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Abstract

Background: Obstructive sleep apnea (OSA) is defined by frequent episodes of reduced or complete cessation of
airflow during sleep and is linked to negative health outcomes. Understanding the genetic factors influencing
expression of OSA may lead to new treatment strategies. Electronic health records (EHRs) can be leveraged to both
validate previously reported OSA-associated genomic variation and detect novel relationships between these
variants and comorbidities.

Methods: We identified candidate single nucleotide polymorphisms (SNPs) via systematic literature review of
existing research. Using datasets available at Geisinger (n = 39,407) and Vanderbilt University Medical Center (n = 24,
084), we evaluated associations between 40 previously implicated SNPs and OSA diagnosis, defined using clinical
codes. We also evaluated associations between these SNPs and OSA severity measures obtained from sleep reports
at Geisinger (n = 6571). Finally, we used a phenome-wide association study approach to help reveal pleiotropic
genetic effects between OSA candidate SNPs and other clinical codes and laboratory values available in the EHR.

Results: Most previously reported OSA candidate SNPs showed minimal to no evidence for associations with OSA
diagnosis or severity in the EHR-derived datasets. Three SNPs in LEPR, MMP-9, and GABBR1 validated for an
association with OSA diagnosis in European Americans; the SNP in GABBR1 was associated following meta-analysis
of results from both clinical populations. The GABBR1 and LEPR SNPs, and one additional SNP, were associated with
OSA severity measures in European Americans from Geisinger. Three additional candidate OSA SNPs were not
associated with OSA-related traits but instead with hyperlipidemia and autoimmune diseases of the thyroid.
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Conclusions: To our knowledge, this is one of the largest candidate gene studies and one of the first phenome-
wide association studies of OSA genomic variation. Results validate genetic associates with OSA in the LEPR, MMP-9
and GABBR1 genes, but suggest that the majority of previously identified genetic associations with OSA may be
false positives. Phenome-wide analyses provide evidence of mediated pleiotropy. Future well-powered genome-
wide association analyses of OSA risk and severity across populations with diverse ancestral backgrounds are
needed. The comprehensive nature of the analyses represents a platform for informing future work focused on
understanding how genetic data can be useful to informing treatment of OSA and related comorbidities.
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Background
Obstructive sleep apnea (OSA) is defined by frequent
episodes of reduced (hypopnea) or complete (apnea) ces-
sation of airflow that occur due to upper airway obstruc-
tion during sleep, and is among the most common sleep
disorders in the world [1]. When left untreated, OSA
represents a significant public health burden, carrying a
higher risk of serious comorbidities such as cardiovascu-
lar disease [2], cancer [3], cognitive impairment [4], and
rate of progression of neurodegeneration [5]. As such,
identifying more effective diagnosis and management of
OSA are important research areas.
Understanding the genetic mechanisms contributing

to expression of OSA and related comorbidities offers
the opportunity to inform novel, personalized treat-
ment approaches. Studies indicate that OSA is herit-
able [6], providing evidence for genetic influences.
Genomic variation is also implicated in well-
established structural risk factors for OSA (e.g., soft
tissue volumes [7], craniofacial dimensions [8], and
obesity [9]). Furthermore, numerous syndromes with
well-defined genetic causes are associated with in-
creased prevalence of OSA (e.g., Achondroplasia [10],
Down syndrome [11], Marfan’s syndrome [12], and
Prader-Willi syndrome [13]). Despite the evidence im-
plicating genetic factors in OSA, no strong candidates
are established. This is possibly due to underpowered
studies, lack of replication, and the wide variability of
OSA symptomatology and comorbidities within evalu-
ated patient populations.
With the expansion of biorepositories linked to elec-

tronic health records (EHRs), large sample sizes and a
variety of OSA-related information—as well as other
clinical data—are available, offering unprecedented op-
portunity to establish more robust genetic associations.
In addition, phenome-wide association studies (Phe-
WAS) can help reveal pleiotropic genetic effects influen-
cing expression of OSA and/or co-occurring conditions
by testing variants for associations with a broad range of
EHR-derived phenotypes [14]. In addition to uncovering
pleiotropy, identifying candidate variants associated with
OSA-related comorbidities, but not OSA itself, may

suggest the original associations were due to
unrecognized confounding.
Therefore, in the present study we used EHRs linked

to genomic data to determine if previously reported as-
sociations between single nucleotide polymorphisms
(SNPs) and OSA validated in clinical samples in the
United States. We then used PheWAS to provide evi-
dence of pleiotropic effects for OSA-associated SNPs, or
to determine whether previous evidence of associations
with OSA may actually reflect relationships with under-
lying comorbidities. This work represents one of the lar-
gest candidate studies, and the first PheWAS, focused
on OSA genetics.

Methods
Search strategy and selection criteria for OSA-associated
genomic variants
To identify OSA candidate genetic variants, PubMed
was queried for original research papers and previous re-
views (up to January 1, 2018) that focused on genetic
risk factors for OSA. Search terms for PubMed queries
were as follows: (obstructive sleep apnoea [Title/Ab-
stract] OR obstructive sleep apnea [Title/Abstract]))
AND (polymorphism OR genetic variant OR genetic as-
sociation OR gene OR genome wide association study
OR genome-wide association study). PubMed results
were filtered to include studies conducted in humans.
To further expand the query space, we additionally
searched the embase resource (https://www.embase.
com/) focusing on articles that were available via embase
or MEDLINE. Search terms for embase queries required
use of ‘sleep disordered breathing’ for disease focus, as
opposed to allowing queries for ‘obstructive sleep apnea’,
and were as follows: ‘sleep disordered breathing’/mj
AND (‘genetic polymorphism’/mj OR ‘single nucleotide
polymorphism’/mj OR ‘genetic association study’/mj OR
‘genetic association’/mj) AND ([embase]/lim OR [med-
line]/lim) AND [< 1966–2018]/py AND [humans]/lim
AND [abstracts]/lim AND [english]/lim AND ([article]/
lim OR [letter]/lim OR [review]/lim) AND ([young
adult]/lim OR [adult]/lim OR [middle aged]/lim OR
[aged]/lim). Abstracts were manually reviewed to ensure
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that results related to genetic studies that were specific-
ally relevant to OSA, as opposed to phenotypes that may
reflect something other than an OSA diagnosis (e.g.,
treatment response). Studies were excluded if there were
no full-texts available or they represented analyses of
genomic regions for which individual variants could not
be identified. The remaining full manuscripts were
manually reviewed to identify candidate variants. Candi-
date variants were then mapped to reference SNP IDs
(rsIDs) and the final list of candidate SNPs was pruned
for linkage disequilibrium (based on r2 < 0.50) separately
in each independent dataset to identify SNPs tagging in-
dependent genomic regions. When necessary, proxy
SNPs for candidate variants were identified using data
from 1000 Genomes, phase III [15] Europeans, since this
ancestral group represented the largest proportion of
our analysis datasets using rAggr (http://raggr.usc.edu/)
and an r2 > 0.50.

Study populations
Geisinger samples were selected from the current
MyCode biobank participants. MyCode is a major re-
source for research that combines information obtained
from DNA and serum with health information from the
electronic health record (Epic) and other sources
intended to improve the prevention, diagnosis, and treat-
ment of disease [16]. No specific clinics or practices are
targeted by MyCode and there is a high consent rate,
suggesting samples are representative of the overall
health system [16]. EHR-defined cases (for definition,
see below) were required to have at least 1 year of activ-
ity post their first OSA diagnosis and be between 18 and
88 years of age at time of the OSA diagnosis. EHR-
defined non-cases (for definition, see below) were re-
quired to have at least 2 years of activity in the health
system between January 1, 2008 and December 31, 2016
and be between 18 and 88 years of age as of December
31, 2016.
Vanderbilt University Medical Center (VUMC) sam-

ples were selected using data from individuals in Van-
derbilt’s biorepository linked to electronic health records
(BioVU). BioVU is a biorepository of DNA extracted
from discarded blood collected during routine clinical
testing and linked to de-identified medical records in the
Synthetic Derivative. As BioVU samples are obtained
from every clinic that collects blood for routine labora-
tory tests at VUMC, we expect minimal bias with regard
to the clinical aspects of these samples [17]. The Syn-
thetic Derivative is a de-identified copy of the main hos-
pital electronic health record databases created for
research purposes. De-identification was achieved pri-
marily through the application of a commercial elec-
tronic program, which was applied and assessed for
acceptable effectiveness in scrubbing identifiers.

Individuals included in the study were required to have
available genome-wide genotyping data and at least 2
years of activity in the health system between January 1,
2001 and June 6, 2017. EHR-defined cases were add-
itionally required to have be between 18 and 88 years of
age at time of the first code usage. EHR-defined non-
cases were required to be between 18 and 88 years of
age at the time of data analysis.
Analyses were performed across three independent

datasets from the two sites (i.e., Geisinger European
Americans [Geisinger] and Vanderbilt University Med-
ical Center European Americans [VUMC-EA] and Afri-
can Americans [VUMC-AA]). The Geisinger dataset was
comprised of 39,407 individuals with European ancestry,
and the VUMC datasets included 20,688 individuals with
European ancestry and 3396 individuals with African an-
cestry (Table 1). Other ancestral groups were not in-
cluded due to limited sample sizes at Geisinger and
VUMC.

Genotype quality control and imputation
Genotype data for the Geisinger dataset were generated
using the Illumina® HumanOmniExpressExome bead
chip. Genotype data for the VUMC datasets were gener-
ated using the Illumina® Multi-Ethnic Global Array
(MEGA). Quality control (QC) procedures required
DNA samples to have > 90% genotyping call rate and be
unrelated based on PI-HAT≤0.05. Directly genotyped
markers were required to have > 99% call rate with
minor allele frequency > 0.01, and p-values testing sig-
nificant deviation from Hardy-Weinberg Equilibrium >
1.0 × 10− 7. Genetically-informed ancestry was deter-
mined using principal components analysis with refer-
ence human genomes available via the 1000 Genomes
Project, phase III [15]. The quality controlled data for
the European dataset from Geisinger were imputed
using Impute2 and reference human haplotypes available
via the Haplotype Reference Consortium [18]. The qual-
ity controlled data for the European and African VUMC
datasets were imputed using reference human haplo-
types available via the 1000 Genomes Project, phase III
[15]. Imputed genotypes were required to have info
scores ≥0.3. Notably, while all other QC thresholds were
required for inclusion in association tests, two imputed
SNPs were missing in > 10% of the VUMC-AA dataset:
rs999944 (missing = 19.3%) and rs7804372 (missing =
10.5%). These SNPs were not tested for associations in
this dataset.

EHR-Derived OSA phenotypes
Our primary OSA phenotype was cases and non-cases
status derived using an EHR algorithm based on the
total instances (e.g., on different dates) of OSA-related
International Classification of Diseases (ICD) 9th or
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10th revision codes (Table S1) in the individual’s health
record [19]. This algorithm was recently validated with
clinical chart reviews across multiple sites in the U.S., in-
cluding Geisinger and VUMC [19]. For the present
study, the minimum number of code instances that
achieved positive predictive value (PPV) and negative
predictive value (NPV) of at least 90% was used for de-
termining OSA cases and non-cases. At Geisinger, a
case-definition of OSA-related codes on at least 3 differ-
ent dates in the EHR was required to achieve PPV and
NPV ≥90% (PPV [95% CI] =94.9 [88.5, 98.3]; NPV [95%
CI] = 95.0 [88.7, 98.4]) [19]. At VUMC, a case-definition
of OSA-related codes on at least 2 different dates
achieved these thresholds (PPV = 97.5 [92.9, 99.5];
NPV = 94.0 [87.4, 97.8]) [19]. Non-cases were defined as
zero OSA-related diagnostic codes in the EHR at both
sites. Individuals not meeting the case or non-case defi-
nitions were excluded.
In addition to case and non-case status, secondary ana-

lyses were performed using 13 available phenotypes from
sleep study (polysomnography [PSG]) reports available for
a subset of the dataset from Geisinger (n = 4957 EHR-
defined cases and n = 1614 non-cases); these data were
not available at VUMC due to issues with de-
identification of polysomnography results that impeded
inclusion of these data in the Synthetic Derivative. Only
data from full-night, diagnostic in-laboratory sleep studies
(e.g., not split-night studies) with at least 120min of total
sleep time were included. If an individual had more than 1
sleep report, the diagnostic sleep study that was conducted
on the date closest to the first usage of an OSA code
(among EHR-defined cases) or the most recent study
(among EHR-defined non-cases) was chosen. Standard
American Academy of Sleep Medicine criteria was used to

define hypopneas. Phenotypes included respiratory indices
(Apnea/Hypopnea Index [AHI], Central Apnea Index
[CAI], Obstructive Apnea Index [OAI]), mean event dura-
tions (Respiratory Event [RDI] Duration and Duration of
Apnea/Hypopnea), hypoxia measures (Percent Time with
SaO2 < 89% during Non-Rapid Eye Movement [NREM] or
Rapid Eye Movement [REM], Minimum SpO2 during Re-
spiratory Event or Total Sleep Time), measures of sleep
quality (Number of Awakenings, Sleep Efficiency, Wake
After Sleep Onset), and subjective sleepiness (the Epworth
Sleepiness Scale [ESS] [20]).

EHR-derived body mass index
Body mass index (BMI) was calculated from the EHR
data at each site based on available measures of height
and weight. The primary BMI value of interest was the
BMI closest to the time of the first OSA code usage (in
EHR-defined cases) or the most recent value (for EHR-
defined controls). Site-specific quality control and data
cleaning procedures were applied to assure high-quality
BMI measurements.
At Geisinger, height was recorded in inches and

weight in pounds; there was no evidence of outliers ex-
plained by incorrect units. Calculated BMI values > 3
standard deviations above or below a patient’s median
BMI value were excluded as outliers. If fewer than three
BMI measurements remained after these exclusions, all
BMI data were considered unreliable and excluded. At
VUMC, height and weight values were previously
cleaned and obvious outliers removed based on a vali-
dated algorithm [21]. Median BMI values within the
same year as the first OSA code usage (for EHR-defined
cases) or most recent year of EHR data (for EHR-defined
non-cases) were calculated, manually reviewed, and

Table 1 Comparison of Demographics across Datasets and between Cases and Controls

Analysis Sample Demographics Totals* EHR-defined
OSA

EHR-defined No OSA p-value

Geisinger
(EA)

N 39,407 5760 33,647 –

Agea, years 59.3 (17.3) 61.1 (12.6) 58.9 (17.2) 2.65 × 10− 29

BMIa, kg/m2 31.6 (18.7) 40.1 (9.8) 30.1 (6.8) < 1.58 × 10− 322

Male, % 40.9% 52.9% 38.9% 2.15 × 10−87

VUMC
(EA)

N 20,688 2831 17,857 –

Agea, years 56.6 (17.5) 55.8 (13.0) 56.8 (18.2) 2.88 × 10−4

BMIa, kg/m2 28.8 (7.3) 34.3 (9.0) 27.9 (6.6) 1.08 × 10− 241

Male, % 42.4% 56.9% 40.1% 1.93 × 10− 62

VUMC
(AA)

N 3396 331 3065 –

Agea, years 47.5 (17.3) 49.2 (13.8) 47.3 (17.6) 5.73 × 10−2

BMIa, kg/m2 31.0 (8.6) 38.5 (10.4) 30.2 (8.0) 2.91 × 10− 36

Male, % 37.8% 41.7% 37.4% 1.37 × 10− 1

aAge and body mass index (BMI) are presented as means (standard deviations), and for cases with EHR-defined OSA were reported in the same year as the first
use of the OSA-related code, while for controls the most recent measurements were used. *Traits compared between analysis datasets were all significantly
different at p ≤ 3.37 × 10− 7. EHR Electronic health record, VUMC Vanderbilt University Medical Center, AA African or EA European (North) American
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excluded as outliers if > 3 standard deviations above or
below a patient’s overall median BMI.

Statistical analyses
Unless otherwise specified, continuous data are summa-
rized as means and standard deviations and categorical
data as frequencies and percentages. Age and BMI were
compared between EHR-derived cases and non-cases in
each dataset using T-tests and across the Geisinger,
VUMC-EA and VUMC-AA datasets using analysis of
variance and Tukey-Kramer post-hoc pairwise compari-
sons. Sex was compared using chi-squared tests. All
models were evaluated adjusting for age and BMI at the
time of first OSA code usage (for EHR-defined cases) or
most recently measured (for EHR-defined non-cases), as
well as sex (except in sex-stratified analyses). Given the
higher genetic diversity of the VUMC sample, all ana-
lyses were additionally adjusted for global ancestry using
the first three principal components calculated for each
dataset, as was done previously for VUMC datasets [22].
Principal component adjustment was not included in
analyses of the Geisinger dataset, given the high genetic
homogeneity of the sample and the fact that previous
studies have not observed a difference in results when
adjusting for ancestry PCs compared to unadjusted for
PCs in this dataset [16].

Genetic associations with OSA-related phenotypes
Analyses were performed to evaluate the associations be-
tween candidate SNPs identified from the systematic lit-
erature review and EHR-derived OSA phenotypes. SNPs
were coded additively with respect to the minor allele
for the population being assessed. To maintain
consistency throughout, all results are reported based on
mapping to the positive strand. Primary analyses evalu-
ated associations between candidate SNPs and EHR-
based OSA diagnosis using logistic regression models,
separately within each dataset. In addition to independ-
ent analyses within each sample, we performed two sep-
arate meta-analyses of the two European American
datasets alone and of all three analysis samples (Gei-
singer, VUMC-EA, and VUMC-AA). Inverse-variance,
standard error based meta-analyses, and the possibility
of heterogeneity among the studies, was tested in the
METAL software package (version: 2011-03-25) [23].
Given a priori evidence of associations between candi-
date SNPs and OSA, significant evidence of validation
was set at an uncorrected p < 5.0 × 10− 2 when the initial
study reporting the association with OSA was conducted
in an ancestral population of comparable ancestry to our
study populations. Significant evidence of generalizability
was determined using the Benjamini-Hochberg (BH)
method, and was based on a false discovery rate of 5%
(e.g., q < 5.0 × 10− 2) when the initial study reporting the

association with OSA was conducted in an ancestral
population of different ancestry than our study popula-
tions. To determine if age, sex or BMI modified the as-
sociations between any candidate SNP and EHR-derived
OSA diagnosis, we performed interaction tests by in-
cluding a product term (SNP x [covariate]) in a logistic
regression model that also included both main effects
(SNP, covariate). To control for the numerous interac-
tions tested in these analyses, statistical significance was
determined using the BH method and was set at q <
5.0 × 10− 2.
Secondary analyses of genetic associations with 13

OSA phenotypes from sleep study reports in the Gei-
singer European American sample were performed using
linear regression. Given the quantitative nature of these
traits and the comparatively smaller analysis sample,
sleep traits were analyzed in all patients with available
data regardless of EHR-defined case/control status. As
the majority of these quantitative traits did not meet
normality assumptions, Box-Cox power transformations
were applied and then Z-scores were calculated prior to
analyses. For variables that included values of 0, half of
the minimum non-zero value was added to each obser-
vation prior to transformation. Given a priori evidence
of associations between candidate SNPs and OSA, we
determined significance for results separately for SNPs
where the initial study reporting the association was
conducted in an ancestral population of comparable an-
cestry to our study populations versus a different ances-
try. Specifically, when the initial study was conducted in
either Europeans or African Americans, p-values from
association tests between each SNP and all traits were
corrected using BH and significant evidence of validation
was set at q < 5.0 × 10− 2. When the initial study was con-
ducted in non-comparable ancestral populations, signifi-
cant evidence of generalizability was determined based
on correction of p-values from association tests between
all of these SNPs and all phenotypes.

Phenome-wide association study methods for OSA
candidate SNPs: discovery (Geisinger) and replication
(VUMC)
To determine whether there was evidence of pleiotropic
genetic effects of OSA candidate variants with other
phenotypes in the EHR or whether initial associations
between SNPs and OSA may be driven by underlying as-
sociations with co-occurring conditions (e.g., unmeas-
ured confounding), we performed a phenome-wide
association study (PheWAS).
Given that the PheWAS were novel analyses, as op-

posed to the validation studies that were conducted for
previously reported OSA candidate SNPs, we chose to
perform a discovery analysis in the Geisinger dataset and
replication in the VUMC-EA dataset. We also tested for
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generalization to the VUMC-AA dataset. For discovery
PheWAS analyses in the Geisinger sample, associations
between all OSA candidate SNPs and a total of 574 non-
OSA ICD codes and 143 Logical Observation Identifier
Names and Codes (LOINC) mapped median laboratory
values were assessed using logistic and linear regression
models, respectively. For non-OSA ICD codes, only
codes resulting in ≥200 cases in the Geisinger dataset
were included (Table S2). For each ICD code, ‘cases’
were defined as individuals with codes used on ≥3 differ-
ent dates and ‘controls’ were defined as individuals with
absence of this code or a code within the same hier-
archy. Individuals with one or two instances of a code
were excluded from the analysis for that code. Box-Cox
power transformations were applied to quantitative me-
dian laboratory values prior to analysis. Only laboratory
values available for ≥1000 individuals [24] in the Gei-
singer dataset were included (Table S3). Statistical sig-
nificance in these discovery analyses was determined
using the BH method and was set at q < 5.0 × 10− 2.
Significant SNP-phenotype associations discovered in

the Geisinger sample were replicated in the VUMC data-
sets using codes that reflected the same phenotype code
(PheCode Map 1.2 [25]) as the discovery ICD code,
present on ≥3 different dates in the individual’s record.
PheCodes were used for replication analyses to circum-
vent issues related to potential differences in specific
ICD code usage across the two clinical sites, as they rep-
resent distinct health care systems [25]. Prior to Phe-
Code mapping, all ICD-10 codes were mapped to ICD-9
codes using CMS General Equivalency Mapping via the
Agency for Healthcare Research and Quality MapIT
Tool, Application Version 5.1.110, data version
2.2018.110X (https://www.qualityindicators.ahrq.gov/re-
sources/Toolkits.aspx). Given the goal of replicating spe-
cific SNP-phenotype associations discovered in the
Geisinger sample, the significance threshold for these
analyses was set at p < 5.0 × 10− 2. All PheWAS tests
were conducted while adjusting for age, sex and BMI as
described above. In addition, analyses conducted in the
VUMC datasets were conducted while also adjusting for
ancestry PCs.

Results
Literature-derived identification of OSA candidate
variants
The initial queries of PubMed identified 428 studies
meeting the search criteria, and 221 of these met inclu-
sion criteria after manual reviews of abstracts. Forty arti-
cles were also identified by focusing only on studies
sourced from embase and MEDLINE; however, cross-
referencing search results indicated that only one of
these was not also included in PubMed and captured in
the initial queries. Ultimately, a systematic review of 205

studies revealed 51 unique OSA candidate SNPs (Fig. S1
and Table S4). Five SNPs were dropped due to low allele
frequencies (MAF < 0.01) and six SNPs were dropped
due to missingness. Analyses described below evaluated
associations with 40 SNPs: 38 directly measured in our
samples, and two proxy SNPs for literature-derived SNPs
rs35424364 (proxy: rs7752028, r2 = 0.97) and rs25531
(proxy: rs11080123, r2 = 0.50).

Sample characteristics
Demographic characteristics of the analysis datasets,
overall and stratified by EHR-derived OSA status, are
presented in Table 1. Among the Geisinger sample, the
mean (SD) age was 59.3 (17.3) years and the mean (SD)
BMI was 31.6 (18.7) kg/m2. A total of 9.5% of the Gei-
singer sample met Center for Disease Control criteria
for severe obesity (BMI ≥ 40 kg/m2), 40.9% were male
and 14.6% met EHR-defined criteria for OSA. Individ-
uals with EHR-defined OSA were older, had higher
BMIs and were more likely to be male than those with
no evidence of OSA (Table 1). Among the VUMC-EA
sample, the mean (SD) age was 56.6 (17.5) years and the
mean (SD) BMI was 28.8 (7.3) kg/m2; 7.5% of the dataset
met criteria for severe obesity, and 42.4% were male. In
total, 13.7% of individuals met EHR criteria for OSA.
These individuals had higher BMI and were more likely
to be males, but were 1 year younger on average than
those with no evidence of OSA. Among the VUMC-AA
sample, the mean (SD) age was 47.5 (17.3) years and the
mean (SD) BMI was 31.0 (8.6) kg/m2, 13.8% met criteria
for severe obesity, 37.8% were male and 9.7% met EHR-
defined criteria for OSA. Individuals with EHR-defined
OSA had significantly higher BMI than non-cases, but
there were no significant differences in age or gender.
As shown in Table 1, participants in the Geisinger

dataset had higher BMIs than both VUMC datasets. The
VUMC-EA dataset had the lowest average BMI and the
highest proportion of males, while the VUMC-AA data-
set was the youngest and had the lowest proportion of
males.

Associations of OSA candidate variants with EHR-derived
OSA diagnosis
Associations between candidate SNPs and EHR-derived
OSA case and non-case status were evaluated in each
dataset. Of the 40 SNPs tested, SNPs in the LEPR gene
(rs1137101; p = 3.78 × 10− 2) and ~ 2 kb upstream of the
MMP-9 gene (rs3918242; p = 2.65 × 10− 2) validated in
the Geisinger sample and a SNP in the GABBR1 gene
(rs29230; p = 3.65 × 10− 2) validated in the VUMC-EA
sample (Fig. 1 and Table 2). The variant in GABBR1, but
not variants in LEPR and MMP-9, was also significantly
associated with EHR-derived OSA status in the meta-
analysis of both European American datasets (p = 8.44 ×
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10− 3). No previously reported candidate SNPs validated
in the EHR-derived African American dataset from
VUMC (Table S4).
In addition to assessing overall associations between

candidate SNPs and EHR-derived OSA diagnosis, we
evaluated whether there was evidence that associations
were modified by age, sex or BMI using statistical inter-
action tests. These analyses suggested that associations
between 15 SNPs and OSA diagnosis may be modified
by age, sex or BMI (Table S5). However, none of the
strata-specific associations were significant after correc-
tion for multiple comparisons.

Associations of OSA candidate variants with quantitative
sleep traits
In addition to associations with EHR-derived OSA
diagnosis across samples, we examined relationships
between candidate SNPs and quantitative OSA pheno-
types available in a subset of the European American
sample at Geisinger (Table S6). Three SNPs were sig-
nificantly associated, following multiple testing correc-
tions, with quantitative measures of OSA severity
obtained from sleep study reports at Geisinger (Fig. 2).
Of particular interest, the GABBR1 and LEPR SNPs
associated with EHR-derived OSA diagnosis (Table 2)
were both associated with quantitative OSA pheno-
types. The GABBR1 SNP (rs29230) associated with
increased risk for EHR-defined OSA diagnosis in
meta-analysis was associated with increased wake after
sleep onset. Additionally, the LEPR gene variant
(rs1137101) associated with reduced risk for OSA
diagnosis was associated with a decreased number of
awakenings and wake after sleep onset, and an in-
creased sleep efficiency (Table 2). One additional
SNP, which was not associated with EHR-defined
OSA diagnosis, was associated with sleep study report
variables. This SNP, a non-coding variant in PTGER3
(rs1409986) previously related to increased risk for
OSA, was associated with fewer awakenings, less per-
cent time with SaO2 < 89% in REM and decreased
wake after sleep onset.

Fig. 1 Validated Associations with Obstructive Sleep Apnea
Diagnosis in European Americans. Plotted are the estimates of the
additive effects (beta) of the minor allele at each candidate SNP
associated with a validated definition of OSA obtained from the EHR,
along with the corresponding -log10 p-value. For each SNP, the rsID,
chromosome and hg38 base pair location are provided. Results from
analyses conducted in the Geisinger European American (EA)
dataset are plotted in blue, VUMC European Americans in red, and
meta-analyses of results from tests conducted in both European
American datasets in green. For p-values, up arrows denote
increased risk for OSA diagnosis given the minor allele at this SNP
and down arrows denote reduced risk. Red line denotes unadjusted
significance threshold (p < 5.0 × 10− 2)
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Phenome-wide association studies of OSA candidate
variants
In addition to analyses of the relationship between can-
didate OSA SNPs and OSA-related phenotypes, to assess
for possible pleiotropy or whether previous relationships
with OSA may be driven by underlying associations with
OSA-related comorbidities, we performed a PheWAS for
each candidate SNP. None of the three SNPs that vali-
dated for an association with OSA diagnosis were associ-
ated with other non-OSA clinical traits once we
controlled for multiple testing (Table S7). However,
seven other candidate SNPs were associated with non-
OSA clinical traits at an FDR < 5% in discovery analyses
at Geisinger (Table S7). Of these, associations between
three SNPs and non-OSA clinical traits replicated in the
VUMC-EA dataset (Table 3). In particular, rs7412, the
marker of the APOE-ε2 allele, was associated with lower
risk of hyperlipidemia in both the Geisinger and VUMC-
EA samples. Moreover, rs429358, the marker of the
APOE-ε4 allele, was associated with increased risk of
hyperlipidemia in all of the EHR-derived datasets. These
associations validate previously reported relationships
between APOE SNPs and hyperlipidemia [26]. Finally, a
variant in the HLA-DQA1 gene (rs2187668) was associ-
ated with increased risk for celiac disease and auto-
immune diseases of the thyroid in both European
American datasets. The association between rs2187668
and EHR-derived codes for celiac disease validates re-
sults from previous studies [27].

Discussion
By harnessing the rich resources available in electronic
health records linked to genetic data, we performed a
comprehensive study of the relationship between genetic
variants previously implicated in OSA risk and both
EHR-defined OSA status and other phenotypes derived
from data in the medical record. A majority of the can-
didate SNPs evaluated did not show significant

associations with EHR-derived OSA status in our sam-
ples, suggesting these original results could be false posi-
tive associations. However, three of the candidate
variants validated among the European American sam-
ples, including variants within or near the LEPR, MMP-9
and GABBR1 genes. In particular, variants in GABBR1
and LEPR were associated with both OSA diagnosis and
severity in the EHR-derived European American datasets
evaluated and may be particularly likely to translate to
clinical populations of European ancestry. Ultimately, re-
sults reported here represent a first step towards lever-
aging EHR-based phenotypes to tease apart the
heterogeneity underlying expression of OSA. We expect
this may help provide the basis for more personalized
treatment, tailored to particular symptom and comor-
bidity profiles in OSA.

EHR-derived evidence supports influences of SNPs in
GABBR1 and LEPR on OSA diagnosis and variables from
sleep studies
Arguably, the GABBR1 variant (rs29230) had the most
consistent evidence for an association with OSA-related
traits in European Americans in our sample, including a
significant association with increased risk for OSA in
meta-analysis (OR = 1.06, p = 8.44 × 10− 3) and evidence
of an association with increased wake after sleep onset
(p = 1.73 × 10− 3). The association between this SNP and
OSA was reported in a candidate gene study conducted
in 174 individuals from Turkey, where OSA was defined
as apnea hypopnea index (AHI) ≥5 and controls were
confirmed using medical histories [28]; the SNP was as-
sociated primarily among males [28]. A subsequent
study of 266 individuals from China confirmed the asso-
ciation of this SNP with OSA [29]. GABBR1 encodes a
receptor for the main inhibitory neurotransmitter in
humans, gamma-aminobutyric acid (GABA). GABBR1
variation may influence risk for OSA by affecting activity
of the encoded receptor, which is expressed in

Table 2 Validated Associations with Obstructive Sleep Apnea Diagnosis and Severity in European Americans

SNP Chr Closest
Gene

EHR-Derived Trait Effect
Allele

Geisinger VUMC Meta-Analysis

β (SE) p-value† β (SE) p-value† β (SE) p-value†

rs1137101 1p31.3 LEPR OSA Diagnosis G − 0.05 (0.02) 3.78 × 10−2 0.03 (0.03) 2.96 × 10− 1 − 0.02 (0.02)‡ 3.09 × 10− 1

WASO (mins) −0.07 (0.02) 2.64 × 10−4

Sleep Efficiency (%) 0.06 (0.02) 2.28 × 10−3

Awakenings (#) −0.05 (0.02) 9.40 × 10− 3

rs29230 6p22.1 GABBR1 OSA Diagnosis G 0.05 (0.03) 8.42 × 10−2 0.09 (0.04) 3.65 × 10−2 0.06 (0.02) 8.44 × 10−3

WASO (mins) 0.08 (0.02) 1.72 × 10−3

rs3918242 20q13.12 MMP-9 OSA Diagnosis T 0.07 (0.03) 2.65 × 10−2 −0.02 (0.04) 6.48 × 10−1 0.04 (0.03) 1.28 × 10−1

Shown are results for literature-derived SNPs where OSA associations reported in populations of European ancestry validated for an association with electronic
health record-derived OSA-related traits in European Americans. †p-values are unadjusted. ‡Indicates evidence for significant heterogeneity (p < 5.0 × 10−2).
Abbreviations: SNP Single nucleotide polymorphism, Chr Chromosome, EHR Electronic health record, SE Standard error, OSA Obstructive Sleep Apnea, Resp
Respiratory, WASO Wake After Sleep Onset, Mins Minutes. All SNPs evaluated in EHR-based datasets are mapped to the positive strand. More details and FDR-
adjusted q-values for OSA diagnosis association tests are available in Table S4 and sleep study report variables tests in Table S6
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hypoglossal motor neurons innervating the tongue,
resulting in altered inhibition of tongue movement [28,
29]. The predicted consequences of this SNP vary across
different in silico algorithms, with some reporting the
variant to be damaging and others benign (Ensembl
Variant Effect Predictor, https://uswest.ensembl.org);
thus, additional functional characterization of this SNP
is necessary to elucidate a mechanistic role in OSA risk.
There was also a missense variant in LEPR

(rs1137101) that had substantial evidence for a relation-
ship with OSA in European Americans at Geisinger, in-
cluding decreased risk for EHR-defined OSA (OR = 0.95,
p = 3.78 × 10− 2) and associations with increased sleep ef-
ficiency (p = 2.28 × 10− 3), reduced wake after sleep onset
(p = 2.64 × 10− 4), fewer awakenings (p = 9.40 × 10− 3) and
shorter respiratory event duration (p = 3.01 × 10− 2). Des-
pite this evidence, the variant was not associated in the
VUMC-EA dataset or in joint meta-analysis. Previous
meta-analysis of seven candidate gene studies observed
an association between rs1137101 and decreased risk for
OSA specifically in Europeans, but not in Asians [30].
LEPR encodes a receptor for the adipocyte-specific leptin
hormone and there is evidence of a relationship between
leptin levels and OSA [30]. Higher levels of leptin have
been observed in OSA patients compared to controls
[31], and the AHI has been shown to be an independent
predictor of the evening/morning leptin ratio, suggesting
that OSA might affect leptin diurnal rhythms [32]. Given
the relationship between OSA and obesity, it is notable
that this SNP is not associated with risk for obesity [33–
35], suggesting LEPR genetic variation has effects on
OSA that are independent of this established pathway.
Among variants associated with quantitative EHR phe-

notypes, one SNP demonstrated inconsistent evidence
when compared to previous literature. The A allele at
the rs1409986 SNP, located in a non-coding transcript
of the PTGER3 gene, was previously associated with in-
creased OSA risk—defined based on AHI ≥ 15—in an ex-
tensive candidate gene study of 2904 individuals of
European ancestry [36]. In our analyses, the rs1409986
SNP was not associated with OSA diagnosis. Addition-
ally, the previous study failed to replicate the association

Fig. 2 Associations between Literature-derived Candidate SNPs and
Sleep Study Report Variables. Plotted are the estimates of the
additive effects (beta) of the minor allele at each candidate SNP
reported to be associated with OSA in populations of European
ancestry on variables obtained from sleep study reports available in
the Geisinger dataset only, along with the corresponding –log10 p-
value. For each SNP, the rsID, chromosome and hg38 base pair
location are provided. Colors of betas and p-values reflect those
obtained for the corresponding sleep study report variable listed
above. For p-values, up arrows denote increases in variable
measurements and down arrows denote decreases. Red line
denotes unadjusted significance threshold (p < 5.0 × 10− 2)
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between rs1409986 and OSA risk in analyses of inde-
pendent datasets, indicating that this association may
not generalize across distinct analysis datasets [36]. Fur-
thermore, differences in definitions of PSG-based OSA
diagnosis could explain why an association with EHR-
defined OSA diagnosis did not validate. The study
reporting the original association between rs1409986
and OSA defined case status as an AHI ≥ 15 [36], while
to qualify for a diagnosis of OSA based on EHR-derived
clinical codes it was necessary to have clinical codes
used on more than one date in the EHR. Clinical codes
for OSA in the EHR are likely used once in order to ob-
tain a diagnostic sleep study, and a second or third code
would then be used following a PSG with an AHI meet-
ing the American Academy of Sleep Medicine criteria
for OSA (i.e., AHI > 5).
While not associated with OSA diagnosis, we did

observe associations between the rs1409986 SNP and
less time spent at low oxygen saturation, decreased
number of awakenings and increased sleep efficiency.
The original study reporting this association evaluated
log-transformed AHI, but not other measures from
the PSG, and did not observe a significant relation-
ship that survived multiple testing correction (uncor-
rected p = 2.0 × 10− 2) between genotypes at the
rs1409986 SNP and log-transformed AHI [36]. Not-
ably, PSG-derived measures of sleep quality (e.g.,
number of awakenings, sleep efficiency, wake after
sleep onset) are not specific to OSA and are more
often used to define insomnia. As such, it is difficult
to know whether our results reflect evidence that this
SNP is associated with less severe symptoms of OSA,
or insomnia. It is also notable that both the GABBR1
and the LEPR variant were associated with measures
of sleep quality in addition to OSA-related traits.
Interestingly, our group has observed a distinct sub-
group of individuals with OSA who have insomnia-

related symptoms [37]. These associations may reflect
genetically-distinct phenotypic subgroups of OSA with
comorbid insomnia.

Associations of OSA candidate SNPs may reflect
underlying comorbidities
Beyond OSA diagnosis and severity, we evaluated as-
sociations between OSA candidate SNPs and other
EHR-based phenotypes, which can provide evidence
of pleiotropic genetic effects or indicate that original
associations were driven by genetic effects on OSA-
related comorbidities. Several SNPs previously associ-
ated with OSA showed significant associations with
EHR phenotypes. Of particular interest were SNPs
tagging the APOE-Ɛ2 (rs7412) and APOE-Ɛ4
(rs429358) alleles, as well as a variant in the HLA
gene (rs2187668). Specifically, the APOE-Ɛ2 tagging
SNP previously shown to be protective for OSA was
not associated with EHR-defined OSA diagnosis. Not-
ably, rs7412 was instead associated with a lower risk
of hyperlipidemia in both Geisinger and VUMC-EA.
It is feasible that prior associations with decreased
risk of OSA may be driven by this underlying associ-
ation, as patients with OSA are at higher risk for
metabolic syndrome [38]. Similarly, while the APOE-
Ɛ4 tagging SNP (rs429358) previously shown to in-
crease OSA risk was not associated with EHR-defined
OSA in our sample, this SNP was associated with in-
creased risk for hyperlipidemia and lower levels of
HDL cholesterol. These associations are supported by
prior literature [26], which observed that APOE-Ɛ2
carriers had smaller LDL with normal HDL, and
APOE-Ɛ4 carriers had smaller HDL. Once again, it is
feasible that the original association was driven by the
effect of this APOE variant on underlying cardio-
metabolic disease, rather than a true association with
OSA itself.

Table 3 Associations between Obstructive Sleep Apnea Candidate SNPs and Other EHR-derived Clinical Traits

SNP Chr Closest
Gene

EHR-Derived Trait Effect
Allele

Geisinger (EA) VUMC (EA) VUMC (AA)

β (SE) q-value β (SE) q-value β (SE) q-value

rs2187668 6p21.32 HLA Celiac Disease Ta 1.62 (0.12) 5.80 × 10−38 1.15 (0.34) 2.83 × 10−3 Non-varying phenotype/
genotypec

Hypothyroidism NOS 0.15 (0.03) 7.67 × 10−4 0.22 (0.08) 1.13 × 10−2 0.44 (0.24) 3.10 × 10−1

rs429358 19q13.32 APOE Hyperlipidemia C 0.26 (0.03) 7.57 × 10−20 0.16 (0.04) 3.86 × 10−4 0.36 (0.11) 4.69 × 10−3

HDL-Cholesterolb −1.51 (0.15) 8.80 × 10− 19 −5.95 (1.35) 1.82 × 10−4 −2.21 (2.62) 5.59 × 10− 1

Mixed hyperlipidemia 0.17 (0.04) 3.97 × 10−3 0.20 (0.05) 1.93 × 10−4 0.39 (0.11) 4.69 × 10−3

rs7412 19q13.32 Hyperlipidemia T −0.46 (0.03) 9.88 × 10−46 −0.21 (0.06) 1.01 × 10−3 − 0.22 (0.14) 3.42 × 10−1

Shown are phenome-wide association test results where presence of the clinical code for the respective disorder on ≥3 different dates in the EHR was associated
with the OSA candidate SNP at FDR-corrected q < 5.0 × 10−2 in the Geisinger dataset, and replicated in the Vanderbilt University Medical Center European
American (EA) dataset. aLiterature-reported effect allele located on the negative strand. bIndicates an association with the median laboratory value for this
measure in serum or plasma. cIndicates test could not be conducted due to non-varying phenotype or genotype in either cases or controls. Abbreviations: SNP
Single nucleotide polymorphism, Chr Chromosome, EHR Electronic health record, SE Standard error, AA African American, NOS Not otherwise specified, HDL High-
density lipoprotein. All SNPs evaluated in EHR-based datasets are mapped to the positive strand. See Table S7 for more details
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Finally, the HLA SNP previously implicated in OSA
risk was not associated with OSA-related phenotypes in
our sample, but showed effects on increased risk for
autoimmune thyroid diseases and celiac disease.
Hypothyroidism is considered a risk factor for OSA, with
as many as 35% of individuals having comorbid or even-
tual OSA [39]. Potential mechanisms include deposition
of mucoprotein in the upper airway, reduced neural out-
put to airway musculature, abnormal ventilatory control,
and a dual relationship with obesity [40]. Similarly, a
connection between OSA and celiac disease has been
proposed [41]. Specifically, symptoms of celiac disease
(e.g. gastroesophageal reflux disease) may contribute to
disturbed sleep; however, evidence suggests that sleep
disorders in individuals with celiac disease are independ-
ent of gastrointestinal issues [41]. Furthermore, celiac
disease and OSA share common features of lymphatic
hyperplasia and local inflammation, and studies con-
ducted in children report an increased prevalence of
OSA in patients with celiac disease [42]. There was no
mention in the original study reporting an association
between this SNP and OSA of excluding individuals with
thyroid disorders or celiac disease [43]. As such, it is
possible that a proportion of OSA cases in the original
study had underlying comorbidities that were contribut-
ing to expression of OSA, which explains the observed
association with OSA itself (e.g., mediated pleiotropy).
These individuals may represent a distinct OSA patient
subgroup not strongly represented among patients in
our large EHR-based sample.

Additional reasons for lack of validation
A majority of the candidate SNPs we examined did not
validate for an association with OSA diagnosis or sever-
ity, or associate with other phenotypes in the EHR. As
discussed above, this lack of replication may result from
limitations in our EHR-based OSA phenotypes or could
reflect underlying associations with OSA comorbidities,
rather than the disease itself. Ultimately, lack of replica-
tion is a common problem in genetic analyses, as initial
discovery analyses are more likely to overestimate the
true associations (e.g., “Winner’s Curse”) [44]. This can
be particularly problematic in candidate gene studies,
which tend to rely on smaller sample sizes that are more
prone to spurious associations. As described by Varvari-
gou et al [45], small and underpowered genetic studies,
typically lacking replication, are particularly problematic
for OSA genetic research. As a result of these issues, it is
feasible that a majority of the identified candidate SNPs
are false positive associations. Beyond this, the effects of
these variants may not generalize to all ancestral popula-
tions, as approximately one-third of the SNPs tested in
our dataset were identified in populations with different
ancestral backgrounds (e.g., Latin American, East Asian).

The established heterogeneity in the causes of OSA, in-
cluding obesity-related pathways [46], specific craniofa-
cial morphologies [47], and physiological mechanisms
[48], may also explain the difficulties in replicating asso-
ciations in large-scale clinical populations like those
studies here. Combining individuals with various disease
etiologies with potentially distinct genetic influences can
obscure underlying associations. Towards this end, care-
ful characterization of OSA cases with respect to disease
subtypes and consequences may be required to identify
reproducible genetic effects.

Strengths and limitations
Strengths of this study include the large sample size
studied across the two health systems, the detailed infor-
mation leveraged from electronic health records, and the
application of robust association methods to compre-
hensively evaluate the role of OSA candidate variants.
There are also a number of limitations. A limitation of

testing associations between genomic variants and EHR-
derived OSA diagnosis is the possibility of undiagnosed
OSA among non-cases. Prior studies suggest that a high
percentage of individuals referred for sleep studies have
undiagnosed OSA [49]; however, these studies are po-
tentially biased given the elevated risk among those
referred for testing. In our recent validation study [19],
~ 70% of non-cases had a predicted OSA probability
below 20% and fewer than 3% had a predicted probabil-
ity above 70%, based on the symptomless multi-variable
apnea prediction score [50]. Thus, most individuals de-
fined in this study as non-cases are likely true controls.
Ultimately, bias introduced by including individuals with
undiagnosed OSA in the control group should make it
more difficult to identify associations and will not affect
the validated associations that we found; however, this
could explain negative results. Notably, we complement
tests for associations between SNPs and OSA diagnosis
with tests between SNPs and OSA severity measures.
This should further account for bias related to inaccur-
ate control definitions. Future research using EHR data-
sets would benefit from studies focused on accurate
identification of undiagnosed OSA. Towards this end,
obtaining raw sleep study files on large number of pa-
tients, both to confirm OSA diagnoses and expand the
characterization of quantitative phenotypes, would be
beneficial. In addition, while our sample was larger than
nearly all of the original studies in which candidate SNPs
were identified, the relatively small sample size for spe-
cific analyses, particularly among African Americans at
VUMC and in quantitative analyses only available in the
Geisinger sample, may have limited statistical power for
detecting associations. This may be particularly impact-
ful given the expectation that associations in our sample
will be smaller than those observed in the original
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discovery analyses [44]. Finally, to maximize our ability
to validate previous associations reported in ancestral
populations that are comparable to our study popula-
tions, we defined statistical significance for validation of
many previously reported associations based on a p <
5.0 × 10− 2 in analyses of EHR-based OSA diagnosis,
which could increase the likelihood of a false positive re-
sult. Secondary analyses of quantitative OSA phenotypes
and PheWAS analyses were adjusted for multiple com-
parisons. Ultimately, even at this liberal threshold, a ma-
jority of SNPs did not show associations with our
endpoints of interest. As such, future work aimed at
conducting larger, well-powered genome-wide analyses
to assess OSA genetic risk and genetic effects on OSA
severity across populations with diverse ancestral back-
grounds are warranted.

Conclusions
This manuscript leverages the breadth of available clin-
ical information in the EHR to comprehensively evaluate
the relationships between candidate genetic variants re-
lated to OSA and both OSA and non-OSA phenotypes.
We validated associations between a small portion of the
previously reported OSA candidate SNPs and OSA diag-
nosis, including variation related to the genes GABBR1,
LEPR and MMP-9, and observed several associations
with OSA-related traits from sleep study reports. How-
ever, a majority of the candidate SNPs did not show any
OSA association in our sample, suggesting these may be
false positive results. SNPs related to APOE and HLA
showed stronger associations with non-OSA related phe-
notypes of hyperlipidemia, cholesterol, thyroid disease
and/or celiac disease. Relationships between these condi-
tions and risk for OSA may explain the original associa-
tions, or suggest pleiotropic genetic effects. Ultimately,
our results reflect the remarkable resources that EHR-
derived datasets offer for characterizing the genetic and
phenotypic heterogeneity of OSA.
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