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Genetic colocalization atlas points to
common regulatory sites and genes for
hematopoietic traits and hematopoietic
contributions to disease phenotypes
Christopher S. Thom1,2,3,4 and Benjamin F. Voight2,3,4*

Abstract

Background: Genetic associations link hematopoietic traits and disease end-points, but most causal variants and genes
underlying these relationships are unknown. Here, we used genetic colocalization to nominate loci and genes related to
shared genetic signal for hematopoietic, cardiovascular, autoimmune, neuropsychiatric, and cancer phenotypes.

Methods: Our aim was to identify colocalization sites for human traits among established genome-wide significant loci.
Using genome-wide association study (GWAS) summary statistics, we determined loci where multiple traits colocalized at
a false discovery rate < 5%. We then identified quantitative trait loci among colocalization sites to highlight related genes.
In addition, we used Mendelian randomization analysis to further investigate certain trait relationships genome-wide.

Results: Our findings recapitulated developmental hematopoietic lineage relationships, identified loci that linked traits
with causal genetic relationships, and revealed novel trait associations. Out of 2706 loci with genome-wide significant
signal for at least 1 blood trait, we identified 1779 unique sites (66%) with shared genetic signal for 2+ hematologic traits.
We could assign some sites to specific developmental cell types during hematopoiesis based on affected traits, including
those likely to impact hematopoietic progenitor cells and/or megakaryocyte-erythroid progenitor cells. Through an
expanded analysis of 70 human traits, we defined 2+ colocalizing traits at 2123 loci from an analysis of 9852 sites (22%)
containing genome-wide significant signal for at least 1 GWAS trait. In addition to variants and genes underlying shared
genetic signal between blood traits and disease phenotypes that had been previously related through Mendelian
randomization studies, we defined loci and related genes underlying shared signal between eosinophil percentage and
eczema. We also identified colocalizing signals in a number of clinically relevant coding mutations, including sites linking
PTPN22 with Crohn’s disease, NIPA with coronary artery disease and platelet trait variation, and the hemochromatosis
gene HFE with altered lipid levels. Finally, we anticipate potential off-target effects on blood traits related novel
therapeutic targets, including TRAIL.
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Conclusions: Our findings provide a road map for gene validation experiments and novel therapeutics related to
hematopoietic development, and offer a rationale for pleiotropic interactions between hematopoietic loci and disease
end-points.
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Background
Identifying causal loci and genes from human genetic
data is integral to elucidating novel disease insights and
therapeutic approaches. Quantitative hematopoietic
traits are well studied, although relatively few causal var-
iants and genes have been elucidated [1, 2]. Mendelian
randomization studies have established causal relation-
ships between hematopoietic traits and cardiovascular,
autoimmune and neuropsychiatric disease [2], but causal
genes and loci remain elusive.
Genetic colocalization analysis permits identification

of shared regulatory loci, with advances extending the
scope of potential studies from two to over 10 traits
undergoing simultaneous analysis [3–5]. Recently, a
colocalization algorithm was used to identify known and
novel loci related to cardiovascular traits [5]. Key as-
sumptions of this algorithm include i) consistent linkage
disequilibrium patterns across studies (i.e., that studies
were conducted on the same population), ii) there being
at most one causal variant per genomic region per trait,
and iii) that causal variants are directly identified or im-
puted in all datasets [5]. We reasoned that a similar ana-
lytical pipeline could help explain variants and genes
underlying hematopoietic and other disease phenotypes.
In this way, aggregated summary statistics might be used
to specifically target loci with pleiotropic effects on mul-
tiple traits, enacted through one or a handful of genes.
Developmental cell types during hematopoiesis, the

process that gives rise to all blood lineages, are relatively
well mapped. We hypothesized that shared genetic signal
impacting traits from multiple blood lineages might nomin-
ate genomic loci related to the stem and progenitor cells
that spawned those types of blood cells. This approach is
orthogonal to prior data that analyzed patterns in accessible
chromatin to define genomic locations affecting multiple
blood lineages [1]. For example, a shared single nucleotide
polymorphism (SNP) related to quantitative variation in
platelet, red blood cell (RBC), and white blood cell (WBC)
counts might indicate a site or mechanism that is active in
hematopoietic stem and progenitor cells (HSCs). SNPs re-
lated to platelet and RBC counts, but not WBC count,
might reveal loci and related genes for megakaryocyte-
erythroid progenitor (MEP) cells. We hypothesized that the
directionality of such relationships might help elucidate
lineage decisions during hematopoiesis, and help target loci
and genes related to developmental hematopoiesis.

Blood traits are related to a number of human disease
phenotypes [2]. Blood cells can cause disease (e.g., auto-
immune traits) or be affected by therapies (e.g., anemia
secondary to chemotherapy). For this reason, under-
standing pleiotropic associations between blood and
other traits could reveal translationally relevant trait re-
lationships or help predict off-target effects of gene-
modifying therapies.
Here, we used genetic colocalization to define sites

wherein two or more human traits shared genetic signal
at genome-wide significant loci. We initially examined
blood traits, and later expanded our analysis to include a
total of 70 blood, autoimmune, cardiovascular, cancer,
and neuropsychiatric traits. We then looked for quanti-
tative trait loci impacting gene expression (eQTL) or
exon splicing variation (sQTL) at or near sites of genetic
colocalization. Our results identify sites that affect spe-
cific cell types during hematopoietic development, and
reveal genetic variants underlying trait relationships be-
tween blood parameters and disease end-points.

Methods
SNP and study selection
GWAS summary statistics were obtained from publicly
available repositories (Additional file 1: Table S1 [2, 6–
21]). We narrowed analysis to just those GWAS sum-
mary statistics for European populations with > 1 × 106

sites (i.e., those that were genome-wide). Analyzed SNPs
were identified as genome-wide significant in the largest
hematopoietic trait GWAS to date [2] or from a repository
of genome-wide significant SNPs from a compilation of
GWAS from the NHGRI-EBI Catalog (downloaded Janu-
ary 2019) [22]. In addition, we analyzed quantitative trait
locus data from GTEx V7 [23]. Human genome version
hg19 was used for all analyses.

Colocalization analyses
We used the HyPrColoc software to conduct colocaliza-
tion experiments [5]. This software requires effect (e.g.,
beta or odds ratio) and standard error values for each
analyzed SNP. We chose to analyze based on chromo-
some and position, given that multiple rsIDs might over-
lap at a given locus and be inconsistent between different
GWAS. Although this removed duplicate rsIDs and may
have caused some bias, we reasoned that this would be a
minority of sites. This strategy optimized the number of
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individual positions that we were able to incorporate
into our input dataset for colocalization analysis. We
specifically looked at 500 kb regions (250 kb on either
side of each site), in line with prior colocalization lit-
erature [5].
As the SNPs considered as input data varied between

analyses, we presented separate results from analysis of
34 hematologic traits, and a composite of 70 traits.
GWAS summary statistics were harmonized prior to
analyses (https://github.com/hakyimlab/summary-gwas-
imputation/wiki). There were 29,239,447 genomic sites
analyzed for colocalization among the hematologic traits.
A total of 1,667,428 harmonized sites were analyzed
from GWAS summary statistics for the 70 traits. The
decreased number of sites included in this latter analysis
resulted in decreased power to detect associations. This
was reflected in the maximum number of traits coloca-
lized, which in Fig. 1a was 25 (out of 34 traits) versus 24
traits in Fig. 2a (out of 70 traits). The number of sites
used for ‘restricted’ analysis of traits with limited genetic
correlation (rg < 0.8) were similar to ‘full’ analyses, in-
cluding 29,261,510 genomic sites for 17 blood traits
(Additional file 2: Figure S1), and 1,667,741 genomic
sites for 45 traits (Additional file 2: Figure S2).
After colocalization analysis, we narrowed our focus

on only those loci with posterior probability for colocali-
zation (PPFC) > 0.7, based on empiric simulations results
from the creators of this algorithm showing that this
conservatively gave a false discovery rate < 5% [5]. We
noted that a more relaxed PPFC (e.g., > 0.5) yielded sub-
stantially more loci. A less conservative threshold could
in this way be used as a hypothesis-generating experi-
ment for cellular follow up studies.

Coding variant identification
We used the Ensembl Variant Effect Predictor (http://
grch37.ensembl.org/Homo_sapiens/Tools/VEP) to iden-
tify coding variants and related gene consequences.

Linkage disequilibrium and quantitative trait locus (QTL)
analyses
We wanted to assess comprehensively the potential gene
expression or splicing changes related to colocalization
sites. Thus, we analyzed each colocalization site together
with all sites in high linkage disequilibrium (EUR r2 >
0.90, PLINK version 1.9).
We used closestBed (https://bedtools.readthedocs.io)

to identify the nearest gene to each SNP. Genes and po-
sitions were defined by BioMart (https://grch37.ensembl.
org/biomart/martview).
For each group of linked SNPs around a colocalization

locus, we identified all eQTLs (GTEx V7 [23]), as well as
all sQTLs as defined by two different algorithms (GTEx
V3 sQTLseekeR [24], Altrans [25]). In the manuscript

and Additional file 1, the quantity of QTL SNPs and
pathway analyses reflect a composite of all genes im-
pacted by a given locus, or by highly linked SNPs. Note
that a given colocalization site might be linked with sev-
eral SNPs, and that these SNPs might be proximal to
and/or impact different genes. Affected genes shown are
those with a unique Ensembl gene identifier (ENSG). In
some cases, gene names may differ between Nearest
Gene, eQTL and sQTL columns given that the under-
lying analyses were derived from different catalogues.

Gene ontology analysis
We submitted QTLs associated with specific traits for
biological pathway assessment using the Gene Ontology
(GO) resource (http://geneontology.org). Statistical sig-
nificance of GO Biological Process enrichments were
assessed using binomial tests and Bonferroni correction
for multiple testing. Presented data were those pathways
with p < 0.05.

Empirical distribution for expected colocalization counts
We used LDSC to estimate genetic correlation between
traits (v1.0.1) [26]. Presented genetic correlation data re-
flect rg values obtained from LDSC analysis.

Mendelian randomization
We created genetic instrumental variables from GWAS
summary statistics for blood traits [2], eczema [15], and
depressive symptoms [20]. To generate instrumental var-
iables, we first identified SNPs common to both expos-
ure and outcome data sets. Using Two-sample MR
(v0.5.4 [27]) and R (v3.6.3), we then clumped all
genome-wide significant SNPs to identify single nucleo-
tide polymorphisms within independent linkage disequi-
librium blocks (EUR r2 < 0.01) in 10,000 kb regions.
We used mRnd (http://cnsgenomics.com/shiny/mRnd,

[28]) to estimate the F-statistics of our instrumental vari-
ables. We calculated the proportion of genetic inherit-
ance explained per Shim et. al. [29]. None of our
instrumental variables was subject to weak instrument
bias, as each had an F-statistic > 10 [28].

Data presentation
Data were created and presented using R, Adobe Illus-
trator CS6 and GraphPad Prism 8.

Statistics
Statistical analyses were conducted using R and Graph-
Pad Prism 8.
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Results
Genetic colocalization recapitulates hematopoietic
lineage relationships
Our first aim was to validate whether colocalization
could effectively capture known trait relationships and
genetic correlations between hematopoietic lineages [1].
We performed colocalization analysis [5] using genome-

wide association study (GWAS) summary statistics re-
lated to 34 quantitative hematopoietic traits for 2706
genome-wide significant loci [2], revealing a total of
1779 sites wherein 2 or more traits colocalized with a
PPFC > 0.7 (Additional file 1: Table S2). In simula-
tions, these criteria identified the causal variant, or a
variant in high LD with the causal variant, with a

Fig. 1 Genetic colocalization between blood traits reflects hematopoietic lineage relationships. a Number of traits identified at each colocalization
site (max = 25). b Heat map depicting percent overlap at colocalization sites between each hematopoietic trait pair. In each box, the number of
sites where the row-specified trait and column-specified trait colocalized was normalized to the total number of colocalization sites for the ‘row
trait’. For this reason, the heat map is asymmetric. Color scale represents the proportion of loci where each pair of traits colocalized. To the left of
the heat map, hierarchical clustering accurately segregated red cell, platelet, and white cell traits in general agreement with blood lineage
relationships. c Degree of colocalization (% overlap) generally reflects genetic correlation between trait pairs. Shaded area depicts the 95%
prediction interval, with gray line at mean. Colored spots highlight trait pairs outside the 95% prediction interval that included two platelet traits
(purple) or two red blood cell traits (red). Exemplary trait pairs are circled. Eo % gran, percentage of granulocytes that are eosinophils. Neut %
gran, percentage of granulocytes that are neutrophils. Plt, platelet count. Mpv, mean platelet volume. Mchc, mean corpuscular hemoglobin
content. Mcv, mean red cell corpuscular volume. Neut, neutrophil count. Neut+eo, total neutrophil plus eosinophil count
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false discovery rate < 5% [5]. Colocalization sites speci-
fied 3.6 ± 2.3 traits (mean ± SD), with 22% of the loci
(259 in total) representing highly pleiotropic sites
where 6 or more traits colocalized (Fig. 1a). Hence, a
substantial proportion of interrogated loci (66%) im-
pacted multiple hematopoietic traits.
To investigate trait relationships, we constructed a

heat map to depict the percentage colocalization be-
tween trait pairs (Fig. 1b). Hierarchical clustering of
colocalization results reflected blood lineage relation-
ships, with platelet, erythroid, and white blood cell traits
generally clustering as expected.
We then asked whether our colocalization findings

mirrored genetic correlation between hematopoietic
traits [26]. Indeed, more closely related traits colocalized
more often (Fig. 1c, r2 = 0.91 by quadratic regression
with least squares fit). Directly correlated (e.g.,

‘neutrophil count’ and ‘neutrophil + eosinophil count’;
‘granulocyte count’ and ‘myeloid white blood cell
count’), and inversely correlated trait pairs (e.g., ‘eosino-
phil percent of granulocytes’ and ‘neutrophil percent of
granulocytes’; ‘lymphocyte percent’ and ‘neutrophil per-
cent’), essentially always colocalized.
Several trait pairs fell outside the 95% prediction inter-

val. The majority of these trait pairs included two traits
from the same hematopoietic lineage (e.g., ‘mean platelet
volume’ and ‘platelet count’; ‘mean corpuscular
hemoglobin concentration’ and ‘mean red cell volume’)
(Fig. 1c). Lineage-critical loci or genes might be expected
to have more significant influence on these trait pairs than
would be captured by genetic correlation measurement.
In sum, these results validated the notion that colocali-

zation analysis results would mirror genetic correlation,
and reflect known relationships among hematopoietic

Fig. 2 Genetic colocalization reveals shared regulatory loci and implicates causal genes underlying genetic associations between hematopoietic
traits and disease end-points. a Number of traits identified at each colocalization site (max = 24). b Heat map depicting percent overlap at
colocalization sites between each trait pair. In each box, the number of sites where the row-specified trait and column-specified trait colocalized
was normalized to the total number of colocalization sites for the ‘row trait’. For this reason, the heat map is asymmetric. c Hierarchical clustering
based on colocalization results associates related traits, which are color coded according to the key in part b. d Degree of colocalization (%
overlap) reflects genetic correlation between trait pairs. Shaded area depicts the 95% prediction interval, with gray line at mean. Exemplary trait
pairs are circled. Depsx, depressive symptoms. Rbc, red blood cell count. Baso, basophil cell count. Brca, breast cancer. Scz, schizophrenia. Eo%,
eosinophil percentage of white blood cells (‘eo_p’) or granulocytes (‘eo_p_gran’)
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lineages and traits. Interestingly, trait pairs without gen-
etic correlation frequently had some degree of colocali-
zation (Fig. 1c, y-intercept = 0.077 ± 0.123). This likely
reflects horizontal pleiotropy, in which a given locus and
related gene(s) impact traits that are not biologically re-
lated. In the context of hematopoietic development, our
derived estimate of chance colocalization between unre-
lated traits is therefore ~ 8%.
Given high genetic concordance between some blood

traits, we also performed colocalization analysis after re-
moving traits with genetic correlation (rg) > 0.8. This ex-
periment, using 17 quantitative hematopoietic traits,
identified 946 colocalization sites for 2 or more traits with
a PPFC > 0.7, representing 35% of interrogated loci (Add-
itional file 1: Table S3 and Additional file 2: Figure S1).
Compared with our analysis of 34 blood traits, the number
of traits that colocalized at each locus was reduced as ex-
pected (2.6 ± 1.3, mean ± SD). Importantly, both analyses
identified similar sites and trait relationships. Below, we
focus on findings from more comprehensive colocaliza-
tion experiments using 34 traits.

A genetic colocalization strategy to identify loci related to
hematopoietic development
We leveraged our colocalization results to identify quan-
titative trait loci (QTLs) related to specific hematopoietic
lineages and cell types. For example, loci where white
blood cell (WBC), red blood cell (RBC), and platelet
counts colocalize might indicate developmental perturb-
ation in hematopoietic stem and progenitor cells (HSCs).
We therefore looked for sites of colocalization between
these quantitative blood traits, and identified overlapping
genome-wide significant QTLs. Indeed, QTLs related to
these loci pointed to known HSC regulatory genes
SH2B3 [30, 31], ATM [32], and HBS1L-MYB [33] (Add-
itional file 1: Table S4).
We also parsed loci identified by colocalization to spe-

cifically affect platelet or red cell traits, with the hypoth-
esis that these loci would relate to terminally
differentiated blood cell biology. There were 439 sites
nominated by colocalization analysis specifically for red
cell traits (RBC, HCT, MCV, MCH, MCHC, RDW) but
not platelet traits or WBC count. These sites, or highly
linked loci, influenced expression of 614 genes (123
genes in whole blood, Additional file 1: Table S5).
Among genes regulated in whole blood were RHD [34],
HBZ [35], and LPL [36], which can influence erythroid
stability and/or lifespan, as well as SP1 [37], ESR2 [38],
and FANCA [39], which impact erythropoiesis. Gene
ontology (GO) analysis [40] of these gene sets revealed
significant enrichment of genes related to cellular meta-
bolic processes (Additional file 1: Table S6). A similar
analysis of platelet trait-restricted sites (PLT, PCT, MPV,
PDW), including highly linked loci, identified 270 sites

impacting expression of 399 genes (77 genes in whole
blood, Additional file 1: Table S7). These genes included
STIM1 [41] and C4BPA [42], which impact platelet re-
activity and/or thrombosis risk, as well as MASTL [43]
and TPM4 [44], which influence megakaryo-
thrombopoiesis. Pathway analysis of these genes revealed
enrichment of apoptotic cell clearance and metabolic
processes (Additional file 1: Table S8). Complement-
mediated apoptotic cell clearance mechanisms are in-
deed important for regulating platelet count [45].
To our surprise, pathways analyses of red cell and

platelet lineage-restricted colocalization QTLs were not
enriched for processes ascribed to hematopoiesis,
erythropoiesis, or megakaryopoiesis. This suggests that
genes and processes linked to terminal red cell and
platelet traits are largely impacted by cellular function
and reactivity, rather than developmental perturbations.
With notable exceptions whereby causal loci do impact
hematopoietic development (e.g., [30, 46–48]), our find-
ings suggest the many of the identified genes and factors
may not impact hematopoiesis per se. In fact, our results
indicate that blood cell-extrinsic properties (e.g., apop-
totic cell clearance mechanisms) frequently impact
quantitative hematopoietic traits. In sum, our findings
reveal a multitude of known variants and genes, as well
as novel QTLs and related genes that warrant further
study.

Illuminating hematopoietic contributions and associations
with disease phenotypes
We then applied an extended colocalization analysis to
summary statistics for 70 total hematopoietic, cardiovas-
cular, autoimmune, cancer, and neuropsychiatric traits
(Additional file 1: Table S1 [2, 6–21]). Variations in size
and power across these studies would be expected to influ-
ence detection of trait associations and/or colocalizations.
Following allele harmonization, colocalization analysis using
9852 genome-wide significant loci from the NHGRI-EBI
database [22] and blood traits [2] revealed a total of 2123
sites (22%) wherein two or more traits colocalized with a
PPFC > 0.7 (Additional file 1: Table S9). The average num-
ber of traits that colocalized at a given site was 3.3 ± 2.4
(mean ± SD), with 83 loci identified as a ‘very pleiotropic’
colocalization site for ≥9 traits (Fig. 2a). Known trait rela-
tionships were recapitulated among these colocaliza-
tion sites (e.g. bipolar disorder and schizophrenia; Fig.
2b-d). These results again reflected genetic correlation
between traits, estimating a small degree of pleiotropy
(~ 4%) absent genetic correlation (Fig. 2d, r2 = 0.83, y-
intercept = 0.037 ± 0.117).
Restricted analysis of 45 traits with genetic correlation

(rg) < 0.8 identified 1670 colocalization sites, with 2.6 ±
1.3 (mean ± SD) colocalizing traits per locus (Additional
file 1: Supplemental Table S10 and Additional file 2:
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Figure S2). This latter experiment identified similar loci
and trait relationships as our 70-trait analysis. In the
interest of providing as comprehensive a list of results as
possible, the findings discussed below are derived from
joint analysis of 70 traits.
Mendelian randomization analyses, which use genetic

variants to estimate causal effects of a genetically-
determined exposure of interest on an outcome, have
established relationships between blood traits and some
disease phenotypes [2]. Despite holding significant thera-
peutic potential, most causal loci and genes underlying
these associations are unknown. Our results reveal puta-
tively causal loci, related genes, and molecular pathways
related to these trait pairs (Additional file 1: Tables S11-
S17). For example, whole blood QTLs related to genes
known to affect asthma pathogenesis or severity (e.g.
IL18R [49–51], ZFP57 [52], BTN3A2 [53], NDFIP1 [54],
SMAD3 [55], CLEC16A [56], and TSLP [57]) were asso-
ciated with colocalization sites for asthma and neutro-
phil, eosinophil, monocyte and/or lymphocyte traits
(Additional file 1: Tables S11-S14). Similarly, QTLs for
genes linked to coronary artery disease risk (e.g. LPL
[58], SREBF1 [59], GIT1 [60, 61], SKIV2L [61],
MAP3K11/MLK3 [62]) were associated with colocaliza-
tion sites linking coronary artery disease with mean
platelet volume, lymphocyte, and/or reticulocyte counts
(Additional file 1: Tables S15-S17). Other identified
genes associated with colocalization loci represent novel
findings that could enhance understanding of the patho-
physiology and/or treatment of these diseases, although
functional validation remains necessary.
Our findings also revealed novel trait associations. For

example, eosinophil percentage and eczema colocalized
more often than predicted based on their genetic correl-
ation (Fig. 2d). These traits are clinically related [63] and
colocalized at 13 loci (Additional file 1: Table S18), includ-
ing sites near genes that regulate eosinophil biology (ETS1
[64, 65] and ID2 [65]) and autoimmune disease
(KIAA1109 [66–68] and TAGAP [69]). These colocaliza-
tion sites also indicated potential regulation of unexpected
genes that warrant validation (SNX32, ZNF652, KLC2).
We reasoned that Mendelian randomization analysis

might provide additional support for this trait relation-
ship. However, we did not necessarily expect significant
genome-wide association, given that our colocalization
analysis highlighted a fairly restricted subset of loci. By
Mendelian randomization, we identified a 27% increased
risk of eczema for each 1 standard deviation increase in
eosinophil percentage by inverse variance weighted
method (95% confidence interval = 9–48%, P = 0.002), al-
though the association did not reach statistical signifi-
cance for weighted median or MR-Egger methods
(Additional file 1: Tables S19-S20). This analysis did not
show evidence of horizontal pleiotropy (MR-Egger

intercept P = 0.87) and the instrumental variable was not
subject to weak instrument bias (F-statistic = 132, Add-
itional file 1: Table S19) [28]. Although these findings
would not constitute strong independent evidence of
causality alone, they did lend some additional support to
the relationship identified through colocalization analysis.
We also identified 5 colocalization sites for red blood

cell count, basophil count, and depressive symptoms,
which exceeded expectations based on genetic correl-
ation (Fig. 2d and Additional file 1: Table S21). These
colocalization sites included eQTLs for YPEL3, which is
highly expressed in whole blood [23] and affects neural
development [70], as well as PRSS16, which impacts im-
munologic development [71] and has been implicated in
multiple GWAS for depression phenotypes [72]. While
blood phenotypes may impact depressive symptoms, it is
also possible that these eQTLs and genes have separate
functions in hematopoietic and brain tissues. Mendelian
randomization experiments did not identify statistically
significant causal relationships for red blood cell count
or basophil count on depressive symptoms (Additional
file 1: Table S19 and Additional file 1: Tables S22-S23),
consistent with low genome-wide correlation (Fig. 2d).
Future GWAS for depressive symptoms with increased
size and power may better elucidate causal relationships,
if such relationships exist.
In addition, we identified trait relationships beyond

hematologic parameters, including 4 colocalization sites for
breast cancer and schizophrenia (Fig. 2d and Additional file
1: Supplemental Table S24). Recent epidemiologic [73] and
genetic [74] studies have linked schizophrenia and breast
cancer risks. Our results nominate TCF7L2 [75, 76], BCAR1
[77], and NEK10 [78, 79] as potential targets to help explain
this association.

Colocalization at coding variation sites identifies clinically
relevant trait associations
We reasoned that colocalizing sites could help explain un-
expected or pleiotropic effects of gene perturbations.
Here, we focused on missense variation in coding regions
to establish direct locus-gene relationships. This approach
identified clinically relevant cross-trait associations.
Variation in rs2476601 causes a missense mutation in

PTPN22 (Cys1858Thr). This site has been linked to
autoimmunity and Crohn’s disease phenotypes, but not
ulcerative colitis [80]. Immune response dysregulation,
including WBC biology, contributes to the Crohn’s
phenotype [80]. We identified shared genetic signal for
increased Crohn’s disease risk and decreased WBC
count, but not ulcerative colitis, at this location (Add-
itional file 1: Table S25). This finding supports a specific
clinical association with Crohn’s disease for the PTPN22
Cys1858Thr mutation.
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Mean platelet volume (MPV) variation has previously
been linked to altered risk of coronary artery disease, but
understanding of genes underlying this association is lack-
ing [2]. We identified colocalizing signals for increased
coronary artery disease risk and increased MPV in a mis-
sense coding mutation for ZC3HC1/NIPA (Additional file
1: Table S15). This variant causes an Arg >His missense
change in several NIPA isoforms. NIPA impacts heart dis-
ease risk and cell cycle regulation [81]. Further studies are
needed to understand how this gene might coordinately
impact platelet biology and coronary artery disease risk, as
well as other traits linked to this locus.
Altered lipid and cholesterol levels have been clinically

observed in patients with hereditary hemochromatosis due
to mutations in High FE2+ (‘high iron’, HFE) [82]. Patients
with hemochromatosis have lower cholesterol levels than
normal, although an open question is whether this observa-
tion is due to manifestations of disease or HFE deficiency it-
self. Our data show that individuals heterozygous for the
Cys282Tyr allele have lower reticulocyte count and higher
total cholesterol and low density lipoprotein levels (Add-
itional file 1: Table S26). This suggests that HFE haploinsuf-
ficiency increases cholesterol and lipid levels, and that
decreased cholesterol in patients with hemochromatosis oc-
curs secondary to myriad tissue manifestations of clinically
significant hemochromatosis or iron overload [83].
Finally, we hypothesized that our analysis might also help

predict off-target effects of novel therapeutic agents. For ex-
ample, tumor necrosis factor (TNF)-related apoptosis indu-
cing ligand (TRAIL) is a promising novel chemotherapeutic
target [84]. A mutation in the TRAIL 3′ UTR was re-
cently associated with decreased triglyceride levels [85].
Targeted analysis of this site identified colocalizing signals
for altered myeloid and platelet indices (Additional file 1:
Table S27). It will be interesting to see whether these traits
are affected in upcoming clinical trials targeting TRAIL.

Discussion
Genetic colocalization approaches have proven a power-
ful tool in revealing pleiotropic effects of certain loci on
multiple traits [3, 4]. Here, we have adapted the colocali-
zation methodology to reveal sites and genes related to
specific cell stages in hematopoietic development, and
identify relevant trait relationships between blood traits
and human disease end-points. We present what we be-
lieve to be a minimal estimate of these associations,
given the assumption of at most one causal locus per
genomic region and our conservative threshold for colo-
calization (PPFC > 0.7). This threshold revealed high-
confidence targets, although future gene discovery stud-
ies might instead use a more relaxed threshold (e.g.,
PPFC > 0.5) to enable a more encompassing set of loci.
GWAS have linked thousands of genomic sites with

blood trait variation [2]. The biology related to each site

could relate to developmental hematopoiesis, as has been
shown for CCND3 [46], CCNA2 [47], SH2B3 [30], and
RBM38 [48]. Alternatively, biology related to GWAS sites
might impact terminally differentiated cell reactivity or
turnover. For example, altered platelet reactivity can affect
quantitative platelet traits [86, 87]. Cellular validation ex-
periments might be streamlined if one could better parse
relevant sites, genes and developmental stages based on
GWAS information. Gene targets presented herein repre-
sent one approach to such a computational pipeline, and
are orthogonal to previously published findings based on
accessible chromatin patterns during hematopoietic devel-
opment [1]. Future studies combining these computational
modalities might be useful for those interested in evaluating
specific genes or loci in blood progenitor biology.
Our expanded analysis of 70 human traits recapitulated

known trait relationships between blood traits and human
disease phenotypes, and identified sites with potential
translational relevance. Variations in GWAS size and
power may have limited our ability to identify certain trait
associations. We anticipate that increasingly well-powered
GWAS will likely to expand the catalogue of colocaliza-
tions in the future. Larger studies may also reveal new
causal genetic associations in Mendelian randomization
analyses, although trait relationships need not meet
genome-wide significance to be biologically important. In
fact, each colocalization site identified in our analysis
could be viewed as a hypothesis-generating site for future
cellular validation. Understanding trait relationships
through colocalization analysis may also be useful for mul-
tivariable Mendelian randomization and/or mediation
analyses designed to reveal causal biological mechanisms.
Understanding how missense coding mutations impact

phenotypes offers the most direct relationship between
genes and traits. An adaptation of our colocalization
strategy might be employed to predict off-target effects
of gene modulation, help understand the cellular basis of
disease, or investigate unexpected cellular developmental
relationships (e.g., sites related to multiple mesoderm-
derived tissues might triangulate to early mesodermal
biology). We anticipate an expanded array of such tar-
gets could be revealed with larger, trans-ethnic GWAS.

Conclusion
In an extensive genetic colocalization analysis, we have
identified loci, genes and related pathways related to
hematopoietic development. Further, our colocalization
results identified loci relating 70 hematopoietic, cardio-
vascular, autoimmune, neuropsychiatric and cancer phe-
notypes. This repository of associations will be useful for
mechanistic studies aimed at understanding biological
links between phenotypes, for developing novel thera-
peutic strategies, and for predicting off-target effects of
small molecule and gene therapies.
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Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12920-020-00742-9.

Additional file 1: Table S1. Genome wide association study summary
statistics used in our analysis. The trait(s) queried are shown, along with
study Pubmed identification number (PMID). UK Biobank studies can be
found using the link provided. Total European sample sizes, including
cases and controls where appropriate, are shown for each study. PMIDs
for data downloaded from the NHGRI-EBI GWAS Catalog can be found at
the bottom of this table. Table S2. Traits and SNPs identified by colocali-
zation analysis [5] of 34 hematopoietic traits. All identified sites are shown
in this table. Candidate SNPs are indicated as chr:pos. The posterior prob-
ability of colocalization, regional (genomic) probability of colocalization,
and posterior probability explained at each locus are indicated. Table
S3. Traits and SNPs identified by colocalization analysis [5] of 17
hematopoietic traits with genetic correlation (rg) < 0.8. All identified sites
are shown in this table. Candidate SNPs are indicated as chr:pos. The pos-
terior probability of colocalization, regional (genomic) probability of colo-
calization, and posterior probability explained at each locus are indicated.
Table S4. ‘Hematopoietic stem cell’ sites at which white blood cell
(wbc), red blood cell (rbc), and platelet (plt) counts colocalize. Sites were
specified by chromosome and position. The rsID(s) associated with each
site are shown. Gene symbols for the nearest gene, all eQTLs, all eQTLs in
whole blood, and all sQTLs (sQTLseekeR and Altrans methods) are shown
in the indicated columns related to the indicated SNP (rsID) and any SNPs
in high linkage disequilibrium (r2 > 0.9). Table S5. ‘RBC trait only’ sites at
which only the indicated red blood cell traits colocalized, excluding plate-
let or white blood cell traits. Gene symbols for the nearest gene, all
eQTLs, all eQTLs in whole blood, and all sQTLs (sQTLseekeR and Altrans
methods) are shown in the indicated columns related to the indicated
SNP (rsID) and any SNPs in high linkage disequilibrium (r2 > 0.9). Rbc, red
blood cell count. Hct, hematocrit. Mcv, mean red cell corpuscular volume.
Rdw, red cell distribution width. Table S6. Gene ontology pathway ana-
lysis of genes regulated by eQTLs linked to ‘RBC trait only’ sites. Shown
are pathways with p < 0.05 by Binomial test using Bonferroni correction
for multiple testing. Table S7. ‘Platelet trait only’ sites at which only the
indicated platelet traits colocalized, excluding red blood cell or white
blood cell traits. Gene symbols for the nearest gene, all eQTLs, all eQTLs
in whole blood, and all sQTLs (sQTLseekeR and Altrans methods) are
shown in the indicated columns related to the indicated SNP (rsID) and
any SNPs in high linkage disequilibrium (r2 > 0.9). Plt, platelet count. Pct,
platelet-crit. Mpv, mean platelet volume. Pdw, platelet distribution width.
Table S8. Gene ontology pathway analysis of genes regulated by eQTLs
linked to ‘platelet trait only’ sites. Shown are pathways with p < 0.05 by
Binomial test using Bonferroni correction for multiple testing. Table S9.
Traits and SNPs identified by colocalization analysis [5] of 70 human traits.
All identified sites are shown in this table. Candidate SNPs are indicated
as chr:pos. The posterior probability of colocalization, regional (genomic)
probability of colocalization, and posterior probability explained at each
locus are indicated. Table S10. Traits and SNPs identified by colocaliza-
tion analysis [5] of 45 human traits with genetic correlation (rg) < 0.8. All
identified sites are shown in this table. Candidate SNPs are indicated as
chr:pos. The posterior probability of colocalization, regional (genomic)
probability of colocalization, and posterior probability explained at each
locus are indicated. Table S11. Colocalization sites for lymphocyte count
(lymph) and Asthma. Gene symbols for the nearest gene, all eQTLs, all
eQTLs in whole blood, and all sQTLs (sQTLseekeR and Altrans methods)
are shown in the indicated columns related to the indicated SNP (rsID)
and any SNPs in high linkage disequilibrium (r2 > 0.9). Table S12. Coloca-
lization sites for neutrophil count (neut) and Asthma. Gene symbols for
the nearest gene, all eQTLs, all eQTLs in whole blood, and all sQTLs
(sQTLseekeR and Altrans methods) are shown in the indicated columns
related to the indicated SNP (rsID) and any SNPs in high linkage disequi-
librium (r2 > 0.9). Table S13. Colocalization sites for eosinophil percent-
age of white blood cells (eo%) and Asthma. Gene symbols for the
nearest gene, all eQTLs, all eQTLs in whole blood, and all sQTLs (sQTLsee-
keR and Altrans methods) are shown in the indicated columns related to
the indicated SNP (rsID) and any SNPs in high linkage disequilibrium
(r2 > 0.9). Table S14. Colocalization sites for monocyte count (mono) and

Asthma. Gene symbols for the nearest gene, all eQTLs, all eQTLs in whole
blood, and all sQTLs (sQTLseekeR and Altrans methods) are shown in the
indicated columns related to the indicated SNP (rsID) and any SNPs in
high linkage disequilibrium (r2 > 0.9). Table S15. Colocalization sites for
mean platelet volume (mpv) and coronary artery disease (cad). Gene sym-
bols for the nearest gene, all eQTLs, all eQTLs in whole blood, and all
sQTLs (sQTLseekeR and Altrans methods) are shown in the indicated col-
umns related to the indicated SNP (rsID) and any SNPs in high linkage
disequilibrium (r2 > 0.9). Table S16. Colocalization sites for reticulocyte
count (ret) and coronary artery disease (cad). Gene symbols for the near-
est gene, all eQTLs, all eQTLs in whole blood, and all sQTLs (sQTLseekeR
and Altrans methods) are shown in the indicated columns related to the
indicated SNP (rsID) and any SNPs in high linkage disequilibrium (r2 > 0.9).
Table S17. Colocalization sites for lymphocyte count (lymph) and coron-
ary artery disease (cad). Gene symbols for the nearest gene, all eQTLs, all
eQTLs in whole blood, and all sQTLs (sQTLseekeR and Altrans methods)
are shown in the indicated columns related to the indicated SNP (rsID)
and any SNPs in high linkage disequilibrium (r2 > 0.9). Table S18. Coloca-
lization sites for eosinophil percentage of white blood cells (eo%) and Ec-
zema. Gene symbols for the nearest gene, all eQTLs, all eQTLs in whole
blood, and all sQTLs (sQTLseekeR and Altrans methods) are shown in the
indicated columns related to the indicated SNP (rsID) and any SNPs in
high linkage disequilibrium (r2 > 0.9). Table S19. Mendelian
randomization analysis results for the indicated exposure and outcome
traits. Outcomes reflect increased risk of eczema (odds ratio) or depres-
sive symptoms (in standard deviation units) per 1 standard deviation in-
crease in exposure by inverse variance weighted, weighted median, and
MR-Egger methods. Factors used to calculate genetic variance explained
(R2 [29]) and instrument strength (F-statistics [28]) are shown to the right
of the primary results. Instruments with F-statistics > 10 were considered
devoid of weak instrument bias [28]. Table S20. Instrumental variable
data for MR experiments estimating effects of eosinophil percentage of
white blood cells (eo%) on Eczema. The rsID (hg19), chromosome, pos-
ition, effect allele, other (non-effect) allele, effect sizes and standard errors
are shown for each SNP. Table S21. Colocalization sites for red blood
cell count (rbc), basophil cell count (baso) and depressive symp-
toms (DepSx). Gene symbols for the nearest gene, all eQTLs, all eQTLs in
whole blood, and all sQTLs (sQTLseekeR and Altrans methods) are shown
in the indicated columns related to the indicated SNP (rsID) and any SNPs
in high linkage disequilibrium (r2 > 0.9). Table S22. Instrumental variable
data for MR experiments estimating effects of red blood cell count (rbc)
on depressive symptoms (DepSx). The rsID (hg19), chromosome, position,
effect allele, other (non-effect) allele, effect sizes and standard errors are
shown for each SNP. Table S23. Instrumental variable data for MR exper-
iments estimating effects of basophil cell count (baso) on depressive
symptoms (DepSx). The rsID (hg19), chromosome, position, effect allele,
other (non-effect) allele, effect sizes and standard errors are shown for
each SNP. Table S24. Colocalization sites for breast cancer and schizo-
phrenia. Gene symbols for the nearest gene, all eQTLs, all eQTLs in whole
blood, and all sQTLs (sQTLseekeR and Altrans methods) are shown in the
indicated columns related to the indicated SNP (rsID) and any SNPs in
high linkage disequilibrium (r2 > 0.9). Table S25. Analysis of a coding
variant (rs2476601) that causes a missense mutation in PTPN22 shows sig-
nificant colocalization with white blood cell (wbc) count and Crohn’s dis-
ease. The effect sizes and direction (+/−) are shown. Table S26.
Colocalization analysis for a coding variant (rs1800562) in HFE, mutations
in which cause hereditary hemochromatosis. Effects on total cholesterol
(TC), low density lipoprotein (LDL), and red blood cell traits (high light
scatter reticulocyte count, hlr; high light scatter reticulocyte percentage,
hlr_p; mean corpuscular hemoglobin concentration, mchc; red cell distri-
bution width, rdw; reticulocyte count, ret; reticulocyte percentage, ret_p),
with significant colocalization signal at this locus, are shown. Table S27.
Colocalization analysis for a coding variant (rs17600346) in Tumor necrosis
factor (TNF)-related apoptosis inducing ligand (TRAIL, also known as
TNF10), based on targeted analysis of the 50 kb region surrounding this
site. Effects on colocalized white blood cell (granulocyte percentage of
myeloid white blood cells, gran_p_myeloid_wbc; monocyte percentage,
mono_p) and platelet traits (platelet-crit, pct; platelet count, plt) are
shown.
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Additional file 2: Figure S1. Colocalization between blood traits with
limited genetic relatedness reflects hematopoietic lineage relationships.
The 17 traits analyzed were pruned for genetic correlation (rg) < 0.8. a
Number of traits identified at each colocalization site (max = 12). b Heat
map depicting percent overlap at colocalization sites between each
hematopoietic trait pair. In each box, the number of sites where the row-
specified trait and column-specified trait colocalized was normalized to
the total number of colocalization sites for the ‘row trait’. For this reason,
the heat map is asymmetric. Color scale represents the proportion of loci
where each pair of traits colocalized. To the left of the heat map, hier-
archical clustering accurately segregated red cell, platelet, and white cell
traits in general agreement with blood lineage relationships. c Degree of
colocalization (% overlap) generally reflects genetic correlation between
trait pairs. Shaded area depicts the 95% prediction interval, with gray line
at mean. Colored spots highlight trait pairs outside the 95% prediction
interval that included 2 platelet traits (purple) or 2 red blood cell traits
(red). Exemplary trait pairs are labeled. Plt, platelet count. Mpv, mean
platelet volume. Pdw, platelet distribution width. Rdw, red blood cell dis-
tribution width. Mchc, mean corpuscular hemoglobin content. Mcv, mean
red cell corpuscular volume. Figure S2. Genetic colocalization among
traits with limited genetic correlation reveals shared regulatory loci and
implicates causal genes underlying genetic associations between
hematopoietic traits and disease end-points. The 45 traits analyzed were
pruned for genetic correlation (rg) < 0.8. a Number of traits identified at
each colocalization site (max = 14). b Heat map depicting percent overlap
at colocalization sites between each trait pair. In each box, the number of
sites where the row-specified trait and column-specified trait colocalized
was normalized to the total number of colocalization sites for the ‘row
trait’. For this reason, the heat map is asymmetric. c Hierarchical clustering
based on colocalization results associates related traits, which are color
coded according to the key in part b. d Degree of colocalization (% over-
lap) reflects genetic correlation between trait pairs. Shaded area depicts
the 95% prediction interval, with gray line at mean. Exemplary trait pairs
are circled. Depsx, depressive symptoms. Rbc, red blood cell count. Baso,
basophil cell count. Brca, breast cancer. Scz, schizophrenia. eo%, eosino-
phil percentage of white blood cells.
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