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Abstract

as a faithful source for biological inquiry.

ER+ cases.

Background: Formalin-fixed, paraffin-embedded (FFPE) tissues for RNA-seq have advantages over fresh frozen
tissue including abundance and availability, connection to rich clinical data, and association with patient
outcomes. However, FFPE-derived RNA is highly degraded and chemically modified, which impacts its utility

Methods: True archival FFPE breast cancer cases (n=58), stored at room temperature for 2-23 years, were
utilized to identify key steps in tissue selection, RNA isolation, and library choice. Gene expression fidelity was
evaluated by comparing FFPE data to public data obtained from fresh tissues, and by employing single-gene,
gene set and transcription network-based regulon analyses.

Results: We report a single 10 um section of breast tissue yields sufficient RNA for RNA-seq, and a
relationship between RNA quality and block age that was not linear. We find single-gene analysis is limiting
with FFPE tissues, while targeted gene set approaches effectively distinguish ER+ from ER- breast cancers.
Novel utilization of regulon analysis identified the transcription factor KDM4B to associate with ER+ disease,
with KDM4B regulon activity and gene expression having prognostic significance in an independent cohort of

Conclusion: Our results, which outline a robust FFPE-RNA-seq pipeline for broad use, support utilizing FFPE
tissues to address key questions in the breast cancer field, including the delineation between indolent and
life-threatening disease, biological stratification and molecular mechanisms of treatment resistance.

Keywords: FFPE, Formalin fixed paraffin embedded, Breast Cancer, RNA sequencing, RNA-Seq, genomics,
Archival tissue, Regulon, RNA-seq, Estrogen receptor, KDM4B

Background

Within oncology, the ability to rapidly characterize a
whole tumor transcriptome has resulted in the increas-
ing stratification of patient cohorts by molecular sub-
type. These data inform disease diagnosis, selection of
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precision therapies, and prognosis. To date, the efforts
to build molecular profiles of common malignancies,
including The Cancer Genome Atlas (TCGA), utilized
fresh tumor specimens, which provide high quality
RNA analyses [1]. However, for any given cancer,
only a small fraction of total cases have enough fresh
tissue available for unbiased exosome-level RNA ex-
pression, and further, even fewer cases associate with
long term outcomes data. For example, ER+ breast
cancer has a 5year survival rate of greater than 95%,
but a 20-40% progression to metastasis over the
course of 10-20years [2—-6]. To begin to address the
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barriers of limited outcomes data, one approach is to
use formalin-fixed paraffin-embedded (FFPE) tissue
for RNA sequencing, which has several advantages.
First, biorepositories of FFPE tissue are maintained at
all cancer care hospitals. Second, FFPE tissues can be
linked to in-depth patient clinical data to create ro-
bust experimental and control groups. Third, FFPE
tissue is generally archived for at least 10years and
can thus be associated with longer-term patient
outcomes.

Despite the advantages of FFPE tissues, uncertainty
about the fidelity of FFPE RNA remains a serious
limitation. FFPE tissue processing and sample storage
are known to result in highly degraded RNA, which
limits gene detection and introduces sequencing arti-
facts [7, 8]. Nonetheless, groups have made important
technical advances [9-12] in the analysis of patient
FEPE tissues, resulting in the subdivision of patient
cohorts into distinct molecular subtypes with prog-
nostic significance [13-17]. Despite these important
advances, concerns regarding data quality and inter-
pretation remain, limiting the full potential of FFPE
archival specimens to advance omics-based oncologic
inquiry.

In this report, we define an effective FFPE-RNA-seq
pipeline, identifying several key steps related to tissue
selection, RNA isolation, library selection and data
analysis. Using this optimized pipeline, we utilize true
archival FFPE breast cancer (BrCa) tissues to distin-
guish between ER+ and ER- breast cancer cases, and
confirm gene expression fidelity by comparing FFPE
data to publicly available databases obtained from
fresh tissues. Using novel analytical methodologies be-
yond single-gene comparisons, we identify key mo-
lecular pathways that distinguish ER+ and ER- breast
cancers with high confidence. Further, in a proof-of-
principle application, we identify the transcriptional
regulator KDM4B to associate positively with active
ER signaling and provide prognostic significance for
patient outcomes.

Methods

Ethics approval and consent

The research was conducted on archived FFPE tissue
samples collected under IRB-approved protocols at
University of Colorado and Kaiser Permanente Center
for Health Research. These tissue archives are comprised
of clinical samples obtained from women with invasive
cancer who were receiving standard of care. For this
study, breast specimens from premenopausal women
aged 20-45years were obtained under IRB approvals
(OHSU IRB# 00010989, # 15361). All cases were de-
identified to the research team at all points and therefore
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this study was considered exempt for participation con-
sent by the participating IRBs.

Sample description

The obtained archival FFPE breast cancer (BrCa) tissues
(n =58) had been stored at room temperature between 2
and 23 years before RNA isolation was performed. For
all cases, multiple H&E slides were reviewed from each
case by a pathologist and sections with tumor were
selected for inclusion in the study. Adjacent serial
unstained sections were then submitted for RNA
extraction.

RNA isolation

Total RNA was extracted from recently cut 10 um FFPE
sections using the miRNeasy FFPE kit (Qiagen, Valencia,
CA) according to the manufacturer’s protocol, using 1-4
sections (10—40 um) per case depending on assay. RNA
yield and quality were determined by UV absorption on
a NanoDrop 1000 spectrophotometer and fragment size
was analyzed using the RNA 6000 Nano assay (Agilent
Technologies, Santa Clara, CA) run on the 2100 Bioana-
lyzer. DV200 values representing the percentage of RNA
fragments above 200 nucleotides in length were deter-
mined according to Agilent and Illumina recommended
protocols [18]. To determine the minimal amount of tis-
sue needed to yield adequate RNA quantity for library
preparation, RNA vyield per 10 um section number was
tested. Based on the test results, one or two 10 um sec-
tions of breast FFPE specimens were used for RNA isola-
tion. RNA quality was assessed using DV200 values and
cases with DV200 more than 27% were included for li-
brary preparation.

Library preparation and sequencing

Two library preparation methods were tested. An in-
put of 75ng of total FFPE RNA was used with the
TruSeq RNA Access Library Prep Kit (Illumina, San
Diego, CA) and an input of 150ng of total FFPE
RNA was used with the Ovation Human FFPE RNA-
seq Library System (NuGEN Technologies, San Car-
los, CA). Libraries were prepared in triplicate from
two FFPE RNA samples according to manufacturer
instructions (3 technical replicates for each sample
and method, Table 1). Libraries were quantified by
real-time PCR using KAPA Library Quantification
kits (Kapa Biosystems, Wilmington, MA) on ABI
StepOne thermocycler, pooled according to library
method (6 libraries per lane), and sequenced on a
Hi-Seq 2500 (Illumina) using a 100 cycle, single end
protocol providing approximately 45 million reads
per sample. Base call files were converted to fastq
format using Bcl2Fastq (Illumina). For the studies in-
terrogating ER+ and ER- breast cancers, library
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Table 1 RNA-seq Sample Characteristics
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Figure: Year of ER Sample GEO- Accession #
Sample Diagnosis Status - Type
HC

Figure 2: S1 2009 Positive FFPE GSM3737461, GSM3737462,
GSM3737463,GSM3737467,
GSM3737468, GSM3737469

Figure 2: S2 2010 Positive FFPE GSM3737464, GSM3737465,
GSM3737466, GSM3737470,
GSM3737471, GSM3737472

Figure 3-6: S1 2002 Positive FFPE GSM3737473, GSM3737474

Figure 3-6: S2 2005 Positive FFPE GSM3737475, GSM3737476

Figure 3-6: S3 2010 Positive FFPE GSM3737477

Figure 3-6: 54 1997 Negative FFPE GSM3737478

Figure 3-6: S5 2011 Negative FFPE GSM3737479

Figure 3-6: 56 2009 Negative FFPE GSM3737480, GSM3737481

Figure 3-6: P1 2000 Positive Fresh-Frozen GSM1401676

Figure 3-6: P2 2001 Positive Fresh-Frozen GSM1401677

Figure 3-6: P3 2001 Positive Fresh-Frozen GSM1401678

Figure 3-6: P4 2001 Positive Fresh-Frozen GSM1401679

Figure 3-6: P5 2001 Positive Fresh-Frozen GSM1401680

Figure 3-6: P6 2001 Positive Fresh-Frozen GSM1401684

Figure 3-6: P7 2009 Positive Fresh-Frozen GSM1401713

Figure 3-6: P8 2010 Positive Fresh-Frozen GSM1401715

Figure 3-6: P9 2002 Positive Fresh-Frozen GSM1401716

Figure 3-6: P10 2006 Positive Fresh-Frozen GSM1401717

Figure 3-6: P11 2005 Negative Fresh-Frozen GSM1401719

Figure 3-6: P12 2006 Negative Fresh-Frozen GSM1401720

Figure 3-6: P13 2003 Negative Fresh-Frozen GSM1401721

Figure 3-6: P14 2002 Negative Fresh-Frozen GSM1401722

Figure 3-6: P15 2004 Negative Fresh-Frozen GSM1401724

Figure 3-6: P16 2001 Negative Fresh-Frozen GSM1401726

Figure 3-6: P17 2009 Negative Fresh-Frozen GSM1401727

Figure 3-6: P18 2010 Negative Fresh-Frozen GSM1401729

Figure 3-6: P19 2001 Negative Fresh-Frozen GSM1401733

Figure 3-6: P20 2004 Negative Fresh-Frozen GSM1401757

Each sample designation is identified with relevant figures. Year of diagnosis indicates the year the specimen was collected. ER status in all cases was performed
by clinical diagnostic IHC. Sample type for retrieval of RNA is indicated as either Formalin Fixed Paraffin Embedded (FFPE) or fresh tissue processed and stored

frozen (Fresh-frozen). GEO Accession number for ascribed samples is indicated

preparations were performed using only the TruSeq
RNA Access protocol with 75ng RNA input. RNA-
seq libraries of six samples, ER+ (n=3) and ER-
(n =3), were generated from FFPE RNA with DV200
values ranging from 27 to 44%. Libraries were quan-
tified as described and pooled at 3 libraries per lane.
Sequencing was performed on a Hi-Seq 2500 using a
100 cycle, single read protocol with a depth of ap-
proximately 90 million reads per sample. Following

initial sequencing, 3 of the 6 libraries were repooled
and independently sequenced. Base call files were
converted to fastq format using Bcl2Fastq (Illumina).

Public data

A total of 20 fresh samples (10 ER+ and 10 ER-) were
selected from Varley et al. [19] (GEO accession
GSE58135, Table 1, P1-20).
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RNA sequence alignment

All RNA-seq reads were aligned to the human reference
genome (GRCh38, release 84) using STAR (version 2.5.2b)
[20]. The STAR “GeneCounts” module was used for gene
quantification, with the resulting strand counts chosen
depending upon library preparation (Access — reverse;
Ovation — forward; public — unstranded). Soft-clipping
and mismatch tolerance were modified to evaluate the
best possible alignment (see results), with default parame-
ters ultimately chosen.

Data processing and significance testing

STAR read counts were used as input into DESeq2 [21].
Genes with counts per million (cpm) greater than 0.05
in three or more cases were kept for subsequent differ-
ential expression gene (DEG) analyses. DEG analysis was
performed with ER status as the variable of interest and
DEG were called based upon a false discovery rate
(FDR) less than 0.05. A log 2 fold-change threshold of 1
was also set. After normalization analyses, counts were
transformed using the variance-stabilizing transform-
ation (VST) module in DESeq2 for downstream
analyses.

Access vs. Ovation library comparison
Counts output by STAR were normalized using a variety
of different methods. Genes with Access-identified
probes and counts per million (cpm) greater than 1 in
50% of samples from at least one library preparation
method (14,432 genes) were selected for visualizations.
ER+ vs. ER-: Genes with Access-identified probes and
counts per million (cpm) greater than 1 in 50% of either
FFPE or fresh-frozen samples (14,331 genes) were selected
for analysis. Differential expression analysis was performed
using DESeq2 [21] with ER status as the factor of interest.
Counts adjusted via the variance-stabilizing transform-
ation were utilized for subsequent visualizations.

Sample-to-sample distances

Euclidean distance, using ‘dist’ in R, was calculated based
on the VST gene expressions to produce an aggregate
sample-to-sample distance matrix. To assess global simi-
larity of FFPE and fresh-frozen gene expression profiles,
pairwise Pearson correlations between all samples were
visualized using the ‘pheatmap’ R package [22]. Dendro-
grams were created using complete clustering of the Eu-
clidean distances between the resulting correlations.
Additionally, Principal Component Analysis (PCA) was
also performed on all genes using the ‘plotPCA’ function
of the DESeq2 package, with ER status as the variable of
interest. Principal component analysis (PCA) was per-
formed on VST gene expression values using default pa-
rameters. Non-negative matrix factorization (NMF)
clustering was used to cluster the original and
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resequenced samples, using all genes output by DESeq2.
VST gene expressions were filtered for top 100 differen-
tially expressed (DE) genes or defined genes ranked by
adjusted p-values. Filtered genes were plotted using
‘pheatmap’ [22] and samples were clustered using default
Euclidean distance.

BrCa subtype prediction

Tumor biologic subtypes (Luminal A, Luminal B, Basal,
HER2) were predicted using the PAM50 prediction pa-
rameters as determined by Parker et al. [23].

Gene selection for fresh vs. FFPE comparison

We subset FFPE samples for protein-coding genes with
a cpm greater than 1 in at least 3 cases, resulting in 13,
807 genes. Fresh samples were filtered for these exact
genes. All data were combined together and run through
DESeq2 with ER status as the variable of interest with a
log 2 fold-change threshold of 1, as well as kept separ-
ately (e.g. all fresh samples only) and subjected to the
same analysis. In addition, all ER+ cases were grouped
together and DESeq2 was performed with sample type
as the variable of interest, with the same done for ER-
cases.

Cancer set Heatmaps

To assess the ability of previously reported cancer gene
sets to distinguished cohorts, transformed counts were
subset for all matching genes from the Oncotype DX,
MammaPrint, and PAM50 gene sets. Gene expression
data were z-score transformed for each gene for
visualization purposes. Dendrograms were produced
using complete clustering of the pairwise Pearson correl-
ation values. Pearson correlation was calculated on raw
values for the Oncotype DX and MammaPrint subsets,
and z-score transformed values for the PAM50 subset,
in accordance with the methodology of each gene set’s
construction. For PAM50, subtypes as well as prolifera-
tion, ER, and HER2 scores were generated using the ori-
ginal prediction parameters determined by Parker et al.
[23].

Gene set enrichment analysis (GSEA)

GSEA version 3.0 was used to identify gene sets from
the Hallmark database (v6.1, ‘h.all.v6.1.symbols.gmt’) as
well as custom gene sets (described below) that were
significantly enriched between ER+ and ER- cases or be-
tween sample storage methods. When testing for differ-
ences between ER status, FFPE and fresh-frozen samples
were individually divided by ER phenotype and queried
against reference sets. When testing for differences be-
tween sample storage methods, all samples were divided
by storage method and queried against reference sets.
Custom gene sets were created by determining genes
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that were unique or commonly identified as statistically
significant (p <0.05, Fisher’s exact test using all input
genes (14,330) as background results in p<2.2e-16)
differentially expressed genes between ER+ (red) and
ER- (blue) samples from FFPE or fresh specimens
(Fig. 5).

Regulon analysis
We used the master regulator inference algorithm
(MARINa) [24] compiled in R ‘viper’ package [25] to
perform the regulon analyses on breast cancers from
FFPE tissue and the publicly available fresh-frozen data-
sets, respectively. Two sources of data, gene expression
signature and regulatory network, were required as
model inputs. In this work, the Wald test statistics in
DESeq2 that quantify the difference of ER+ and ER-
were used as gene expression signatures. As for regula-
tory network, we directly used the published breast
cancer regulon network ‘regulonbrca’ curated in R pack-
age ‘aracne.networks’ that was reverse-engineered by
ARACNe [25, 26] using TCGA breast cancer data [27].
The single-sample-based regulon activities were in-
ferred by function ‘viper’, which is an extension of MAR-
INa [24] and transforms a gene expression matrix to a
regulatory protein activity matrix. For the model input,
we used the fragments per kilobase of transcript per mil-
lion (FPKM) quantification of breast cancer samples in
TCGA as the expression matrix and the same regulon
network ‘regulonbrca’ as the regulatory network.

TCGA - Breast Cancer Kaplan-Meier analysis

The key genes/transcription factors determined from
BrCa regulon analyses were selected as genes of interest
for determination of gene expression or regulon activity
correlation with survival outcome. Kaplan-Meier plots
were produced by downloading TCGA outcomes, cohort
metadata and gene expression data through the UCSC-
Xena Functional Genomics Browser [28] tool, which
were then plotted in GraphPad Prism Software (v7.05,
La Jolla California, USA) and the numbers of samples in-
dicated in brackets for gene expression Hi (red) and Lo
(blue) cohorts with p-values displayed determined by
log-rank analysis.

Results

Assessing the amount of FFPE tissue needed for adequate
RNA extraction

While FFPE tissues are more abundant than fresh tumor
tissue, these archival tissues still represent a limited re-
source that require judicious utilization. Thus, we ini-
tially set out to determine the minimum amount of
FFPE breast tissue that will yield the quality and quantity
of RNA needed for successful sequencing. Many proto-
cols developed for extracting RNA from FFPE blocks
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suggest utilizing 40 micrometers (pm) of tissue, an
amount that is 10 times greater than what is required
for immunohistochemistry (IHC) evaluation. We first
examined the influence of the number of 10 um sections
on overall RNA yield. 1, 2, 3 or 4 10 um serial sections
were used to isolate RNA from 5 separate FFPE breast
cancer cases (Fig. 1a). In general, sufficient yield was ob-
tained with a single 10 um section, with no increased
yield observed with the inclusion of additional sections.
These observations strongly suggest that RNA isolation
is saturated in capacity to capture RNA at 10 um of
FFPE breast tissue. Further, in 4 of 5 cases evaluated, the
amount of RNA from a single 10 pm section was in vast
excess of the 100ng required for RNA sequencing
(Fig. 1a, 100 ng level denoted by red line).

We next evaluated the quality of the isolated RNA as
assessed by DV200 value. The DV200 value reports the
percentage of purified RNA with length greater than or
equal to 200 nucleotide bases. As a useful predictor of
successful sequencing results, a DV200 value of greater
than or equal to 30% (Fig. 1b, red line) is recommended
by manufacturers for FFPE library preparations. Of these
5 test cases, only 3 had RNA of sufficient quality re-
quired for RNA sequencing. Further, inclusion of add-
itional sections had no impact on DV200 value (Fig. 1b).

To investigate the impact of FFPE processing on the
intra-case variability of RNA yield and quality, serial
10 um sections of 6 cases were processed in 2 independ-
ent runs. Analysis revealed consistent inter-run values
with < 8% variation, data consistent with FFPE tissues
being a reproducible source for RNA material (Add-
itional file 1: Figure Sla and b). We next ascertained the
relationship between age of block and RNA quality using
58 cases of breast cancer FFPE samples collected be-
tween 1992 and 2014. We found a drop in quality in
cases greater than 11 years old (cases diagnosed before
2006) (Fig. 1c), with only ~ 13% (3 of 23) of these older
cases having a DV200 > 30% (Fig. 1c, red line). However,
for the blocks < 10 years of age, 82% (18 of 22) of cases
had DV200 values greater than 30%. Further, we found
evidence for possible variation in quality due to the spe-
cific institutional repository (green vs. blue circles), em-
phasizing the need to use empirical determination for
block quality rather than relying on simple age metrics.
Further, in this larger data set of 58 cases, we confirmed
lack of correlation between DV200 and RNA yield
(Fig. 1d).

To examine if RNA yield correlates with cellular
composition (tumor area), sections were quantified
for epithelial tumor content. A clear positive relation-
ship emerged (Fig. le), with cellular content being the
dominant determinant of RNA yield. Given this, we
assessed the utility of extracting RNA from 10pm
biopsy sections compared to 10-pm sections of
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Fig. 1 RNA quantity and quality are impacted by epithelial area and block age. a) Five separate archival FFPE blocks (each a different color and
symbol) of breast cancer tissue were subjected to RNA isolation from 10 to 40 um of tissue and evaluated for overall RNA yield and b) RNA
quality determined by DV200 value. c) 58 archival breast cancer tissues from two different repositories (indicated by green and blue dots) were
subjected to RNA isolation from one 10 um section and evaluated for the relationship between DV200 and year of collection, (black line is best fit
line using a centered fourth order polynomial) and d) overall RNA yield. e) Epithelial area and f) specimen type compared to yield. Red lines at
100 ng and DV200 = 30 denote recommended minimal technical limits for successful sequencing

surgically excised tissue, as utilization of biopsy ma-
terial could greatly expand patient numbers and scope
of research questions compared to surgical excision
alone. Of the 5 biopsy samples with high DV200 (>
30%) all samples except one provided >100ng of
RNA required for advancement to sequencing (Fig. 1f,
red line). In sum, these analyses confirm that single
10 pm FFPE sections of biopsies or surgical samples
are suitable for advancing to RNA-sequencing.

Library Preparation & Data Normalization
Given the highly fragmented and chemically modified
properties of the input RNA from FFPE sources, we next

evaluated the impact of library preparation on resulting
gene expression profiles. We tested Illumina-Access and
NuGEN-Ovation platforms, both useful library prepar-
ation methods for FFPE samples, which differ in how
RNA is enriched and amplified. The Access kit is based
upon biased, selective hybridization and enrichment of
RNA using bead-conjugated oligomers designed for 19,
000+ genes with > 10 different probes per gene. In con-
trast, the Ovation platform adopts an unbiased targeting
approach utilizing both Poly A and random primer
hybridization, resulting in a product with reduced ribo-
somal content and a more highly diverse RNA transcript
library.
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To compare these two library preparation platforms,
two separate ER+ breast cancer FFPE biological sam-
ples (S1 and S2), each with a DV200 value > 30% were
run in triplicate using both library preparation plat-
forms (Fig. 2a). Sequencing reads from the Access kit
provided higher counts per gene (Fig. 2b), but fewer
relative numbers of unique reads compared to the Ova-
tion kit (Additional file 1: Figure S1lc and d). The Ac-
cess kit data also lacked entire gene families, including
mitochondrial RNA. We reasoned this loss occurred as
a result of the Access kit being hybridization-based to
oligos selected a priori for the included genes. For

subsequent comparative analyses related to platform
sensitivity and consistency, we focused on genes de-
tected by both platforms, and next sought to compare
read normalization approaches.

We compared 5 distinct normalization approaches,
and the importance of considering normalization
methodologies became apparent. Some methodologies,
i.e., Loess, VST (Fig. 2c) and Limma (Additional file 1:
Figure Sle and f) maintained the linear relationship
between the raw and transformed values in both li-
brary platforms, while other approaches, i.e., quantile
and ¢-spline, distorted raw values to normalized
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values based upon library methodology (Fig. 2d). Of
the normalization approaches that produced tight and
linear normalization to raw values, we elected to use
VST normalization, as it is widely utilized as part of
the DESeq2 analysis package where additional analyt-
ical tools are available. Using VST normalization, we
confirmed comparable distributions of reads per gene for
each of the 2 library preparation methodologies (Fig. 2e),
highlighting the suitability of VST normalization for li-
brary performance comparison.

Next we performed unsupervised hierarchical clustering
of these VST normalized gene counts and showed
[umina-Access and NuGEN-Ovation platforms clustered
sample repeats together (S1-orange vs. S2-green) (Fig. 2f).
Importantly, the first branch of the clustering dendrogram
is driven by library preparation platform (blue vs. black),
demonstrating that library preparation is a greater driver of
gene expression differences than sample identity (S1 vs. S2).
Given the aforementioned differences in library construc-
tion, this result is not surprising.

Having demonstrated the utility of both platforms to
generate reproducible gene expression data from FFPE
samples, we assessed which platform is most beneficial
for our questions related to distinguishing differential
gene expression between study groups (in this case,
between S1 and S2). For a gene to be differentially
expressed between groups, both the change in the mag-
nitude and the degree of variability in gene expression
need to be considered. Our experimental design of 2 in-
dependent samples assayed in triplicate is well suited for
determining relative library variability. By plotting the
coefficient of variation for each gene from one platform
compared to the other, we observed that the Access
platform displayed reduced variability with 11.1% of all
genes examined with a coefficient of variation (CV) of
greater than 20% (Fig. 2g, red dashed lines), compared to
23.2% in the Ovation platform. Less variance combined
with higher raw read counts lead us to select the Access
library platform for our subsequent FFPE RNA-seq pipe-
line optimization.

Alignment parameter optimization for FFPE RNA-seq

FFPE processing results in fragmented RNA and chem-
ically altered residues that can lead to sequence alter-
ations and read misalignment, leading to reduced
aligned read counts [8, 29]. In an attempt to mitigate the
impact of these artifacts, we addressed approaches to
positively impact the number of mapped reads from
FFPE-derived sequences to the reference genome. For
these analyses, we used FFPE-derived sequences ob-
tained from 3 ER+ [1-3] and 3 ER- [4—6] breast cancer
cases, and compared soft-clipping as well as various mis-
match allowances (Fig. 3a, left panel). For mismatch al-
lowance, we adjusted mismatch parameters to increase
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the permitted number of imperfect nucleic acid residue
alignments, which as anticipated, progressively increased
the number of successfully aligned sequences (Fig. 3b,
blue shapes). We then examined utilization of the soft-
clipping approach, which ignores regions of residues on
either side of the read that do not match well to the refer-
ence genome. In our FFPE sequence data, soft-clipping
resulted in greater alignment than permissive mismatch
parameters. Further, improvement in read alignment was
unaffected by the addition of mismatched bases (Fig. 3b)
These results suggest that a limitation to successful align-
ment of reads from FFPE RNA is end of read sequence
quality, which soft-clipping accommodates, rather than
intra-sequence nucleotide mismatch that has been noted
to occur as an artifact of formalin fixation [30]. Based on
these results, we proceeded with the use of the STAR
alignment tool utilizing default parameters that include
soft-clipping and 10 maximum mismatches for subse-
quent analyses of both FFPE and fresh tissue-derived ex-
pression data (Additional file 2: Figure S2a).

Approach to evaluate pathway Fidelity in FFPE RNA-seq

We next examined whether sequence gathered from
FFPE tissue recapitulates the gene expression and bio-
logical pathways determined from sequencing fresh tis-
sue. Breast cancer subtypes have well-annotated RNA
expression patterns based on ER expression [31], making
breast cancer ideal for evaluating the fidelity of gene ex-
pression and pathway analysis in FFPE specimens. For
this analysis, we first evaluated the reproducibility of
genomic signatures derived from FFPE tissue by per-
forming library resequencing of half of the samples (2 of
3 ER+ cases and 1 of 3 ER- cases). This approach
allowed us to evaluate the strength of delineation be-
tween ER+ and ER- samples relative to the intra-
specimen variation observed by resequencing. We ob-
served the resequenced (r) sample libraries, which ran
on different sequencing lanes and on different days, clus-
tered with their original sample (Fig. 3c i.e., compare 1
and 1r, 2 and 2r, 6 and 6r). Secondly, RNA expression
data from FFPE specimens perfectly segregated by ER
status (blue vs. red, Fig. 3c). We next compared these
FFPE results with public data derived from fresh samples
(Fig. 3d). The most distinct separation occurred between
the fresh and FFPE samples (light vs. dark green). How-
ever, within both fresh and FFPE cohorts we observed
perfect clustering based upon ER status (Fig. 3d). When
we employed principal component analysis (PCA) to
understand what is driving the differences between fresh
and FFPE samples, (Fig. 3e) we found the largest drivers
were sample type variance (PC1), followed by ER status
(PC2). While these broad evaluations of gene expression
illustrated distinct differences between FFPE and fresh
samples, evaluation of the mean value of a given gene
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Fig. 3 Breast cancer subtype identification of ER+ and ER- cases in global RNA-seq from FFPE and Fresh specimens. a Schematic of experimental
design. RNA expression from ER+ (n =3, red) and ER- (n = 3, blue) breast cancers from FFPE (bright green) specimens were compared to clinically
verified ER+ (n =10, red) and ER- (n =10, blue) cases from a publicly available data set derived from fresh (dark green) tissue specimens. b
Sequence alignment parameters of clipping (no = light blue, soft = light purple) and allowed nucleotide mismatches (mm) of 3-15 were
evaluated for the 6 FFPE samples. ¢ Unsupervised clustering based upon Pearson correlation values determined from global gene expression in 6
original FFPE samples and 3 samples whose libraries were resequenced (r) showing tight clustering of repeats and originals and clustering based
upon ER status. d Unsupervised clustering based upon Pearson correlation plot of global gene expression correlation in 6 FFPE samples (light
green) and 20 fresh samples (dark green) with clear separations firstly based upon sample type (FFPE vs. Fresh) and secondly based upon ER
status (ER+ =red, ER- = blue). e Principal component analysis of the 6 FFPE (circle) and 20 Fresh (triangle) samples confirms separation based
upon sample type (PC1) and ER status (PC2)

gene list as an independent opportunity to evaluate cor-
relative performance between FFPE and fresh samples.
In both the Oncotype Dx (Fig. 4b) and PAM50 (Fig. 4d)
gene sets, the clustering of all samples was driven by ER
status rather than sample preservation, with one imper-

revealed strong linear correlations between FFPE and
fresh samples (Additional file 2: Figure S2b).

Sample subtype separation by established gene panels
Another approach to compare gene expression fidelity of

FFPE compared to fresh frozen tissues is to utilize the
clinically relevant gene panels developed for breast
cancer—namely, Oncotype Dx [14, 32], MammaPrint
[33-35] and PAM50 [4, 23]. As shown (Fig. 4a), the gene
composition of these three assays [36, 37] demonstrate
very little overlap with one another, implicating each

fect ER clustering assignment observed for a fresh sam-
ple within the Oncotype Dx gene set. This demonstrates
that the FFPE expression profiles look the most like
fresh samples within the confines of these well-vetted
gene sets. With MammaPrint, samples segregated largely
by sample preparation type and secondarily by ER status
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cancer intrinsic subtype assessment from PAMS50 gene signature is displayed as Luminal A-dark purple, Luminal B-pink, Basal-orange and HER2-

teal. PAM50 gene expression values were z-score transformed prior to clustering in alignment with protocols for subtype allocation

(Fig. 4c). This was driven by loss of differential gene ex-
pression patterns in the FFPE samples, specifically in the
list of genes between OXCT1 and SMIMS5 genes (Fig. 4d,
genes highlighted in red). It should be noted that two of
the ER- fresh samples fell under the dendrogram arm of
fresh ER+ samples, illustrating MammaPrint genes alone
were not able to perfectly segregate cases based on ER

status, even in fresh tissues. We were able to utilize the
PAMS50 published algorithms [4, 23] to evaluate the “in-
trinsic” molecular subtype as well as proliferative scores
of ER+ and ER- samples in both FFPE and fresh RNA-
seq data (Fig. 4d). Consistent with published literature
[4, 38], we observed higher proliferation scores in ER-
than ER+ samples within both FFPE and fresh tissue
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Fig. 5 Pathway Validation of FFPE RNA-seq. Fresh and FFPE data sets were independently evaluated for differential gene expression based upon
sample ER status. a Gene Set Enrichment Analysis (GSEA) determined significant enrichment for Estrogen Response genes (left) in ER+ samples
and E2F-Proliferation associated genes in ER- samples for both FFPE and fresh specimens. b Venn-Diagram displaying overlapping and unique
statistically significant differentially expressed genes (p < 0.05, Fisher's exact test using all input genes (n =14,330) as background results in p <
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(Additional file 3: Figure S3a), confirming the utility of
RNA-seq from archival FFPE breast cancer samples in
these clinically relevant gene panels.

Pathway validation of FFPE RNA-seq

Another powerful application for archival tissue is in
the discovery of novel molecular biomarkers and path-
ways. To validate the use of FFPE tissue for discovery
applications, we first compared performance of pathway
analysis between ER+ and ER- samples separately for
FFPE and fresh samples. For this analysis, we employed
gene set enrichment analysis (GSEA) [39] utilizing the
“Hallmark” gene pathways. In both fresh and FFPE sam-
ples (Fig. 5a, left), we observed highly significant enrich-
ment of estrogen response genes in the ER+ (red) cases.
Likewise, in both fresh and FFPE samples (Fig. 5a, right)
we observed an enrichment of the proliferative E2F sig-
nature in the ER- (blue) samples. This analysis illustrates
that two important, well-curated gene pathways remain
intact in FFPE samples.

We next employed the common strategy of determin-
ing the overlap of individual genes that are significantly
differentially expressed between two groups, in this case
between FFPE and fresh frozen samples. We first com-
pared gene lists of the differentially expressed genes be-
tween the ER+ and ER- samples from both FFPE and
fresh frozen samples and observed 278 common statisti-
cally significant, differentially expressed genes upregu-
lated in ER+ samples in both FFPE and fresh specimens
(Fig. 5b, left shaded green). Likewise, we observed a
similar number of common upregulated genes (324) in
ER- samples (Fig. 5b, right shaded green), for a total of
602 total shared DE genes between FFPE and fresh
groups. However, we also observed that approximately 3
times more genes were differentially expressed in the
fresh group compared to the FFPE group (Fig. 5b). Thus,
while GSEA analysis utilizing curated gene sets strongly
suggested coherence between FFPE and fresh samples
(Fig. 5a), this single-gene consideration of differential
gene expression shows a reduced capacity to identify dif-
ferentially expressed genes with FFPE samples.

To resolve the discordance between results from cu-
rated GSEA pathway analyses (Fig. 5a) and single-gene
analysis (Fig. 5b, Venn Diagrams) we interrogated the
FFPE data using custom gene sets rather than by indi-
vidual genes. The first gene set was composed of genes
significantly upregulated in ER+ fresh samples but not
significant in FFPE samples (denoted by 1 (928 genes),
Fig. 5b, left green). When considering this gene set as a
whole, we found significant enrichment in FFPE ER+
samples (Fig. 5¢, 1.- left panel). Likewise, the second cus-
tom gene set was composed of the genes most signifi-
cantly overexpressed in ER- fresh samples but not found
to be significant in FFPE samples (denoted by 2 (1099
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genes), Fig. 5b, right green). Again, this gene set was also
significantly enriched in the FFPE ER- samples (Fig. 5c,
2. right panel). These observations strongly argue that
the biology that discriminates ER+ and ER- samples in
fresh sections is highly conserved in FFPE specimens
and is detected by FFPE RNA-seq when using gene set
and rank-based analyses.

We also observed genes uniquely expressed in FFPE
tissues (Fig. 5b, grey, and Additional file 3: Figure. S3b,
shaded region). To broadly examine the idea of uniquely
expressed FFPE genes more deeply, we utilized GSEA
with no consideration given to ER status, simply com-
paring all fresh samples to all FFPE samples. Gene sets
related to UV response (Fig. 5d) and the Unfolded Pro-
tein Response (Fig. 5d) were significantly different be-
tween FFPE and fresh samples. Other stress response
pathways that showed trending profiles included alterna-
tive gene sets for UV response and the P53 pathway
(Additional file 3: Figure S3c). These observations are
consistent with the hypothesis that some differential
gene expression unique to FFPE tissues is driven by
preservation and storage [7, 40]. While these stress re-
sponse enrichment profiles are clearly stronger than dif-
ferences observed between FFPE and fresh samples for
ER- relevant hallmark gene sets (Additional file 3: Figure
S3c, right two panels), we cannot conclusively determine
the impact of tissue fixation and sample preservation,
but rather offer a word of caution in considering
stress response gene results from FFPE samples.

FFPE pathway discovery through BrCa Regulon analysis
We next considered newer computational approaches
employing unbiased, in-silico constructed gene associ-
ation networks known as regulons [24, 25]. Regulon ana-
lysis utilizes tightly correlated alterations in genes and
known transcription factor/regulator [26] expression to
generate transcription factor/gene networks (regulons) in
an unbiased manner. Similar to Gene Set Enrichment
Analysis, differential activity of the whole network, ra-
ther than the performance of individual genes, deter-
mines pathway relevance. We utilized a breast cancer
regulatory network previously established from the
evaluation of hundreds TCGA breast cancer samples
[27], and applied this analysis to our ER+ and ER- co-
horts of fresh and FFPE samples separately (Fig. 6a).
When we evaluated the top 30 most active regulons
(Fig. 6a) between ER+ and ER- samples in fresh (left)
and FFPE (right) samples, we observed 24 of the top 30
networks (80%) were conserved, while 6 (highlighted in
orange) of the top 30 for each were unique to either
FFPE or fresh samples.

To further illustrate regulon conservation between
fresh and FFPE samples, we plotted the rank of the ac-
tivity score for all regulons (~5000) in FFPE by their
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Fig. 6 Regulon Validation of FFPE RNA-seq for pathway discovery reveals KDM4B as potential predictor of outcomes in ER+ TCGA breast cancer
cohort. An established breast cancer regulon composed from The Cancer Genome Atlas (TCGA) specimens was utilized to interrogate differential
signaling in transcription networks between ER+ and ER- samples from both FFPE and fresh specimen cohorts. a The 30 most differentially active
regulons between ER+ and ER- samples in fresh (left) and FFPE (right) specimens are displayed. Shared regulons are shown in white boxes, and
fresh vs. FFPE specific regulons are shown in orange. The activity (Act) of the regulon is displayed (red and blue for high and low network
activity, respectively), as is the gene expression (Exp) of the transcription factor itself. b Plotting regulon (n = 5000) expression levels (Ranks)
reveals high level of correlation between fresh and FFPE samples, whereas ¢) single-gene analysis (n = 14,330) reveals reduced correlation
between fresh and FFPE. d Single-sample regulon activity scores were plotted in TCGA breast cancer cases annotated by IHC as ER+ (red, n =478)
or ER- (blue, n=153) for each of the top 4 upregulated and downregulated regulons from the regulon analysis, depicting significant (****,
p <.0001, Welch's unpaired, two tailed, t-test) differences between ER+ and ER- samples and independently validating regulons results. e
Five year survival probability within ER+ breast cancer patients stratified by highest (red, n=318) and lowest (black, n=169) ER Regulon Activity
signature. ER Signature was composed by addition of z-score transformed single-sample regulon values as follows (KDM4B+CCNH-SUV39H2-
YEATS2). P-value determined by log-rank test and gene expression data retrieved and filtered by UCSC Xena Functional Genomics Explorer
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rank in fresh (Fig. 6b). In this analysis, we observed a
strong 1:1 linear correlation (ccc =0.861) of up- and
down-regulated regulons between FFPE and fresh tissue.
This strong correlation contrasted greatly with the sig-
nificantly reduced concordance observed when we ex-
amined the relative rank of differential expression of
individual genes (ccc = 0.573, Fig. 6¢). This formal dem-
onstration of a great degree of conservation in transcrip-
tion network biology between the fresh and FFPE
samples compared to single-gene analyses strongly sup-
ports the adoption of regulon analysis for FFPE data
sets.

To further validate our FFPE-derived regulon gene ex-
pression signatures, we explored if these regulons could
delineate ER+ and ER- breast cancer using the TCGA
dataset, where RNA expression data is obtained from
fresh tissue. We selected all 897 female primary breast
cancer patients under the age of 76, and subset the cases
based upon clinically annotated (IHC) ER status, identi-
fying 478 ER+ and 153 ER- cases. Next, for the four
most up-regulated and four most down-regulated FFPE
regulons (Fig. 6a), single-sample regulon activity scores
were plotted demonstrating highly statistically significant
differences (p <.0001) between ER+ and ER- cohorts
(Fig. 6d). Further, the expression values for each tran-
scription factor defining each regulon similarly discrimi-
nated ER+ and ER- cohorts (Additional file 4: Figure.
S4a,b). These data reinforce the fidelity of the FFPE
regulon results.

Since ER+ and ER- breast cancers differ in 5 year sur-
vival rates [41, 42], we next determined if the 8 FFPE-
derived regulons provide improved correlation with pa-
tient outcomes compared to single-gene analysis. Seven
out of the 8 regulons identified in our FFPE regulon
results showed statistical significance in 5year overall
survival between the high and low cohort compared to
only 4 out of 8 single-gene analyses (Table 2). Of the 8
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regulons, only the VGLL1 regulon activity (and gene ex-
pression), although clearly differentially associated with
ER status (Fig. 6d, Additional file 4: Figure S4a), showed
no survival prognostic value in the TCGA cohort
(Fig. 6d, Additional file 4: Figure S4a). Lastly, the histone
demethylase KDM4B is the ER upregulated pathway
with the strongest prognostic indicator of survival in
both single-regulon and single-gene analyses.

To extend the application of our FFPE regulon results,
we set out to establish an optimized ER activity score
based upon the selective combination of single regulon
activities. We reasoned that gene networks that were up-
vs. down-regulated in response to ER activity likely rep-
resent different sets of genes, so to perform this analysis
we explored the impact of combining the significantly
up-regulated with the significantly down-regulated regu-
lons. We evaluated the biological significance of three
signature combinations by distributing all 897 breast
cancer cases into high- or low-expressing groups and
evaluating survival (Additional file 5: Table S1, Add-
itional file 4: Figure S4c). Not surprisingly, the addition
of more than one regulon activity score enhanced the
stratification of outcomes in the entire TCGA dataset,
with optimal gains occurring with the following signa-
ture CCNH+KDM4B-SUV39H2-YEATS2 (Additional
file 5: Table S1, Additional file 4: Figure S4d). We then
applied this ER activity signature to only clinically-
annotated ER+ samples. We observed approximately 1/3
of all clinically-annotated ER+ breast cancer cases dis-
played a low ER activity signature, which correlated with
poor 5year overall survival (Fig. 6e). Importantly, we
could not delineate good and poor prognostic ER+ cases
using the highest and lowest quartiles of single-gene ex-
pression data for the estrogen receptor (ESR1, log-rank
p=.9060) or progesterone receptor (PGR, log-rank
p =.08452, 5 year ER+ cohort overall survival depicted in
Additional file 4: Figure S4e). These data illustrate a

Table 2 5 year Overall Survival in TCGA breast cancer cohort based upon regulon activity or gene expression

TCGA Breast Cancer: n=897 Single Sample Regulon Activity

Single Sample Gene Expression Value

Regulon Gene HR (Hi/Lo)  p value (Log-Rank)  End survival % (Hi/Lo)  HR (Hi/Lo) p value (Log-Rank)  End Survival % (Hi/Lo)
CCNH 0.3864 0.0001 90/78 0.6962 0.1258 86/82
TBC1D9 04976 0.0043 89/80 04555 0.0014 89/79
CXXC5 04641 0.002 90/79 0.7015 0.1409 86/82
KDM4B 03221 <0001 92/77 0.3786 <.0001 90/78
VGLL1 1.108 0.663 85/84 146 0.1114 82/86
FOXM1 2.065 0.0029 80/89 1.993 0.0044 80/89
SUV39H2 2929 <.0001 77/92 2279 0.0009 79/90
YEATS2 3434 <.0001 76/92 1429 0.1292 82/87

RNA expression data from 897 female primary breast cancer patients under the age of 76 was obtained from the TCGA cohort and stratified to either the high (Hi)
or low (Lo) group for each of the individual indicated regulons or genes based upon median values for regulon activity or gene expression (depicted in Additional
file 4: Figure S4b). Five year overall survival distribution was determined and Hazard Ratio (HR) expressed as risk comparing the high (Hi) expression/activity to the
low (Lo) group. Log-rank p-values are displayed and the final frequency of survival at 5 years post diagnosis indicated for the high and low groups (Hi/Lo)
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successful implementation of regulon transcription net-
work analysis in FFPE tissues for elucidating novel
discoveries.

Discussion

FFPE samples represent a unique source of biological in-
formation. The samples themselves are a snapshot of a
patient’s biology that remains frozen in time while the
patient goes on to experience disease outcomes and re-
sponse to treatment. FFPE tissues therefore represent a
resource with inherently increasing value as outcomes
data mature. This unique, clinically relevant value how-
ever comes at a cost of damaged RNA and DNA mole-
cules from fixation and storage processes. Nonetheless,
molecular interrogation of these resources for biological
insight has been performed by RT-PCR for both RNA
and DNA. These studies have demonstrated that
through limited and selective generation of complemen-
tary oligonucleotides, RNA from FFPE tissues are gener-
ally suitable for both diagnostic nucleic acid hybridization
assays and PCR use [15, 16, 32, 37, 43].

With Next-Generation Sequencing technology, both
whole genome and whole exome profiling of fresh pa-
tient samples has led to deeper patient stratification and
cancer subtype allocation, representing important ad-
vances in personalized medicine. For FFPE tissues how-
ever, this technology operates outside of the targeted
and validated oligo approach that has enabled confident
use of FFPE tissues for evaluation of RNA expression.
While FFPE RNA-seq has been increasingly employed in
recent years to stratify patient cohorts based upon global
gene expression data [44-49], far fewer reports have
made extensive efforts to address the impact of known
artifacts of tissue preservation on the fidelity of RNA
expression profiles through thorough comparisons
with fresh tissue [9, 10, 30, 45, 47, 50-59]. Even
within these existing reports there remain limitations
in interpreting the level of fidelity provided by FFPE
tissue through FFPE RNA-seq. These limitations in-
clude: comparisons between matched fresh frozen tis-
sue with non-long-term archived FFPE tissue [10, 50,
51, 56], examining only a limited set of genes [58-
61], use of high intra-variant cohorts [54], focus on
single-sample analyses [30, 53, 62], exclusive focus on
cohort level difference [52, 56] and narrowed evalu-
ation of technical sequencing metrics [9, 10, 13, 55].

Our approach has been to adopt a true-to-research
workflow by using repository archival tissues comple-
mented with public data from fresh cohorts, resources
routinely available to basic science researchers. In our
approach, the systematic employment of bioinformatics
revealed high concordance between fresh and FFPE gene
signatures, enabling successful biomarker discovery des-
pite the fact that the cohorts of FFPE and fresh tissues
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utilized were not subject-matched, prepared by the same
library method, nor sequenced by the same facility. This
success was highly dependent upon the targeted employ-
ment of results from pathway analyses rather than reli-
ance upon single-gene profiles. The coherence between
FFPE and fresh tissues, as well as the demonstrated sig-
nificance in outcomes, endorses the confident utilization
of clinically annotated FFPE specimens for expression
profiling work.

While more accessible and abundant than fresh tissue,
FFPE still represents a limited resource that requires
thoughtful utilization. We importantly illustrate in this
report that we can obtain reliable gene expression infor-
mation of 14,000+ genes from a single 10 um section of
FFPE breast cancer tissue. This finding represents a dra-
matic improvement in the number of molecular targets
that can be evaluated from relatively modest amounts of
FFPE tissue. We also report a high failure rate in FFPE
tissues to achieve sufficient quality RNA. In our study of
58 cases, the large failure rate for obtaining suitable
RNA samples (DV200 = 30), was observed to be largely
dependent upon the age of the block, but not in a
predictably linear fashion. Rather than age alone, our
data may reflect shifts in tissue collection or preservation
practices, which warrants further investigation. In
addition to providing optimized recommendations for
the amount of tissue required and block age, we also de-
scribe the impact of library selection on expression re-
sults. In agreement with previous studies, our study
reveals that library preparation introduces the greatest
level of variation, greater than that observed between
FFPE and fresh tissue cohorts. Previously, others have
demonstrated that variance in ribosomal depletion strat-
egies, or selection of either Poly A and/or targeted cap-
ture oligo bead hybridization libraries, all differentially
change count and relative abundance results that impact
evaluation of global gene expression concordance [10,
12, 51]. Based on these results, we suggest that library
selection be driven by the underlying experimental
question.

We have also shown and validated by comparison to
fresh tissues, to our knowledge, the first successful appli-
cation of RNA-seq regulon analysis for FFPE specimens.
Evaluation of regulon activity can overcome many of the
barriers imposed by analysis of single-gene expression
levels, which can be significantly impacted by tissue
preservation approaches. This observation is in line with
more recent analytic approaches such as relative gene
ranking [57] or reiterative revision of established gene
sets (GSEA, etc.) to more faithfully characterize tissue
cellular composition (immune and epithelial cell fre-
quency) and cellular processes (cell cycling) from bulk
FFPE tissues [11]. Of the 8 regulons identified to be
differentially expressed between ER+ and ER- FFPE
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breast cancer cases, the combination of 4 regulons
CCNH+KDM4B-SUV39H2-YEATS2 maximally delin-
eated outcomes in the TCGA breast cancer dataset. Of
these four regulons, the regulon defined by the histone
demethylase gene KDM4B, an ERassociated transcrip-
tional regulator [63, 64], best informed overall survival
probability in ER+ cases, whereas ESR1 or PGR did not.
One hypothesis is that this result stems from KDM4B
expression being a more faithful indicator of active es-
trogen receptor signaling than either ESR1 or PGR ex-
pression, and therefore identifies patients most likely to
have benefited from hormone deprivation therapy.
While future investigations are required to establish the
connection between KDM4B and ER+ breast cancer sur-
vival, these results illustrate a successful utilization of
true archival FFPE tissues for potentially clinically rele-
vant biomarker identification by RNA-seq and is, to our
knowledge, the first report of differential expression and
activity of KDM4B within ER+ breast cancers correlating
to patient survival.

Conclusion

In sum, our FFPE RNA-seq pipeline supports the ap-
proach of utilizing clinically-annotated FFPE cancer tis-
sues with outcomes data to address key questions in the
breast cancer field, including the delineation between in-
dolent and life-threatening disease and the molecular
mechanisms of treatment resistance. Additionally, inves-
tigation of archival FFPE tissues with treatment and out-
comes data through global RNA-seq profiling could be
utilized to enhance the performance of prognostic gene
panels, increasing their utility for patient treatment
stratification. Further, in the exploding era of bioinfor-
matics and 'omic analytics, new tools such as CITE-Seq
and cellular deconvolution [65] will further enhance and
refine our understanding of RNA signatures obtained
from FFPE tissue [66]. We encourage researchers in
these fields to incorporate FFPE tissues into their stud-
ies, as an easily obtainable, faithful and valuable resource
for RNA expression signatures.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512920-019-0643-z.

Additional file 1: Figure S1. Repeatability of RNA assessment. RNA
isolated from 6 FFPE samples were assessed at separate times (run) to
evaluate variance in determination of a) yield from Nanodrop and
Bioanalyzer instruments and b) RNA quality by evaluation of DV200
values. Each separate specimen is identified by a different colored symbol
with values corresponding to matched samples across runs connected by
the line. ¢) Plots of unique reads as % of total reads and d) overall
number of unique reads in Access (Acc) vs. Ovation (Ova) RNA library
preparation kits for sample 1 (orange) and sample 2 (green). Limma
normalization of gene expression in Access (Acc) vs. Ovation (Ova)
libraries for both sample 1 (orange and red, in triplicate) and sample 2
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(green and purple, in triplicate), results in e) linear relationship across the
range with raw values and f) count bias toward the Acc library.

Additional file 2: Figure S2. Extended evaluation of global gene
expression reveals high concordance between FFPE and fresh samples. a)
Sequence alignment parameters of clipping (no = light blue, soft = light
purple) and allowed nucleotide mismatches (mm) of 3-15 were
evaluated for impact of aligned read percentage for the 6 FFPE samples
in comparison to soft-clipping utilization in fresh (Fr, n=20) samples. b)
Global linear correlation evaluation of FFPE compared to fresh samples
based upon the average gene expression determined in Fresh plotted by
the average gene expression determined in FFPE in ER+ (left) and ER-
(right) cases. The best fit linear line is depicted in red from which r values
were derived.

Additional file 3: Figure S3. FFPE compared to fresh samples utilizing
the PAM50 genes and GSEA. a) Gene expression values from genes
included in the PAM50 gene panel (Fig. 4d) were utilized to assign
PAM50 Proliferation, ER and HER2 predictions scores for n =6 FFPE (left
panel) and n =20 fresh cases (right panel) specimens. The scores reflect
similar performance based upon ER subtype (ER + =red, ER- = blue),
independent of tissue processing. b) Plot of adjusted p-value and log 2
fold change comparing all genes between FFPE and fresh specimens,
regardless of ER status. Shading highlights genes distinctly unique to
each group. ¢) GSEA enrichment profiles comparing all FFPE samples
(red) to all fresh samples (blue), demonstrating trending enrichment in
UV response and P53 gene sets (left two panels) in FFPE samples while
no enrichment is observed in E2F and Estrogen Response (right two)
gene sets for either sample type.

Additional file 4: Figure S4. Validation of ER+ vs. ER- regulon results
from FFPE tissues. From the TCGA cohort, RNA expression data from 478
ER+ (blue) and 153 ER- negative (red) primary breast cancer tumors from
women under the age of 76 were evaluated for a) single-gene expression
of the most differentially active regulon factors from Fig. 6, illustrating
highly statistically significant differences between ER+ and ER- samples
(****, p <0001, Welch's unpaired, two tailed, t-test) and b) plotted for
single-sample gene expression by regulon activity score. Dashed lines
represent median values based upon the entire 897 TCGA breast cancer
cohort used for identifying high and low expression (Table 2). Optimal ER
activity regulon signature was empirically determined (Additional file 5:
Table S1) for separation of 5 year Overall Survival (O.S.) probability post-
diagnosis (Dx) in the 897 TCGA primary female breast cancer cohort
under the age of 76. Distribution of this score ¢) was plotted for all cases
(gray, n=897) or TCGA-annotated ER+ (red, n =478) or ER- (blue, n=
153) cases. Dotted line depicts threshold value for Hi vs. Lo designation
based upon whole cohort distribution. d) Overall Survival (O.S.) probabil-
ity is depicted for all the included TCGA breast cancer cases based upon
Hi (n=473) vs. Lo (n =424) optimized ER signature score, revealing highly
statistically significant differences (p <.0001, log-rank) with a Hazard Ratio
(HR) favoring 5 year survival of ER signature high patients. ) 5 year Over-
all Survival probability of ER+ (n=478) breast cancer patients

Additional file 5: Table S1. ER Regulon Activity Signature determined
5year Overall Survival in TCGA breast cancer cohort or ER+ only cases.
Single sample regulon activity values were z-score transformed based
upon data from all 897 female primary breast cancer patients under the
age of 76 obtained from the TCGA. Z-score regulon activity values were
then selected and combined based upon the significance in impacting
survival as determined in Supplemental Table 1. The indicated 3 ER activ-
ity regulon signature values were then used to stratify to samples to ei-
ther high (Hi) or low (Lo) groups based upon the distribution of the
whole cohort. 5 year overall survival distribution was determined and
Hazard Ratio (HR) expressed as risk comparing the high (Hi) expression/
activity to low (Lo) group for all TCGA cases (left, n=897) or for just IHC-
annotated ER+ cases (right, n =478). Log-rank p-values are displayed and
the final frequency of survival at 5 years post diagnosis indicated for the
high and low groups (Hi/Lo) for all cases and ER+ only cases separately.
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