronic sites away from an
exon/intron boundary. The threshold is set to 10 by de-
fault. Besides, a |z-score| suggesting how strongly spli-
cing site variants affect RNA splicing is offered and the
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default value is 1.8 in the system. GTX.Digest.VCF keeps
the splicing site variants located between the exon/in-
tron boundary and “Splicing site” value with |z-score|
large than the set value.

Based on the above parameters, GTX.Digest.VCF will
run the analyzing procedure by clicking the “Run” but-
ton. It takes about 30 min on average. The larger the size
of the VCEF file, the longer the running time required.

All analyzing results are shown on the result web page
(see Fig. 3) in a ranked way according to the pathogen-
icity of genes. The interpretation results of each muta-
tion are list in one line. Only the most pathogenic
mutation is shown in folding mode. For the gene has
more than one mutation, the results of other mutations
can be seen in unfolding mode by double-clicking the
current result line, or by clicking the “unfold” button. If
the “ranking” option on the left-top of the page is set to
“no”, the results will be ranked by research popularity
according to the text mining results. The resulting line
of each mutation has 12 columns (three elements per
column) of information, 6 of which can be used for
dynamic filtering. The top of the result page gives the
meaning of the corresponding results in each column.
Users can download the analyzing results in CSV format
through “Result Download”.

Ranking genes and mutations using multilayer neural
network

Exomiser and AMELIE are phenotype-driven prioritization
procedure for disease-gene discovery in the field of Men-
delian diseases. Exomiser combines the results of three
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phenotype-driven algorithms and the protein-protein inter-
actome and generates a combined score for the pathogen-
icity of individual genes. While some important results,
such as pathogenicity in Clinvar database, data mining re-
sults, and the conservation of DNA sequence [30, 31], are
not considered in Exomiser. AMELIE use data mining
techniques to ranks the candidate genes. Yet it does not
considerate the pathogenicity of mutations.

To improve the prioritization of gene and mutation, a
multilayer neural network approach is provided in our sys-
tem. For each mutation, features that are fed to the neural
network include: phenotypes in the gene-related diseases,
phenotypes in the protein-protein interactome, conservation
score of the mutation generated via the GERP++ tool [32],
pathogenicity results in Clinvar database, the maximum
MAF result from different population genomes, results of
predicting software, data mining results obtained from
PubMed abstracts, etc. The output results of the neural net-
work are the pathogenicity score of the mutation called
GTX.score. The value of GTX.score is in [0, 1]. The higher
the score value, the more deleterious the related mutation.

The EGADO00001001355 dataset of the Deciphering
Developmental Disorders (DDD) project provides several
hundreds of VCEF files with related phenotypes and real
pathogenic genes. Two popular gene ranking algorithms,
AMELIE and Exomiser, are applied on 305 DDD VCF
files where the pathogenic mutation are SNP variants.
For each VCF file, the given pathogenic mutation is a
training example, and its GTX.score value is set to 1.
We choose other 40 genes with the closest rank values
prioritized by AMELIE and Exomiser from each VCF
file. If the selected gene has only one mutation, this

mutation is a training example. For the gene with mul-
tiple mutations, the most deleterious mutation is chosen
as a training example. The GTX.score of each training
example is set as follows:

GTX.score = y*!

where x is the average gene rank value of AMELIE and
Exomiser for the mutation 1 in the corresponding VCF
files.

‘e Rank(AMELIE, m) + Rank(Exomiser, 7) + Rank(Phenomizer, m)
B 3

y is the decay factor, the default value is set to 0.99.

The trained model is integrated into GTX.Digest.VCF
system. During the interpretation process, the features of
each mutation are inputted into the trained neural net-
works and a GTX.score valued in [0, 1] is obtained. The
GTX.score of each gene is the highest GTX.score of all mu-
tations located on this gene. All gene are ranked according
to their GTX.score at last as the prioritization results.

Large-scale text mining on PubMed literature
Accurate information retrieval
The text mining task in GTX.Digest.VCF can be divided
into two steps, named entity recognition (NER) of dis-
eases and mutations as well as relation extraction (RE)
between them. Thus, we need to locate descriptive infor-
mation about diseases, mutations and their correlations
from unstructured texts.

NER aims at identifying text strings that refer to spe-
cific biomedical concepts (entities). It is a classical prob-
lem in the field of biomedical text mining. Diseases and
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mutations are the entities of interest in our study. We
employed DNorm [33] and tmVar (2.0) [34], which are
two state-of-the-art tools for disease NER and mutation
NER, respectively. DNorm outperforms other tools with a
macro-averaged F-measure of 0.809. In addition, DNorm
not only specifies strings as disease mentions but also
normalize those mentions to the MEDIC vocabulary for
diseases (which combines MeSH and OMIM data). tmVar
2.0 can extract and normalize variant mentions to RSIDs
(unique identifiers for variants used in dbSNP) with a high
F-measure of ~90%. The source code of the two tools is
both freely available online.

Extracting semantic relationships from biomedical lit-
erature is a challenging task. Rule-based methods are still
proved to be an effective way. PKDE4] [35] is an outstand-
ing representative with an 81% F-measure for relation
extraction. PKDE4] provides both NER and relation
extraction function. However, PKDE4] does not support
entity normalization. Therefore, we feed NER results from
DNorm and tmVar into PKDE4] for relation extraction. In
addition, we found some bugs and fixed them. The ori-
ginal code did not reset the container, which was designed
to collect the features that match the predefined rules,
before dealing the next instance. This inevitably results in
keeping redundant information and leads to invalid rela-
tion extraction. Therefore, we implemented a function to
clear the features in the container after finishing process-
ing each instance. Besides, we redefined the input format
as well as the output format. According to the new input
format, the char offsets of the targeted entities in a sen-
tence was fed to PKDE4]J except for the sentence text. In
this way, we preferred to avoid calling the embedded
entity extracting module which may bring unexpected
error to the subsequent processing. Moreover, the im-
proved PKDE4] offered the shortest dependency path and
the trigger verb word, besides the relationship between
the two candidate entities.

By integrating NER and RE, our text mining approach
can locate evidence sentences that involve both diseases
and variants and highlight the key relation word (if avail-
able) in those sentences.

Efficient data processing
There are over 800,000 MEDLINE abstracts and nearly
400,000 free PMC full-texts according to a PubMed query
((“mutation”[MeSH Terms] OR “mutation”[All Fields])
AND “loattrfree full text”[sb]). Therefore, the computation
time required for above-mentioned NER and RE process-
ing is enormous. In our tests, it took about 1 min on aver-
age to process each full-text article on a commodity
server. That means over 400,000%1/60 = 6667 h (or 278
days) processing time in total, which is unacceptable.
Additionally, the computation complexity of text min-
ing is greatly affected by the length and content of each
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article. Therefore, the processing time of each article
varies a lot, which highlights the importance of a care-
fully designed load-balancing strategy.

To mine the tremendous biomedical literature effi-
ciently, and balance the load among the computing
nodes, we employed a distributed parallel algorithm,
DTM (Distributed Text Mining) to tackle this computa-
tional challenge on cloud platforms. In DTM, one server
node and tens or hundreds of computing nodes work
together for the large-scale text mining task.

A server daemon resides on the server node which is
responsible for text mining task distribution. Several
computing processes reside on each computing node,
and all computing processes work independently for
NER and RE computing. Different computing node
supports a different number of processes according to
its hardware configuration. In our task, each computing
process requires at least one CPU and 10GB memory.
Each computing process fetches a task (paper ID) from
the server daemon, then mines the entities and relations
in the paper.

The server daemon maintains a task queue, which is
initialized with all paper IDs to be processed. On receiv-
ing a task request from a computing process, the dae-
mon will assign the first paper ID in the task queue to
the requested process, and remove the paper ID from
the queue. If the task queue is empty, the daemon will
send a NO-TASK answer.

When a computing process becomes idle, it will request
a paper ID from the server daemon for computation.
Then the process will do text mining for the paper, in-
cluding named entity recognition for mutations, disease,
and extracting the relations between mutations and dis-
eases. If a computing process gets a NO-TASK answer
from the server daemon, that is, there is no paper waited
to be processed, the computing process will exit automat-
ically. A computing node will be released by itself if all its
computing processes exit normally. New computing nodes
(homogeneous or heterogeneous computing nodes) can
join the text mining work whenever the task queue on the
server is not empty. While a computing node meets an
error and quits its mining job unexpectedly, the server will
detect the error and reload the unfinished papers into the
task queue.

Figure 4 illustrates our DTM algorithm running on
the AWS (Amazon Web Services) cloud platform. We
applied an EC2 mb5.large machine as the server node and
60 EC2 r4.xlarge machines as computing nodes. The
server daemon on the server node distributes tasks. Two
computing processes were running on each computing
node. All literature data, including PMC full-text and
MEDLINE abstracts, were saved on Amazon EFS (Elastic
File System) storage and shared by all computing nodes.
Once a computing process finished its current text
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Fig. 4 DTM algorithm running on the AWS platform

mining task, it uploaded the mined results of the task to
AWS S3 Server before requesting a new task.

After the text mining process, post-processing is ap-
plied to the mined results to generate a mutation-disease
knowledge base. This knowledge base is used to provide
literature evidence for the relationship between muta-
tions and diseases in the GTX.Digest.VCF system. Given
a variant (either using the RSID or a pre-specified
format), all the related diseases in the mined database
are shown through a two-level pie chart and highlighted
sentences in GTX.Digest.VCF system.

Enriched filtering functions
GTX.Digest.VCF provides enriched filtering functions to
help users focus on mutations of interest easily and quickly.

Filter settings

Users can set their own filtering conditions to decrease the
number of mutations shown on the result pages: (1)
Chromosome: This option is useful when users want to see
the variants on some specific chromosomes, where ChrM
option means mitochondrion; (2) Variant type: 11 variant
types can be detected by the system. The other variants not
belonging to these 11 types will be set to “unknown” type.
Through selecting the interested variant type, the variants
of the other types will be filtered out. (3) Zygosity: Zygosity
is the characterization of an individual’s hereditary traits in
terms of gene pairing in the zygote from which it devel-
oped. There are three zygosity options, heterozygous, com-
pound heterozygous and homozygous. Setting the option if
you know the zygosity of the pathogenic variants. (4) Inher-
itance: This filtering function is useful for Trio (or family)
analysis to choose inheritance modeling of the variants. For
singleton cases, the inheritance item has no output result.

(5) Protein prediction: six tools (SIFT, PolyPhen2, Muta-
tionTaster, PrimateAl, DANN, CADD) using different
methods are used to predict whether a mutation affects the
structure or function of proteins. The predicting scores are
in [0, 1]. A higher score means the variant is a deleterious
variant with higher possibility. This filtering function can
be used to select the variants whose predicting score is
higher than a given value. (6) MAF: Users can set the high-
est MAF value in the interested populations (7) dmVar:
dmVar is a mutation-disease relationship database gener-
ated from PubMed literature using text mining techniques.
Choosing the red block means only show the mutations
mentioned in PubMed papers. (8) Clinvar: ClinVar is a
freely accessible database of the relationships among hu-
man variations and phenotypes. Red, yellow and green
blocks are mean pathogenic, unknown, benign variants in
Clinvar respectively. (9) OMIM: OMIM (Online Mendelian
Inheritance in Man) is a database about human genes and
the related genetic phenotypes. Setting this filtering option
means only the genes included in OMIM are presented on
the result page.

Gene panels

Each disease or phenotype has a predesigned gene panel
which contains important genes associated with the disease
or phenotype. Through selecting the specific disease or
phenotype, the analysis results will focus on the genes most
likely to be involved. Gene panels can minimize data analysis
considerations and further reduce manual inspection work.

Results and discussions

Performance validation using DDD project dataset
GTX.Digest.VCF is mainly designed for WES (whole-exome
sequencing) interpretation. The computing time is related to



Jiang et al. BMC Medical Genomics 2019, 12(Suppl 8):193

the size of VCF files. A larger VCF file requires more time to
analyze. Hundreds of cases from Deciphering Developmental
Disorders (DDD) project and more than 100 cases from dif-
ferent organizations are tested on GTX.Digest.VCF system.
The interpretation process requires about 28 min for a
singleton case and 52 min for a trio (family) case on average.

We compared the ranking results of our multilayer
neural network with those of Exomiser and AMELIE. 305
cases with the clinical phenotype (HPO terms) and diag-
nosed causal gene from dataset EGADO00001001355 of
DDD project are used to validate the performance of
GTX.Digest.VCF. The disease-causal genes of all the se-
lected cases are SNP variants.

For the neural network method, we adopt leave-one-
out method during training process. That is, 304 VCF
files were used for training, then the trained model was
applied on the leave-out test VCF file. We didn’t delete
any mutations or genes in VCF files before ranking dur-
ing test process. For AMELIE, the corresponding genes
of all mutations in each VCEF file are composed of the in-
put gene list. The newest version of Exomiser is Exomi-
ser 11. Exomiser filters part of genes out before ranking.
So some genes have no rank results in Exomiser.

Figure 5 shows the results of our experiment. Ranking
the causal gene is in the top 5 genes will release the bur-
den of users for disease diagnosis. In our experiments,
each VCF file contains a median of 1233 genes. Our
neural network method ranks the causal gene as the very
first gene to read on in 63 out of 305 cases (20.6%), and
in the top 5 genes in 127 out of 305 cases (41.6%). and
AMELIE and Exomiser 11 ranked the causal gene at the
top in only 40 (13.1%) and 60 (19.7%) out of 305 cases,
respectively. Similarly, AMELIE and Exomiser 11 ranked
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the causal gene in the top 5 genes in only 104 (34.1%)
and 113 (37.0%) out of 305 cases, respectively.

Additionally, GTX.Digest.VCF ranks the causal gene in
the top 20 genes in 190 out of 305 cases (62.3%), and in
the top 50 genes in 235 out of 305 cases (77.0%). The re-
sults prove that GTX.Digest.VCF has the best accuracy
of pathogenic prediction among three algorithms within
this dataset.

Case study

Users can access GTX.Digest.VCF through http://vcf.
gtxlab.com for free. You can register a new account, or
just log in a public account without registration. There
is a demon VCF information card for a starter to quickly
grasp the functions of the interpretation system. If you
want to test your own cases, just click “Add a VCEF file”.
The system will generate a VCF information card for
this case when the VCF file is uploaded correctly. You
can operate the information card to input some parame-
ters, run the case, and see the detailed interpretation re-
sults. Figure 3 is the result webpage of a typical example.
The patient is a newborn with the following phenotypes:

: HP:0000465: Webbed neck

- HP:0001520: Large for gestational age

: HP:0001744: Splenomegaly

: HP:0003623: Neonatal onset

: HP:0005580: Duplication of renal pelvis

: HP:0008752: Laryngeal cartilage malformation
: HP:0011703: Sinus tachycardia

: HP:0200128: Biventricular hypertrophy

ONOYU DA WN =

The newborn is 24 days old, and his three years old
sister is healthy. The doctor diagnosed that RAF1 is the

~
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causal gene. GTX.Digest.VCF ranked RAF1 as the most
pathogenic gene.

Conclusions

GTX.Digest VCF is a free NGS data interpretation
system. Besides integrating annotation tool ANNOVAR
and free databases, Clinvar and OMIM, GTX.Digest.VCF
puts forward a multilayer ranking method to prioritize
genes and mutations, a mined knowledge base to provide
literature evidence for the relationship between mutations
and diseases, and enriched filtering functions to focus on
the interesting results easily and quickly. GTX.Digest.VCF
shows interpretation results in many different aspects,
which can reduce a lot of manual works for NGS data
interpretation.

Several improvements will be integrated into the next
edition of GTX.Digest.VCF in the future:

(1) FASTQ will be added as a format of genotype
input and the whole running time of FASTQ-to-VCF
procedure will be reduced to less than 15/30 min (WES/
WGS) utilizing engineered rewrite of BWA-GATK pipe-
line, and FPGA hardware acceleration.

(2) Natural language processing will be used on
patients’ medical records to automatically extract HPO
terms as phenotype input of GTX.Digest.VCE.

(3) The identification of Copy Number Variation and
Structural Variation will be added.

(4) A new phenotype-based gene ranking method is under
design, which uses data mining techniques to prioritize
genes and mutations. The next edition of GTX.Digest. VCF
will integrate this new ranking method.

(5) Tumor-Normal pair analysis will be added as a
new “Analytic type”.

Availability and requirements
Software name: GTX.Digest.VCF.

Software access: web portal.

Software home page: http://vcf.gtxlab.com

Operating system(s): platform independent.

Other requirements: web browser, such as Google
Chrome, Internet Explorer or Firefox.
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