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Abstract

Background: Left-sided heart failure (HF) is documented as a key prognostic factor in HF. However, the relative
molecular mechanisms underlying left-sided HF is unknown. The purpose of this study is to unearth significant
modules, pivotal genes and candidate regulatory components governing the progression of left-sided HF by
bioinformatical analysis.

Methods: A total of 319 samples in GSE57345 dataset were used for weighted gene correlation network analysis
(WGCNA). ClusterProfiler package in R was used to conduct functional enrichment for genes uncovered from the
modules of interest. Regulatory networks of genes were built using Cytoscape while Enrichr database was used for
identification of transcription factors (TFs). The MCODE plugin was used for identifying hub genes in the modules
of interest and their validation was performed based on GSE1869 dataset.

Results: A total of six significant modules were identified. Notably, the blue module was confirmed as the most
crucially associated with left-sided HF, ischemic heart disease (ISCH) and dilated cardiomyopathy (CMP). Functional
enrichment conveyed that genes belonging to this module were mainly those driving the extracellular matrix-
associated processes such as extracellular matrix structural constituent and collagen binding. A total of seven
transcriptional factors, including Suppressor of Zeste 12 Protein Homolog (SUZ12) and nuclear factor erythroid 2 like
2 (NFE2L2), adrenergic receptor (AR), were identified as possible regulators of coexpression genes identified in the
blue module. A total of three key genes (OGN, HTRA1 and MXRA5) were retained after validation of their prognostic
value in left-sided HF. The results of functional enrichment confirmed that these key genes were primarily involved
in response to transforming growth factor beta and extracellular matrix.

(Continued on next page)

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: went19840201@163.com
1Department of Cardiology, The First Affiliated Hospital of Nanchang
University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi province,
China
2Hypertension Research Institute of Jiangxi Province, Nanchang 330006,
China
Full list of author information is available at the end of the article

Zhou et al. BMC Medical Genomics           (2020) 13:93 
https://doi.org/10.1186/s12920-020-00750-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-020-00750-9&domain=pdf
http://orcid.org/0000-0003-2588-8942
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:went19840201@163.com


(Continued from previous page)

Conclusion: We uncovered a candidate gene signature correlated with HF, ISCH and CMP in the left ventricle,
which may help provide better prognosis and therapeutic decisions and in HF, ISCH and CMP patients.

Keywords: Weighted gene co-expression network analysis, Ischemic heart disease, Dilated cardiomyopathy, Heart
failure

Background
Cardiac arrest, the inability of the heart to perform its
pumping function, is a major cause of death and a public
health problem [1, 2]. The incidence of cardiac arrest is
growing worldwide, especially in the vast majority of de-
veloped countries [3]. Left-sided heart failure (HF), also
known as left ventricular failure, is the common element
associated with heart disorders leading to eventual final
heart failure [4]. Greater knowledge of the mechanisms
involved in the physio-pathogenesis of the left ventricu-
lar failure could allow early identification of patients at
risk and timely management, which could reduce the
socio-economic damages associated with cardiac arrest.
Advances in molecular biology and especially the advent

of latest generation sequencing platforms have allowed the
accumulation of a large amount of data on the expression of
genes regulating the initiation and development of various
diseases [5–8]. Correct analysis of these data could help us
to uncover the underlying biological functions of genes in
different diseases [9, 10]. Regarding cardiac arrest, a number
of biomarkers have been discovered in previous studies [11–
13]. For example, myoglobin [12], creatine kinase MB isoen-
zyme (CK-MB) [14], and troponins [15] have been used as
biomarkers to assess myocardial pain and diagnose postop-
erative myocardial infarction. Through transcriptomic ana-
lysis, thousands of genes, screened by differential gene
expression analysis, have also been suggested as biological
markers for cardiac arrest [16]. However, our knowledge on
biomarkers especially associated with left ventricular failure
is limited. Previous studies based on differential expression
analysis have allowed the discovery of key genes between
different presentations leading to HF [17, 18], but their ap-
plication requires experimental validation. However, before
any experimental validation, it is essential to do a prelimin-
ary work of accurate selection of all the genes very poten-
tially associated with cardiac arrest. This is possible thanks
to bioinformatics approaches which are available today.
The WGCNA approach is a bioinformatics technique

that allows the extraction and grouping into modules of
a list of genes involved in a given biological process [19].
This technique has been used for the credible discovery
of a number of genes associated with various diseases
and their sub-characteristics [20–23]. WGCNA allows
the correlative identification of genes with a similar ex-
pression profile to a given characteristic trait. WGCNA
has been used to screen genes for different processes in

cardiovascular disease such as coronary artery disease
[24], congestive HF (CHF) and valvular heart disease
(VHD). The use of WGCNA for the discovery of bio-
markers related to cardiac arrest after acute myocardial
infarction (AMI) has also been reported in a previous
study [25] which identified six key genes with a great
prognostic value for the progression of HF post-AMI.
However, more studies are needed to dissect and de-
cipher the genes involved in left ventricular failure.
Thus, in the present study, we conducted a WGCNA

data mining in order to uncover key genes potentially in-
volved in the pathogenesis and the progression of left
ventricular failure. Our ultimate goal is to make available
a list of biomarkers that could guide the identification of
patients at risk of left ventricular failure and the design
of appropriate management strategies.

Methods
Data sources and data preprocessing
All of the expression datasets used in the present study
were obtained from the Gene Expression Omnibus
(GEO) datasets (https://www.ncbi.nlm.nih.gov/gds). The
data for WGCNA construction was the GSE57345 data-
set containing 319 samples of 96 patients with ischemic
heart disease (ISCH) and 84 patients with dilated cardio-
myopathy (CMP) [26]. The platform used for the acqui-
sition of this data was GPL11532 platform. The
validation data was the GSE1869 dataset based on the
GPL96 platform and containing samples from six non-
HF patients and patients with HF after AMI [27]. The R
library “affy” was employed for expression data prepro-
cessing with the Robust Multichip Average (RMA) in
the R 3.3.1 software. Following the correction of back-
ground effect, quantile normalization and log2-
transformation, the datasets were used for subsequent
analyses [28].

Construction of coexpression modules
The WGCNA mining of gene modules was achieved
with the R library WGCNA [29]. The standardized con-
nectivity (Z.K) approach was used for identifying outliers
suggested by WGCNA authors, with the threshold Z. K
score < − 2 as suggested by the WGCNA authors [30].
The gene co-expression similarity Sxy among genes x
and y was calculated using the formula Sxy = |cor(x, y)|.
The correlation of genes was estimated as follows: axy =

Zhou et al. BMC Medical Genomics           (2020) 13:93 Page 2 of 13

https://www.ncbi.nlm.nih.gov/gds


Fig. 1 WGCNA based on GSE57345 dataset. a Cluster tree and trait heatmap of 319 samples in GSE57345 dataset. b Scale-free fit index (left) and
average connectivity (right) for determining the threshold powers (β)

Fig. 2 Identification of gene correlation modules. a The cluster tree of the common genes in GSE57345 dataset. Each gene was represented by
one branch and seven modules were represented by different color in the Figure. b Top: Hierarchical clustering dendrogram; bottom: eigengene
adjacency heatmap. c Module-trait heatmap of correlation amongst the clinical traits of HF and identified modules. d Gene significance in the
module identified as associated with HF. e Gene significance in the module identified as associated with ISCH. f Gene significance in the module
identified as associated with CMP
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|Sxy|β. By using the power gradient method, scale inde-
pendence as well as mean connectivity were subse-
quently analyzed. An adequate β value was picked out
once the degree of independence was higher than 0.85
[29] for generating a scale-free network. Next, the mod-
ules were generated using hierarchical clustering based
on average linkage. The module eigengene (ME) was then
determined and the module-trait correlations were com-
puted by estimating the correlation among MEs and clin-
ical traits for identifying modules relevant to each clinical
trait. The module significance (MS) and the average abso-
lute gene significance (GS) were calculated for evaluating
the correlation of overall module genes with the clinical
trait. GS is the log10 transformation of P values obtained
from the linear correlation model based on patient clinical
features and gene expression. For the determination of
candidate hub genes, the module connectivity (module
membership (MM) ≥median, and gene significance (GS) ≥
median [31]) was applied for selecting the most significant
module genes for network construction and visualization
in Cytoscape. Next, the MCODE plugin in Cytoscape was
used for subnetwork extraction using the following set-
ting: node score cut-off ≥0.2, degree cut-off ≥2, max
depth = 100 and K-core ≥2.

Functional enrichment analysis of genes
The functional enrichment was analyzed by the R library
ClusterProfiler [32]. Terms with an enrichment P value
of < 0.05 were considered as meaningful ones.

Detection of TFs regulating genes in key module
Module genes were inputted into Enrichr (http://amp.-
pharm.mssm.edu/Enrichr/) to uncover transcription fac-
tors (TFs) interacting with these genes. To reduce false-
positives, we screened only TFs with targets available in
ENCODE and ChEA gene-set libraries and with cor-
rected P value < 0.05 based on the Fisher exact test. The
Cytoscape 3.4.0 application (Cytoscape Consortium,
SanDiego, CA, USA) was used for TF-target gene net-
work to visualization.

Validation of hub genes
The GSE1869 data was employed for verification of the
hub genes associated with HF. We used the Wilcoxon
test to measure the significance of correlation between
hub genes’ expression and HF. Additionally, ROC (re-
ceiver operating characteristic) analysis was performed
on two data sets (GSE57345 and GSE1869) to validate
the hub genes, and the area under curve (AUC) of ROC
was computed to differentiate HF and non-HF.

Results
WGCNA data mining of key modules
Before performing a series of analyses, the GSE57345
dataset was preprocessed. The qualitative assessment of
the microarray data was achieved by hierarchical cluster-
ing of samples. After detection and elimination of six
outliers in the clusters, 313 samples were included in the
dendrogram (Fig. 1a). Afterward, β = 7 was chosen as the
power value of soft-threshold (Fig. 1b). Then, a total of

Fig. 3 Functional role of genes in the blue module. a Terms in Biological Process (GO-BP) obtained from GO enrichment analysis. b Terms in
Cellular Component (GO-CC) obtained from GO enrichment analysis and c Terms in Molecular Function (GO-MF) obtained from GO enrichment
analysis. d Pathways obtained from KEGG pathway enrichment analysis
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seven modules were generated by average linkage
hierarchical clustering based on the 6230 input genes
(Fig. 2a). The Eigengene adjacency heatmap showing
the correlation and clustering of the modules was re-
ported in Fig. 2b, and hinted that the six significant
correlation modules were divisible into two distinct
clusters based on their ME correlation with a great
level of independence within the modules. After cal-
culating the MS of each module-trait correlation by
WGCNA, the correlation between the available clin-
ical features (HF, ISCH, CMP, Gender and Age) in
the GSE57345 dataset with each module was as
shown in Fig. 2c. The results showed that the blue
module was positively and pointedly associated with
the HF, ISCH, and CMP traits (Fig. 2c). In addition,
the gene significance in relation with HF, ISCH and
CMP across modules were as indicated in Figs. 2d-f,
respectively. Since the blue module was the most
significantly and positively linked with HF, ISCH,
and CMP traits, this module was chosen for further
analysis of genes associated with HF, ISCH, and
CMP.

Functions of genes in the blue module
The clusterProfiler library was run to uncover the bio-
logical meaning of the totality of genes identified in the
blue module. These genes were majorly enriched in bio-
logical processes (GO-BP) associated with extracellular
matrix (Fig. 3a). The most enriched cellular components
(GO-CC) were collagen-containing extracellular matrix,
extracellular matrix component and extracellular matrix
(Fig. 3b) while the most representative molecular func-
tions (GO-MF) were extracellular matrix structural con-
stituent, collagen binding and glycosaminoglycan
binding (Fig. 3c). In the KEGG pathway analysis, Focal
adhesion and Protein digestion were the overrepresented
pathways (Fig. 3d).

Identification and functional role of hub genes associated
with HF
The module membership vs. gene significance plot was
as depicted in Fig. 4a. The MCODE plugin was used for
uncovering the hub genes associated with HF in the blue
module from the constructed network. We identified 17
hub genes (TIMP2, SMOC2, NRK, NTM, PDE5A,

Fig. 4 Analysis of the blue module associated with HF. a Scatter plots of module membership vs. gene significance for HF. b Co-expression
regulation network based on genes identified in the blue module. Genes colored in red are hub genes in this network. c Boxplots showing the
differential expression of hub genes among HF and non-HF specimens. d Functional role of hub genes driving HF
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CTSK, DPT, MXRA5, CRISPLD1, COL14A1, SFRP4,
SULF1, OGN, PI16, HTRA1, NT5E, and C1QTNF2) which
were colored in red in the network (Fig. 4b). The boxplot
showed that these hub genes were significantly upregulated
in HF (Fig. 4c). After that, we determined the functional
role of hub genes associated with HF in the blue module
and found that these genes were those driving the biological
processes related to the organization and disassembly of
the extracellular matrix (Fig. 4d). In the cellular component
ontology, the hub genes were markedly enriched in colla-
gen trimer and extracellular matrix (Fig. 4d). The GO term
of collagen binding was the most considerably enriched
molecular function (Fig. 4d). Purine metabolism, Nicotinate
and nicotinamide metabolism, and Pyrimidine metabolism
were the most mainly enriched pathways resulting from the
KEGG pathway analysis (Fig. 4d).

Identification and functional role of hub genes associated
with ISCH
The module membership vs. gene significance plot was as
depicted in Fig. 5a. The MCODE plugin was used for
uncovering the hub genes related to ISCH in the blue
module from the constructed network. We identified 19

hub genes (NTM, ASPN, LRRC17, ISLR, TIMP2, SMOC2,
PLEKHH2, NRK, CTSK, PDE5A, MXRA5, CRISPLD1,
COL14A1, SFRP4, MFAP4, OGN, PI16, HTRA1, and
C1QTNF2) which were colored in red in the network (Fig.
5b). The boxplot of the expression of these key genes
showed that all these genes were significantly upregulated
in ISCH (Fig. 5c). The analysis of the functions of the hub
genes in the blue module associated with ISCH indicated
that these genes were those mainly controlling the pro-
cesses related to extracellular matrix (Fig. 5d). In the cellu-
lar component ontology, the hub genes were greatly
enriched in collagen-containing extracellular matrix (Fig.
5d). The GO terms of extracellular matrix structural con-
stituent as well as the collagen binding were those signifi-
cantly enriched molecular functions (Fig. 5d). Rheumatoid
arthritis and Protein digestion and absorption were the
most significantly enriched pathways resulting from the
KEGG pathway analysis (Fig. 5d).

Identification and functional role of hub genes associated
with CMP
The module membership vs. gene significance plot was
as depicted in Fig. 6a. The MCODE plugin was used for

Fig. 5 Analysis of the blue module associated with ISCH. a Scatter plots of module membership vs. gene significance for ISCH. b Co-expression
regulation network based on genes identified in the blue module. Genes colored in red are hub genes in this network. c Boxplots showing the
differential expression of hub genes among ISCH and non-ISCH specimens. d Functional role of hub genes driving ISCH
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uncovering the hub genes associated with CMP in the
blue module from the constructed network. We iden-
tified 18 hub genes (SCUBE2, CTSK, ITGBL1,
MXRA5, CRISPLD1, SULF1, COL14A1, HTRA1,
NT5E, OGN, PI16, C1QTNF2, SMOC2, SFRP4,
LTBP3, NRK, PDE5A, and DPT) which were colored
in red in the network (Fig. 6b). The boxplot sign-
posted that these hub genes were significantly upregu-
lated in CMP (Fig. 6c). The functional analysis of the
hub genes in the blue module associated with CMP
indicated their involvement in the biological processes
related to extracellular matrix and regulation of BMP
signaling pathway (Fig. 6d). In the cellular component
ontology, the hub genes were mostly associated with
terms related to extracellular matrix and collagen tri-
mer (Fig. 6d). The most enriched GO terms of mo-
lecular functions included collagen binding and
growth factor binding (Fig. 6d). The result of the
KEGG pathway analysis indicated the involvement of
hub genes in Purine metabolism, Nicotinate and nico-
tinamide metabolism, and Pyrimidine metabolism
pathways (Fig. 6d).

Identification of transcription factors associated with
genes in blue module
In order to explore transcription factors (TFs) control-
ling gene expression in the blue module, we analyzed
ENCODE and ChEA which were the data sources avail-
able in Enrich. By setting an adjusted P-value cutoff of
0.05, a total of seven TFs were revealed (Additional file 1).
The most prevalent TFs were SUZ12 with 47 target
genes, NFE2L2 with 26 target genes and AR with 23 tar-
get genes. The regulatory network of TF-target gene
based on all the genes in blue module and the seven TFs
was as displayed in Fig. 7.

Validation of hub genes
All the hub genes of HF were selected for validation by
using GSE1869 data set. However, only 11 hub genes
were obtained in the GSE1869, which included OGN,
HTRA1, MXRA5, TIMP2, PDE5A, DPT, COL14A1,
CTSK, SFRP4, SULF1, and NT5E. The differential ex-
pression of hub genes between HF and non-HF samples
showed that the overexpression of OGN, HTRA1 and
MXRA5 were closely related to the occurrence of HF

Fig. 6 Analysis of the blue module associated with CMP. a Scatter plots of module membership vs. gene significance for CMP. b Co-expression
regulation network based on genes identified in the blue module. Genes colored in red are hub genes in this network. c Boxplots showing the
differential expression of hub genes among CMP and non-CMP specimens. d Functional role of hub genes driving CMP
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(Fig. 8). Thus, we speculated that such three genes were
the key genes of HF progression. To validate the hub
genes as predictive biomarkers of HF, we performed and
calculated ROC curves [33] and the AUCs [95% confi-
dence intervals (CIs)], respectively. The AUCs of OGN,
HTRA1 and MXRA5 in the GSE57345 were respectively
0.912, 0.908 and 0.878, suggesting OGN, HTRA1 and
MXRA5 as potential biomarkers of HF (Fig. 9a). The
AUCs of OGN, HTRA1 and MXRA5 in the GSE1869
were respectively 0.914, 0.879 and 0.828, further indicat-
ing OGN, HTRA1 and MXRA5 as potential biomarkers
of HF (Fig. 9b). We also found the AUC of each vali-
dated gene was higher than 0.7, indicating that OGN,

HTRA1 and MXRA5 could effectively distinguish HF
and non-HF. Therefore, such genes were selected as the
true key genes associated with HF. Further functional
annotation of these true key genes was performed, and
the result showed that these genes were majorly impli-
cated in response to transforming growth factor beta,
extracellular matrix and extracellular matrix structural
constituent (Fig. 9c).

Discussion
The most frequent subtypes of HF include ischemic
heart disease (ISCH) and dilated cardiomyopathy (CMP).
ISCH is due to the shrinkage of blood supply to the

Fig. 7 Gene-transcription factor network in the blue module. Red diamonds and blue nodes represent the transcription factors and
genes, respectively
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myocardium, while the heart of CMP becomes weakened
and enlarged [34]. ISCH and CMP are conductive to
symptoms similar to HF, but accumulating findings sug-
gested that these two subtypes might respond differently
to therapy [35, 36]. The new era of high-throughput
technologies has experienced tremendous progress in
the development of computational algorithms for bio-
informatics purposes [37, 38]. In this current study, we
employed the WGCNA data mining approach to identify
genes that are significantly altered upon HF. Then we
discovered the crucial modules markedly related to HF
development, ISCH and CMP. Finally, the practicality of
the key genes as prognostic biomarkers for HF was also
evaluated.
In the WGCNA, we screened six significant gene mod-

ules from the GSE57345 dataset. The blue module was
uncovered as the most crucially correlated with the sta-
tus of HF, ISCH and CMP in patients, thus we chose the
blue module as the main module for the subsequent

analysis. Our study hinted that genes clustered in the
correlation gene expression module were chiefly impli-
cated in regulation of ECM (extracellular matrix), in-
cluding ECM organization and ECM receptor
interaction. The ECM network plays an important role
in cardiac homeostasis, not only by providing structural
support, but also by transducing key signals to cardio-
myocytes, vascular cells, and interstitial cells [39]. It is
known that the alterations of ECM homeostasis may
lead to diastolic or systolic dysfunction in heart and con-
sequent development of HF [40]. A study conducted by
Tsoutsman revealed that modulation of CCN2 on early
ECM changes might provide a new therapeutic target in
the treatment of HF [41].
After identifying the hub genes in the blue module

underlying the studied traits (HF, ISCH and CMP), we
identified 12 hub genes as those common to the three
studied traits including SMOC2, NRK, PDE5A, CTSK,
MXRA5, CRISPLD1, COL14A1, SFRP4, OGN, PI16,

Fig. 8 Differential expression of hub genes between HF and non-HF specimens in the validation dataset GSE1869
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HTRA1 and C1QTNF2. Next, we found the functional
enrichment of the hub genes associated with HF or
ISCH or CMP were similar with those for the blue mod-
ule. Williams and his colleagues found that SMOC2 was
differentially expressed in failing right ventricular, and
was potential targets for further study on HF [42]. A
study revealed that SMOC2 could modulate fibroblast
proliferation and extracellular matrix deposition [43].
Similarly, a study revealed that expression of C1QTNF2
related to anti-fibrotic function [44]. Thus, SMOC2 and
C1QTNF2 might play a similar function to protect from
cardiac fibrosis. Multiple studies have reported the
pathophysiological role of cyclic guanosine monopho-
sphate (cGMP) signaling in HF. Increased levels of
cGMP have been demonstrated to exhibit cardioprotec-
tive effects in many cardiovascular diseases. PDE5A is a
leading factor contributing to cGMP signaling and car-
diac hypertrophy. Multiple studies suggested that
PDE5A inhibitor could effectively limit myocardial injury
caused by stresses [45–47]. As a lysosomal cysteine

protease, CTSK has been intensively investigated in the
osteoporosis [48–50]. In recent years, reports hinted that
activation of lysosomal cysteine protease might exert a
deleterious role in the progression of cardiometabolic
diseases [51]. Researchers have conveyed that CTSK may
become an alternative therapeutic target for cardiac dis-
ease [52]. In a latest study, CRISPLD1 has been sug-
gested to used be as a novel conserved target in the
management of HF [53]. MXRA5 is a cancer related
gene and several studies indicated the potential value of
this gene as a novel therapeutic target for various can-
cers including colorectal cancer [54], non-small cell lung
cancer [55] and glioblastoma multiform [56]. There are
few reports about function of MXRA5 in HF. Studies
have shown that SFRP4 is expressed in cardiomyocytes,
and elevated during HF. Similarly to our results, studies
demonstrated that OGN is significantly up-regulated in
CMP and ISCH by reducing cardiac inflammation and
injury, and, thus, could become a promising biomarker
for HF [57]. The roles of NRK, COL14A1, PI16 and

Fig. 9 Analysis of the key genes (HTRA1, OGN and MXRA5). ROC curve analysis of the key genes in (a) GSE57345 and (b) GSE1869 datasets; (c)
Functional annotation for the key genes, which included GO analysis and KEGG pathway enrichment analysis
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HTRA1 in HF have not been investigated in the past. It
is worth noting that most of these common genes have
been proven as genes associated with the regulation of
ECM, which corroborated with the functional annota-
tion of the hub genes. Therefore, these genes (SMOC2,
NRK, PDE5A, CTSK, MXRA5, CRISPLD1, COL14A1,
SFRP4, OGN, PI16, HTRA1 and C1QTNF2) might be
the biomarkers of HF, which could regulate organization
of ECM to affect HF progression. Our present findings
hinted that these genes could be crucial for understand-
ing the pathogenesis of HF and even constitute relevant
therapeutic targets.
As regulators of gene expression, TFs are closely

linked with the pathogenesis of various diseases.
Herein, we explored the possible regulation of genes
in the blue module by TFs, and identified seven TFs,
which included SUZ12, NFE2L2, TRIM28, AR, TP53,
PPAR and ESR1. A new report revealed that SUZ12
(Suppressor of Zeste 12 Protein Homolog) could me-
diate the downregulation of myocyte enhancer factor
2A, thereby preventing cardiac hypertrophy [58]. It is
well known that NFE2L2 (nuclear factor erythroid 2
like 2) is a critical TF that can induce adaptive re-
sponses against oxidative stress (OS) for maintaining
cellular redox balance [59]. Accumulating researches
demonstrated that the upregulation of NFE2L2 could
protect the myocardium from ischemic injury and
may be of therapeutic benefit in the treatment of
ISCH [60]. AR (adrenergic receptor) overactivation is
reported as a factor involved in the pathogenesis of
HF [61]. Taken together, our findings indicated that
these TFs formed a compact regulatory network with
genes uncovered from the blue module, and the
changes of the activities of these TFs may play crucial
functions in the initiation and progression of HF,
ISCH and CMP.
In addition, we verified the hub genes associated with

HF based on the GSE1869 data set. However, among these
17 hub genes, only OGN, HTRA1, MXRA5, TIMP2,
PDE5A, DPT, COL14A1, CTSK, SFRP4, SULF1, and
NT5E were obtained in this data set. Then we used Wil-
coxon test to determine whether these genes were signifi-
cantly linked with HF status. A total of three genes were
significantly correlated with HF status (P < 0.05), which in-
cluded OGN, HTRA1 and MXRA5. We further validated
their value for HF progression and prognosis by perform-
ing ROC curve analysis. In many researches, the ROC
curve was applied to assess the performance of diagnosis,
and the area under the ROC curve (AUC) is a commonly
used summary index for comparison among multiple
ROC curves [62–64]. In this study, the ROC analysis
proved that the selected three key genes could be used as
potential biomarkers with great specificity and sensitivity
for prognosis in HF patients.

Conclusions
The current study applied the WGCNA data mining and
other bioinformatics approaches to identify and validate
the major module and corresponding hub genes involved
in the progression of HF, ISCH and CMP. The blue
module was identified as the common key module
among three studied traits. Eleven hub genes, namely
SMOC2, NRK, PDE5A, CTSK, MXRA5, CRISPLD1,
COL14A1, SFRP4, OGN, PI16, HTRA1 and C1QTNF2
are likely to be prognostic biomarkers for development
of HF. Afterward, TFs (SUZ12, NFE2L2, TRIM28, AR,
TP53, PPAR and ESR1) were predicted as key regulators
that contribute to the pathophysiological outcomes of
HF. Finally, we screened three key genes (OGN, HTRA1
and MXRA5) which showed great specificity and sensi-
tivity for HF prognosis in further validation. Though this
study is a preliminary investigation, our findings pro-
posed new potential therapeutic targets of HF, and pro-
vide novel insights in the pathogenesis of HF.
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