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Abstract

Background: Genome-wide association studies (GWAS) have been widely used to identify phenotype-related
genetic variants using many statistical methods, such as logistic and linear regression. However, GWAS-identified
SNPs, as identified with stringent statistical significance, explain just a small portion of the overall estimated genetic
heritability. To address this ‘missing heritability’ issue, gene- and pathway-based analysis, and biological
mechanisms, have been used for many GWAS studies. However, many of these methods often neglect the
correlation between genes and between pathways.

Methods: We constructed a hierarchical component model that considers correlations both between genes and
between pathways. Based on this model, we propose a novel pathway analysis method for GWAS datasets,
Hierarchical structural Component Model for Pathway analysis of Common vAriants (HisCoM-PCA). HisCoM-PCA first
summarizes the common variants of each gene, first at the gene-level, and then analyzes all pathways
simultaneously by ridge-type penalization of both the gene and pathway effects on the phenotype. Statistical
significance of the gene and pathway coefficients can be examined by permutation tests.

Results: Using the simulation data set of Genetic Analysis Workshop 17 (GAW17), for both binary and continuous
phenotypes, we showed that HisCoM-PCA well-controlled type I error, and had a higher empirical power compared
to several other methods. In addition, we applied our method to a SNP chip dataset of KARE for four human
physiologic traits: (1) type 2 diabetes; (2) hypertension; (3) systolic blood pressure; and (4) diastolic blood pressure.
Those results showed that HisCoM-PCA could successfully identify signal pathways with superior statistical and
biological significance.

Conclusions: Our approach has the advantage of providing an intuitive biological interpretation for associations
between common variants and phenotypes, via pathway information, potentially addressing the missing heritability
conundrum.
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Background
Genome-wide association studies (GWAS) have
greatly advanced our understanding of the association
between sets of genetic variants (genotypes) and traits
of interest (phenotypes). GWAS typically focus on
associations between single-nucleotide polymorphisms
(SNPs) and traits (phenotypes), such as type 2 dia-
betes (T2D) [1]. To identify common variants in
GWAS, many statistical methods, including logistic
and linear regression, have been widely used. Since
most of these methods are based on single variant
analysis, their statistically significant results sometimes
may suffer from a lack of biological interpretation. In
addition, it has been reported that only a small por-
tion of the total heritability, of specific traits, can be
explained by these identified SNPs [2]. To enhance
interpretation of SNP association results, many gene-
based and pathway-based association analysis methods
have been developed. Biological pathways, which com-
plexly interact with each other, always have more direct
influence on related biological behaviors, as compared to
genes [3]. Thus, it is easier to interpret pathway-based re-
sults than SNP-based results. Such pathway-based asso-
ciation methods, developed for GWAS, often identify
pathways based on results from a single analysis of SNPs.
These methods often use only the most statistically signifi-
cant SNPs, according to the p-values obtained from single
SNP analysis. However, such analyses ignore genetic infor-
mation from the SNPs that are not selected [4–6]. In
addition, high correlations always exist between pathways,
potentially arising from many genes shared between
pathways. Thus, methods neglecting these correlations
may mislead phenotype association results [7].
Considering these deficiencies, a hierarchical compo-

nent model has been constructed, PHARAOH (Pathway-
based approach using HierArchical components of col-
lapsed RAre variants Of High-throughput sequencing
data). PHARAOH performs pathway analysis for rare vari-
ants using a single hierarchical model, and includes a col-
lapsing step for rare variants, whose data are usually
sparse. PHARAOH gene-level summary statistics are ob-
tained by a special weight approach for rare variants, and
analyzes entire genes and pathways by adding ridge-type
penalties on both gene and pathway effects on traits [8].
PHARAOH is usually used to analyze rare variants, rather
than common variants, due to the special collapsing step,
since common variant data usually needs dimension re-
duction instead of collapsing. In this study, we utilized the
main framework of PHARAOH, and principal component
analysis (PCA), to construct a hierarchical component
model for common variants. Based on this model, we pro-
posed a novel pathway analysis method for GWAS data-
sets, named Hierarchical structural Component Model for
Pathway analysis of Common vAriants (HisCoM-PCA).

HisCoM-PCA has several distinctive features. First,
HisCoM-PCA can identify associations between a distinct
trait and entire pathways, using a single model. It can sim-
ultaneously quantify both the effects of pathways and genes
to the phenotype. Second, HisCoM-PCA performs pathway
analysis using gene-level summary statistics from SNPs
within the same genes. Third, HisCoM-PCA allows poten-
tial correlations between genes and between pathways by
adding ridge-type penalties to both genes and pathways
effects. In addition, HisCoM-PCA may not only be used for
binary phenotypes, but also continuous phenotypes.
Overall, HisCoM-PCA can identify associated genes and
pathways, by controlling correlations within them.
In this study, we applied HisCoM-PCA for two binary

phenotypes, type 2 diabetes (T2D) and hypertension
(HT), and two continuous phenotypes, systolic blood
pressure (SBP) and diastolic blood pressure (DBP), using
large-scale SNP data from a Korean population study,
KARE (8840 samples) [9], and the KEGG pathway data-
base (186 pathways) [10]. Furthermore, HisCoM-PCA
was compared to three existing pathway-based ap-
proaches: GSA-SNP2 [4], sARTP [11], and MAGMA
[12]. To check the power and type I error of HisCoM-
PCA, a simulation study was performed using the
Genetic Analysis Workshop (GAW) 17 generated data-
set [13]. The empirical power of HisCoM-PCA was then
compared to three other existing methods. The results
of both a simulation study and real data analysis demon-
strated that HisCoM-PCA could successfully identify
statistically associated and biologically plausible path-
ways, for complex traits of interest.

Methods
KARE cohort dataset
The Korea Association REsource (KARE project) is a
nearly 9000-participant cohort GWAS study of Ko-
rean populations from Ansan and Ansung, represent-
ing city and countryside populations, respectively [9].
The common variant genotype data of 8840 individ-
uals were generated using the Affymetrix Genome-
Wide Human SNP array 5.0. This chip consists of
about 50 million autosomal SNPs, with a total of 352,228
SNPs available after quality control. In this study, we ex-
cluded SNPs with minor allele frequencies (MAFs) ≤ 0.05,
genotype calling rates < 95%, and Hardy-Weinberg equi-
librium p-values < 10−6. Thus, we only kept the subjects
with gender consistencies, and those whose calling rates
were > 90%. After such quality control processes, missing
values were imputed only for existing variants.

Definition of type 2 diabetes
An individual is defined as T2D, according to the following
criteria: (1) under treatment for T2D; (2) fasting plasma
glucose (FPG) ≥ 126mg/dL, 2-h postprandial blood glucose
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(Glu120) ≥ 200mg/dL, or glycated hemoglobin (HbA1c) ≥
6.5%; and (3) age of disease onset ≥40 years. Resultantly, a
total of 1288 subjects were diagnosed as T2D, among 8840
individuals, with another 3687 individuals selected as nor-
mal subjects by the inclusion criteria: (1) FPG < 100mg/dL,
Glu120 < 140mg/dL and HbA1c < 5.7%; and (2) no history
of diabetes [14]. Demographic variables of the 4974 selected
subjects are summarized in Table 1.

Definition of hypertension
A total of 2008 individuals were defined as hypertensive,
according to the following criteria: (1) SBP ≥ 140 mmHg
and/or DBP ≥ 90mmHg; and (2) treatment with antihy-
pertension medication, while 4569 individuals were de-
fined as normotensive controls according to the criteria:
SBP < 120 mmHg and DBP < 80mmHg. Subjects with
pre-hypertensive status were excluded from the analysis.
For quantitative trait analysis of SBP and DBP, 1019 sub-
jects were excluded due to hypertensive therapy or drug
treatments, variables that influence blood pressure [15].
The basic characteristics and blood pressure of the sub-
jects are listed in Table 2.

HisCoM-PCA
Step 1: SNPs dimension reduction by principal component
analysis (PCA)
The first step of HisCoM-PCA reduces the dimensions
of the common variants, located in the same genes, by
PCA. After PCA was performed for each gene, part of
principle components (PCs), as gene-level summary sta-
tistics, are chosen to represent the corresponding genes.
In order to reduce the high dimension of SNP data, we
only select a small number of PCs for each gene for the
next pathway analysis. In order to determine the number
of PCs for used for the pathway analysis, we use the fol-
lowing simple criteria: (1) using only the first PC and (2)
using the PCs whose cumulative proportion of variances
are more than 30%. We use a R’s function prcomp in
the stats package to conduct PCA.

Step 2: pathway analysis with a hierarchical component
model (HisCoM)
After reducing the dimensions of common variants for
each gene, pathway analysis is performed, using the

selected PCs, with a hierarchical component model, as
previously used for pathway analysis of rare variants [8].
Before the analysis, genes are mapped to the well-
defined pathways in the pathway databases such as the
Kyoto Encyclopedia of Genes and Genome (KEGG).
Then, the PCs for these mapped genes are derived and
assigned to the corresponding pathways. These PCs are
used as input dataset for step 2.
In this model, pathways are defined as a weighted

component of a set of PCs (Fig. 1). Let us define yj as
the phenotype of the jth subject and assume that pheno-
type independently follow an exponential family distri-
bution (j = 1,…,N). Let K be the number of pathways, Tk

be the number of genes in the kth pathway and Nkt be
the number of PCs for the tth gene in the kth pathway.
Let gkti denote the ith PC derived from PCA at the step 1
(k = 1,…, K; t = 1,…, Tk; i = 1,…,Nkt). These gkti s repre-
sent the genes and have continuous values. Let wkti

denote a weight assigned to gkti and βk denote the coeffi-
cient connecting the kth pathway to the phenotype. For
each individual, the relationships between PCs and
binary phenotype are established in such a way that:

logitðπÞ ¼ β0 þ
XK

k¼1

"
XTk

t¼1

XNkt

i¼1

gktiwkti

#
βk

To estimate the parameters in HisCoM-PCA, we use
the alternating least squares (ALS) algorithm. The ALS
algorithm was originally proposed by de Leeuw et al.
[16] and adopted by Hwang and Takane for the general-
ized structural component analysis (GSCA) [17], and

Table 1 Demographic variables for KARE cohort (T2D)

T2D subjects Normal subjects

Area (Ansan/Ansung) 673/615 1607/2080

Gender (Male/Female) 671/617 1679/2008

Age (Mean ± SD) 55.92(± 8.80) 49.88(± 8.31)

BMI (Mean ± SD) 25.54(± 3.27) 24.10(± 2.90)

Number of subjects 1288 3687

SD standard deviation, BMI body mass index

Table 2 Basic characteristics of study subjects

(a) Basic characteristics of hypertensive cases and normotensive controls

HT subjects Normal subjects

Area(Ansan/Ansung) 1204/804 1756/2813

Gender(Male/Female) 916/1092 2065/2504

Age(Mean ±SD) 56.74(± 8.42) 49.43(± 8.09)

BMI(Mean ±SD) 25.62(± 3.27) 24.03(± 2.94)

Number of subjects 2008 4569

(b) Basic characteristics of subjects for blood pressure analysis

Subjects

Area(Ansan/Ansung) 3591/4225

Gender(Male/Female) 3784/4032

Age(Mean ±SD) 51.45(± 8.74)

BMI(Mean ±SD) 24.40(± 3.07)

SBP(Mean ±SD) 115.56(± 17.22)

DBP(Mean ±SD) 74.11(± 11.24)

Number of subjects 7816

SD standard deviation, BMI body mass index, SBP systolic blood pressure, DBP
diastolic blood pressure
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later by Lee et al. for the penalized log-likelihood func-
tion [8]. The ALS algorithm minimizes the objective
function in the framework of least squares estimation.
We use the ALS algorithm for the penalized log-
likelihood function of Lee et al. [8]. Our ALS algorithm
consists of two steps and these two steps iterate until
convergence.
Step2 − 1: For fixing the weight coefficient estimates

wkti, update the pathway coefficient estimates βk, in the
sense of least squares.
Step2 − 2: For fixing pathway coefficient estimates βk,

update the weight coefficient estimates wkti, in the sense
of least squares.
To take into account potential correlations between

genes and between pathways, we utilize a penalization
approach. In this study, we adopt a ridge-type penalty to
control multi-collinearity between genes and between
pathways. Then, we sought to maximize the penalized
log-likelihood function, given as follows:

ϕ ¼
XN

j¼1
logpðy j; γ j; δÞ−

1
2
λg
XK

k¼1

XTk

t¼1

XNkt

i¼1
w2
kti−

1
2
λp
XK

k¼1
β2k ;

where p(yj; γj, δ) is the probability distribution for the pheno-
type of the jth individual, and λg and λp are ridge parameters
for genes and pathways, respectively. After estimation, we
performed permutation testing by resampling the

phenotypes, to test the significance of the parameters. Here,
we use a tool called WISARD (Workbench for Integrated
Superfast Association study with Related Data) [18], which
was developed for fast and a comprehensive analysis
of SNP-chip and next-generation sequencing data.
WISARD can perform the standard pathway analysis with
SNP data as input. Instead of SNPs, we use the PCs
derived from step 1 as input of WISARD to perform our
PC based pathway analysis.

Simulation study
To check the power and type Ι error rate of HisCoM-
PCA, a simulation study was performed using simulation
data from the Genetic Analysis Workshop 17 (GAW17)
[13]. In brief, a GAW17 simulation dataset was gener-
ated for 697 individuals from the 1000 Genomes Project
[19], containing 24,487 SNVs and four phenotypes (Q1,
Q2, Q4, and AFFECTED). The SNPs with minor allele
frequencies (MAFs) ≤ 0.05, or genotype calling rates <
95% were excluded in the simulation study. We also kept
the subjects with gender consistencies, and those whose
calling rates were > 90%. Among the four simulated phe-
notypes, only Q1 was generated using pathway informa-
tion, and was simulated to be affected by 9 genes from
the vascular endothelial growth factor (VEGF) pathway,
as defined by Ingenuity Pathway Analysis [20]. We next

Fig. 1 A schematic diagram of HisCoM-PCA y is the phenotype of subject; pathwayk means kth pathway; Genekt − PCi denotes i
th PC of the tth

gene in kth pathway; SNPktr is r
th SNP of the tth gene in kth pathway; lktr denotes a loading value of SNPktr from PCA; wkti denotes the weight

assigned to Genekt − PCi; βk denote the coefficient connecting the kth pathway to the phenotype
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examined the power according to the proportion of
identifying the VEGF pathway from the entirety of path-
ways in the KEGG database. Type I error of HisCoM-
PCA was examined by the proportion of identifying null
pathways which did not contain causal genes. Both type
I error and power were calculated by analysis for Q1. To
compare the power with other existing methods, we also
analyzed the GAW17 dataset using sARTP [11], a self-
contained version of MAGMA, a competitive version of
MAGMA [12] and GSA-SNP2 [4].

Results
Simulation study using the gene analysis workshop 17
(GAW17) dataset
To check the power and type I error of HisCoM-PCA, we
performed a simulation study using the GAW17 dataset, for
both binary and continuous types of a Q1 trait. For binary
phenotypes, we transformed the continuous values of Q1 to
binary values, using the median. Each SNP was then assigned

to a gene, if its location was in, or within 20 kb of, the gene,
and the KEGG database then used to map genes and path-
ways. In the simulation study, we chose the first PCs and
PCs whose cumulative proportion of variances was more
than 30%, after PCA of each gene. The tuning parameters of
our method, λg and λp, were optimized based on five-fold
CV.
To investigate where the type I error rate is controlled,

we examined type I error by the proportion of identifying a
null pathway whose number of genes was the same as the
VEGF pathway. We checked the type I errors of HisCoM-
PCA, sARTP, competitive version of MAGMA, self-
contained version of MAGMA, and GSA-SNP2 (Fig. 2).
To that end, HisCoM-PCA controlled type I error with

PC selection criteria. GSA-SNP2, and the competitive
version of MAGMA, also controlled type I error well.
However, the type I errors of sARTP, and the self-
contained version of MAGMA, were too inflated. Thus,
we only compared the power of HisCoM-PCA with

Fig. 2 Empirical type I errors and powers of HisCoM-PCA and other methods (a) Empirical type I errors of HisCoM-PCA, sARTP, two versions of
MAGMA, and GSA-SNP2. Empirical type I error indicates the times of identifying a null pathway among 200 replicates. (b) Empirical powers of HisCoM-
PCA, competitive version of MAGMA and GSA-SNP2. Empirical power indicates the times of identifying VEGF pathway among 200 replicates
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GSA-SNP2, and the competitive version of MAGMA.
To examine the power, we calculated proportion of
identifying VEGF pathways from 168 KEGG pathways,
with 200 replicates. The powers of the three methods
are shown in Fig. 2.
For both continuous and binary phenotypes, HisCoM-

PCA showed the highest power, compared to the other
methods. The powers of HisCoM-PCA, with two types
of phenotypes, and two criteria of PC selection, were all
higher than 0.95. However, the power of GSA-SNP2
were only 0.21 for the binary phenotype and 0.29 for the
continuous phenotype, respectively. While MAGMA
showed higher power than GSA-SNP2, it showed only
0.6 power for the binary phenotype. However, HisCoM-
PCA showed similar powers with either PC selection
criteria, while all the methods showed higher power with
continuous vs. binary phenotypes.

Real data analysis of common variants from KARE
For KARE data, PLINK 1.90 [21] was used to perform
quality control analysis using the criteria described in
the Materials section. The SNPs were mapped to the
UCSC hg19 genomic coordination. Missing genotype
data was imputed using the Beagle 5.0 [22] software pro-
gram. Then, the SNPs were annotated with genes using
SnpEff v.4.3 [23]. After mapping these genes to the
KEGG pathway database, a total of 3996 genes were
matched to 186 KEGG pathways. The distribution of the
number of SNPs per gene is given in Additional file 1:
Figure S1. For the 3996 genes, we used the following
simple criteria to choose the number of PCs: (1) using
only the first PC and (2) using the PCs whose cumula-
tive proportion of variances were more than 30%. When
using the first criterion, each gene used only one PC.
Thus, there were 3996 PCs. On the other hand, when
using the second criterion, one gene could have multiple
PCs. As a result, 4486 PCs were used. We then per-
formed pathway analysis for four phenotypes: type-2 dia-
betes (T2D), hypertension (HT), systolic blood pressure
(SBP), and diastolic blood pressure (DBP). Following as-
sociation tests conducted in other previous studies of
the KARE dataset, age, sex, body mass index (BMI), and
area were included as covariates in the pathway analysis.
In addition to HisCoM-PCA, other existing methods
such as sARTP, MAGMA (self-contained and competi-
tive versions) and GSA-SNP2 were used for comparison.
The tuning parameters λg and λp, were chosen based on
five-fold cross-validation (CV). To test the pathways’ sig-
nificance, we performed permutation tests by generating
1000 permuted phenotypes.
HisCoM-PCA, using the first PCs, successfully identi-

fied 14 pathways for T2D, 15 pathways for HT, 3 path-
ways for SBP, and 9 pathways for DBP, respectively, at a
5% significance level. HisCoM-PCA, using the 4486 PCs,

identified 13 pathways for T2D, 20 pathways for HT, 6
pathways for SBP, and 7 pathways for DBP, respectively,
at the same significance level. These different PC selec-
tion criteria provided very consistent results. Both iden-
tified 10 common pathways for T2D, 14 common
pathways for HT, three common pathways for SBP, and
five common pathways for DBP. The summary results of
GSA-SNP2, MAGMA (competitive version) and
HisCoM-PCA for KARE data analysis are shown in Add-
itional file 1: Figure S2. As a multiple testing correction
method, the false discovery rate (FDR) was used to cal-
culate corrected p-values for each pathway. When
HisCoM-PCA was used for the first PCs, only three
pathways had FDR corrected p-values less than 0.1 for
HT. However, none of pathways passed this threshold
for other phenotypes. When HisCoM-PCA was used for
the PCs whose cumulative proportion of variance is
more than 30%, two pathways for T2D and one pathway
for HT passed the same threshold of FDR corrected
p-value, respectively. None of pathways passed this
threshold for SBP and DBP.
For T2D analysis, HisCoM-PCA successfully identified

several well-known pathways biologically related to T2D.
For example, pathways such as calcium signaling, the
renin-angiotensin system, and phosphatidylinositol sig-
naling, are known to be related to insulin resistance or
insulin sensitivity [24–27]. Of these, calcium signaling is
crucial for insulin secretion in pancreatic β-cells [24, 25],
while phosphatidylinositol signaling is known to play an
important role in an insulin-stimulated glucose metabol-
ism pathway associated with obesity and T2D [27].
Moreover, some diseases, such as Alzheimer’s disease
(AD), asthma, and dilated cardiomyopathy have been re-
ported to share molecular pathways or risk factors with
T2D [28–31], and several studies have shown that insu-
lin resistance is related to risk of AD, as well as T2D
[28]. These results demonstratee that application of
HisCoM-PCA to T2D successfully identified various
pathways of these diseases. In addition, folate biosyn-
thesis and hedgehog signaling have also been reported to
potentially relate to T2D [32, 33]. These pathway results
for T2D, using HisCoM-PCA, and the other four
methods, are summarized in Table 3.
The pathways related to blood pressure (BP) were also

identified by HisCoM-PCA using the phenotypes HT,
SBP, and DBP. In that regard, calcium signaling pathway
and the complement and coagulation cascades pathway
were previously shown to be related to BP regulation
[34, 35]. BP regulation is influenced by regulators of vas-
cular tone, which are dependent on ion channels, such
as voltage-gated Ca2+ channels, members of the calcium
signaling pathway. Moreover, the kallikrein-kinin system
(KKS) importantly regulates BP by influencing vascular
tone and renal salt processing. It is also well known that
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KKS is a large picture of the complement and coagula-
tion cascades pathway. Other disease pathways, such as
maturity onset diabetes of the young (MODY) and
hypertrophic cardiomyopathy (HCM) were identified by
HisCoM-PCA, and previous studies have shown that
MODY and HCM may also associate with HP [36–38].
These pathway results for HT, SBP, and DBP, using
HisCoM-PCA and the other four methods, are shown in
Table 4.

Discussion
HisCoM-PCA is a novel method for pathway analysis of
GWAS data. By applying HisCoM-PCA to a large popula-
tion study dataset (KARE), we identified several biologic-
ally associated pathways for type-2 diabetes (T2D) and

blood pressure (BP). For BP, we used three phenotypes:
hypertension (HT), systolic blood pressure (SBP), and dia-
stolic blood pressure (DBP). Whether the phenotype of
interest is continuous or binary, HisCoM-PCA can suc-
cessfully detect associated pathways with statistical signifi-
cance. As self-directed validation, some pathways related
to HT were also identified for SBP or DBP, simultaneously
providing significant p-values. Beside pathway analysis, we
performed gene analysis using HisCoM-PCA at the same
time. The reported genes identified by HisCoM-PCA at the
5% nominal significant level are summarized in Additional
file 1: Tables S1 and S2. To that end, HisCoM-PCA
identified several genes well known to genetically influence
T2D or BP, demonstrating that HisCoM-PCA can detect
both pathways and genes having biological significance.

Table 3 Pathways identified for T2D

Pathway HisCoM-PCAa HisCoM-PCAb MAGMA GSA-SNP2

P value (q-value)

folate biosynthesis 0.004 (0.1518) 0.002 (0.0633) 0.0537 (0.891) 0.0019 (0.2936)

hedgehog signaling pathway 0.006 (0.1627) 0.016 (0.2531) 0.3073 (0.917) 0.028 (0.5284)

olfactory transduction* 0.006 (0.1627) 0.002 (0.0633) 0.0482 (0.891) 0.0036 (0.2936)

biosynthesis of unsaturated fatty acids 0.01 (0.2373) 0.012 (0.2071) 0.089 (0.891) 0.0373 (0.5284)

Alzheimer’s disease 0.014 (0.2657) 0.036 (0.4555) 0.1808 (0.891) 0.0446 (0.5284)

calcium signaling pathway 0.014 (0.2657) 0.026 (0.3796) 0.0791 0.891) 0.0329 (0.5284)

asthma 0.016 (0.2761) 0.008 (0.1687) 0.0517 0.891) 0.0737 (0.6529)

acute myeloid leukemia 0.032 (0.4302) 0.042 (0.4621) 0.0781 (0.891) 0.5442 (1)

melanogenesis 0.034 (0.4302) 0.012 (0.2071) 0.0786 (0.891) 0.0223 (0.5284)

long term potentiation 0.04 (0.4466) 0.028 (0.3796) 0.1284 (0.891) 0.1616 (0.8349)

phosphatidylinositol signaling system 0.1119 (0.5185) 0.006 (0.1424) 0.7656 (0.9778) 0.1107 (0.7355)

dilated cardiomyopathy 0.03 (0.4302) 0.0819 (0.5188) 0.3994 (0.917) 0.0408 (0.5284)

renin angiotensin system 0.038 (0.4466) 0.0539 (0.4621) 0.3794 (0.917) 0.0917 (0.6923)

HisCoM-PCAa is HisCoM-PCA with the first PC of each gene. HisCoM-PCAb is HisCoM-PCA with the PCs whose cumulative proportion of variance is more than 30%.
MAGMA is competitive version of MAGMA. The q-value is the FDR corrected p-value. Pathway with “*” was identified by 3 methods

Table 4 Pathways identified for BP

Pathway HisCoM-PCAa HisCoM-PCAb MAGMA GSA-SNP2

P value (q-value)

inositol phosphate metabolism 0.002 (0.0633) 0.004 (0.1265) 0.1966 (1) 9.008e-06 (0.0017)

phosphatidylinositol signaling system 0.002(0.0633) 0.004 (0.1265) 0.2256 (1) 1e-04 (0.013)

ubiquitin mediated proteolysis 0.002 (0.0633) 0.002 (0.0949) 0.1076 (1) 0.5963 (0.9839)

calcium signaling pathway 0.008 (0.2169) 0.006 (0.1627) 0.0994 (1) 0.0228 (0.4708)

neurotrophin signaling pathway 0.01 (0.2373) 0.01 (0.2373) 0.6801 (1) 0.3157 (0.971)

epithelial cell signaling in helicobacter pylori infection 0.012 (0.2531) 0.05 (0.4126) 0.0826 (1) 0.1245 (0.7719)

complement and coagulation cascades 0.014 (0.2657) 0.03 (0.3417) 0.1428 (1) 0.3405 (0.9839)

maturity onset diabetes of the young 0.018 (0.3106) 0.036 (0.3417) 0.067 (1) 0.0239 (0.4708)

snare interactions in vesicular transport 0.022 (0.348) 0.012 (0.2531) 0.2071 (1) 0.0653 (0.5878)

hypertrophic cardiomyopathy (HCM) * 0.1259 (0.5573) 0.03 (0.3417) 0.0074(1) 3e-04 (0.0157)

HisCoM-PCAa is HisCoM-PCA with the first PC of each gene. HisCoM-PCAb is HisCoM-PCA with the PCs whose cumulative proportion of variance is more than 30%.
MAGMA is competitive version of MAGMA. The q-value is the FDR corrected p-value. Pathway with “*” was identified by 3 methods
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Other existing pathway methods revealed numbers of
significant pathways. As shown in simulation studies,
however, they have high chance of being false positives.
On the other hand, some pathways identified by
HisCoM-PCA were previously reported to be related to
T2D or BP, while these pathways were not significant by
other pathway identification methods we used for
comparison. In addition, some pathways were jointly
identified by other methods and HisCoM-PCA. Real data
analysis showed that HisCoM-PCA can provide new
candidates that other methods cannot successfully
identify.
We also examined empirical power and type I error

rate for both binary and continuous phenotypes, using
the Genetic Analysis Workshop 17 (GAW17) simulation
dataset for GWAS. Compared to several methods,
HisCoM-PCA controlled type I error well and showed
high statistical power. However, some methods, such as
sARTP and the self-contained version of MAGMA, did
not control type I error well. Moreover, the methods
that well controlled type I error showed lower power
than HisCoM-PCA. In the simulation study, HisCoM-
PCA analysis of the first PC showed similar power to
HisCoM-PCA with PCs whose cumulative proportion of
variance was more than 30%. This may indicate that the
power is similar, using multiple PCs, which can save a
lot of computing time.

Conclusions
In this study, we proposed a novel pathway analysis
method HisCoM-PCA for GWAS datasets. Over the
existing methods, HisCoM-PCA has several advantages.
HisCoM-PCA performs gene-based and pathway-based
analysis directly from raw data, while GSA-SNP2 and
MAGMA use only summary measures such as p-values
or test statistics of univariate analysis. These are gene-
level summary measures and are used as inputs to
perform pathway analysis. However, since the values of
these summaries do not directly represent the raw gen-
etic data, this issue probably leads to false discoveries. In
HisCoM-PCA, we can obtain gene-level summary statis-
tics, by PCA, for each gene. These statistics are a linear
combination of SNPs from the raw data. Using these
values, subsequent analysis for genes and pathways may
decrease the possibility of false discoveries.
HisCoM-PCA also considers correlations between

pathways, an aspect usually neglected by other methods.
Correlation between pathways may influence the com-
bined effect of pathways on traits, similar to when corre-
lations exist between genes in a specific pathway. To
allow correlation between genes and between pathways,
HisCoM-PCA applies a ridge-type penalization approach
on coefficient estimation for both genes and pathways
by analyzing entire pathways simultaneously. Cross-

validation is then used to detect the optimal tuning pa-
rameters of ridge-type penalties. Note that other
methods can only analyze one pathway at a time. For
the mapped 186 pathways in our KARE data, HisCoM-
PCA analyzed them with one big model, while other
methods performed single pathway analyses 186 times.
Furthermore, only HisCoM-PCA have an ability to

perform conditional inference for identifying a novel
pathway given known pathways. For example, for a given
well-known pathway related to a trait of interest,
HisCoM-PCA can only identify additional pathways for
this given pathway. HisCoM-PCA can also perform
stepwise selection of pathways by adding one pathway
sequentially given the selected pathways.
In addition to the above advantages, HisCoM-PCA has

high flexibility for users. First, PC selection criteria may
be defined by the user. Second, users can perform both
non-target and target pathway analysis. Since HisCoM-
PCA controls the correlation between pathways, it is
useful to detect associated pathways having similar mo-
lecular mechanisms. However, HisCoM-PCA has higher
computational burden than other methods due to per-
mutation test. We are currently working on developing
an asymptotic test which can replace the permutation
test. We strongly believe that our method, HisCoM-
PCA, can be applied to any number of GWAS studies,
resulting in the successful identification of genes and
pathways associated with specific phenotypes.
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